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A nonlinear theory is presented for light-induced drift (LID) in the region where the drift 
velocity has an anomalous temperature dependence and changes sign with increasing temperature. 
It is shown for the first time that the anomalous temperature dependence of the LID velocity 
leads to self-excited oscillations in the concentration of the absorbing gas and in the 
temperature. 0 1995 American Institute of Physics. 

1. INTRODUCTION. TEMPERATURE DEPENDENCE OF size of the outermost electron orbital. The above argument, 
DRIFT VELOCITY together with Fig. lb, suggest that v, - vo>O at low tempera- 

Of the various mechanisms by which light affects the 
translational degrees of freedom of particles, the phenom- 
enon of light-induced drift (LID) enjoys a unique position.1 
LID arises when optically active atoms (or molecules) in a 
mixture with a buffer gas are excited by resonant radiation. 
As a result of the velocity-selective interaction with a trav- 
eling light wave, oppositely-directed flows of excited and 
unexcited particles form. These experience different friction 
from the buffer gas and do not compensate one another be- 
cause of the difference in the cross sections on the buffer 
particles. As a result, the absorbing gas begins to drift as a 
whole. For an LID velocity u, we have approximately (Refs. 
2, 3). 

where k is the radiation wave vector; R= o- w,, is the offset 
between the radiation frequency w and the resonant fre- 
quency of the absorbing particle q,; 7 is the fraction of the 
absorbing particles that are excited but have not yet under- 
gone velocity-changing collisions; vl and vo are the transport 
collision rates of the excited and unexcited particles, respec- 
tively. The state of the art in experimental and theoretical 
studies of this effect is covered in Refs. 2 and 3. 

Numerical LID studies in alkali metal vapors4 have 
shown that the relative difference between the transport col- 
lision rates, (vl - vo)lvO, can change sign as the gas tempera- 
ture T varies near a certain critical temperature T,.  This tem- 
perature dependence of the factor (vl- vo)lvo was first noted 
by Pen'kin and ~ e d ' k o ~  in their study of the diffusion of 
metastables. 

As an illustration of this dependence, we consider the 
following model. Suppose that as the atom absorbs a photon, 
an electron is excited from a state 0 to an outer shell 1, far 
from the core. Since shell 1 screens the nuclear charge to a 
lesser extent than shell 0, it follows that the core is smaller in 
excited state 1 (Fig. lb) than in its ground state 0 (Fig. la). 
In accord with the uncertainty principle, the scattering cross 
section decreases with the energy of the colliding particles 
(or the gas temperature). This means that at low temperatures 
the transport scattering cross section is determined by the 

- - 

tuies. With increasing temperature, the colliding be- 
gin to be scattered primarily by the inner part of the atom, 
i.e., by its core. Since the size of the atomic core decreases 
upon excitation (Fig. I), the transport collision rate at high 
temperatures also decreases (vl - vo<O). The equation v1 = vo 
determines the so-called critical temperature T, ,  at which the 
drift velocity u vanishes. 

We see from Eq. (1.1) that the anomalous temperature 
dependence of the factor (v,- vo)/vo leads to an anomalous 
temperature dependence of the drift velocity u. In fact, close 
to the critical temperature T ,  the LID velocity u will also 
change sign, 

The existence of a critical temperature T ,  has fairly re- 
cently been demonstrated in LID experiments on molecular 
gases. 6 

The purpose of this paper is to investigate the effect of 
the anomalous temperature dependence of the drift velocity, 
Eq. (1.2), on LID dynamics. It will be shown that close to the 
critical temperature T,, the stationary state of the absorbing 
gas is unstable, and self-excited oscillations can occur in the 
gas temperature and the absorbing gas concentration. The 
reason for this effect is the nonlinear density-temperature 
relationship in the absorbing gas. 

2. QUALITATIVE DISCUSSION OF SELF-EXCITED 
OSCILLATIONS IN A CELL WITH CLOSED ENDS 

Consider a long, narrow cell with a gas mixture consist- 
ing of an absorbing and a buffer component at an ambient 
temperature T,. The large ratio of the cell length L to the 
cross sectional radius R makes it possible to limit discussion 
to a one-dimensional picture, by considering that all the 
quantities of interest depend only on time t and the coordi- 
nate x along the axis of the cell. 

Let the gas temperature T at the instant of radiation be 
equal to the critical temperature T, .  In that case, by virtue of 
(1.2) there is no drift (u=O), and the concentration of the 
absorbing component is equal to its equilibrium value no. 
However, under certain conditions such a drift-free state of 
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FIG. 1. Schematic representation of the temperature depen- 
dence of the velocity drift: a) ground-state atom, b) excited 
atom. The marked region is the atomic core, the circle is the 
outer electron orbital. At high energies (temperatures), the 
buffer particles are scattered by the core (trajectory I), whereas 
at low energies (temperatures), the cross section increases and 
is determined by the size of the outer electron orbit (trajectory 
11). 

b 

the gas is one of unstable equilibrium. Suppose at the left- 
hand end of the gas-filled cell there is a concentration per- 
turbation Sn(x) = n(x) - no (Fig. 2). The fact that Sn(x) can 
change sign follows from the conservation of the number of 
particles in the cell. Owing to photoabsorption, with a sub- 
sequent thermalization of the excitation energy, region A 
(Fig. 2) is heated. In its turn, the temperature in region B 
decreases. As a result, the drift velocity (1.2) becomes non- 
zero, with u > 0 in region A and u < 0 in B, for a > O .  

Let us introduce a characteristic heat exchange time t,, 
with the ambient medium, and a drift displacement time 
tu= I ~ U = D I U ~  corresponding to a characteristic distance 1 of 
the order of the packet width (I-Dlu, D being the diffusion 
coefficient for the absorbing particles in the buffer gas). 
Clearly, for te,Gtu, the drift-free state of the gas will be 
stable. 

For a finite heat exchange rate, 

f e x a  tu (2.1) 

the situation is qualitatively different. In fact, owing to the 
rapid (drift-velocity) motion of a temperature nonuniformity 
along the cell axis, the gas does not have time to relax to the 
equilibrium temperature T,. In that case region A (Fig. 2), 
where u>O, will move to the right while suffering deforma- 
tion, but will remain undamped, whereas region B will move 

FIG. 2. Qualitative development of self-excited oscillations in the domain of 
anomalous temperature dependence of the drift velocity, Eq. (1.2). 

to the left. The leftward drift of particles out of B will lead to 
a particle pile-up at the left-hand end of the cell. The result is 
that after some time, Sn(x,t) close to the left-hand end will 
be positive, and hence so will the drift velocity (u>O). In 
other words, near the left-hand end a new condensation 
forms which starts drifting to the right. The above discussion 
implies that the criterion (2.1) is in fact an instability condi- 
tion for a spatially uniform distribution of concentration and 
temperature in the absorbing gas. 

The above qualitative arguments demonstrate the initial 
stage in the development of the stationary periodic LID re- 
gime (Fig. 2). 

We now proceed to a quantitative description of this ef- 
fect. 

3. NONLINEAR THEORY OF LID. HEAT EXCHANGE WITH 
THE AMBIENT MEDIUM. ANOMALOUS TEMPERATURE 
DEPENDENCE OF LID VELOCITY 

As already noted, we restrict attention to a one- 
dimensional description in which all physical quantities de- 
pend only on the longitudinal coordinate x parallel to the 
drift velocity. 

The concentration of absorbing gas particles n obeys the 
continuity equation 

where the absorbing particle flux, using the drift velocity 
expression (1.2), is given by 

Taking into account the strong dependence of the flux j on 
the gas mixture temperature T, Eq. (3.1) must be supple- 
mented the well-known thermal balance equations for the 
gas 

dT a 2 ~  
pc - = K T-  b(T- T,) + nuKZ, 

dt dx 

and for the side walls of the absorbing cell at temperature T,, 
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FIG. 3. Instability damping factor a" in Eq. (4.7) as a function of wave 
number p. 

where p, c,  and K are the gas mixture mass density, specific 
heat, and thermal conductivity, respectively; pw , c, , and K, , 
the same for the wall material; b and b'  are the heat ex- 
change coefficients respectively between the gas mixture and 
the side wall and between the wall and the environment at 
T,; u is the photoabsorption cross section. In deriving Eqs. 
(3.2) and (3.3) we have taken into account Lambert's law for 
the radiative intensity I ,  

along with the heat flux along the side walls, 
q,=-~~dT,/dx, and the total energy flux of the gas mix- 
ture, q = - ~ d T / d x  + KI, which is the conventional heat flux 
plus the Poynting vector (the radiative intensity) I. The co- 
efficient K denotes the fraction of the radiative energy ab- 
sorbed by the gas that is transformed into thermal energy. 

The low gas density and thermal conductivity, compared 
to pw and K, for the wall material, enable one to replace Eq. 
(3.2) with 

To simplify the description, we make two further approxima- 
tions that are devoid of any fundamental significance: 1) we 
consider only an optically thin medium (L uno<I),  and 2) 
heat exchange between the walls and the external medium is 
taken to be small compared to that between the walls and the 
absorbing gas, that is, E bl lb<I,  where 

In this last relation we have assumed that the parameter a of 
Eq. (1.2) is a linear function of the radiative intensity 
[a= "(I)= a(Io)I/Io], and that the radiative intensity does 
not exceed its saturation value I,,, , where Zo is some fixed 
intensity. With this understanding, and introducing the di- 
mensionless parameters 

t x n 
7= - z=- N=-, 0 n = . (3.6) 4Tw- T,) 

t ex ' J o t , '  no m 
Eqs. (3.1) and (3.3) can be rewritten in the form 

where 

X K w Pwcw 4 Ta- T,) A ,  *=- 
9 t , ,=b , ,  @a= D P W ~ W  Jolt,, 

(3.9) 

As we shall see below, the dimensionless parameters A, Eq. 
(3.9), and E,  Eq. ( 3 3 ,  will determine the nontrivial nature of 
LID dynamics under the conditions of the anomalous tem- 
perature dependence (1.2). For a finite cell, this set of equa- 
tions must be supplemented by boundary conditions for N 
and O at the ends of the cell. The corresponding boundary 
conditions will be discussed below (see Sec. 6). 

4. STABILITY ANALYSIS FOR THE STATIONARY, SPATIALLY 
UNIFORM SOLUTION IN AN UNBOUNDED MEDIUM. 
NEUTRAL CURVE 

For an unbounded cell the stationary and spatially uni- 
form solution of the set of Eqs. (3.7) and (3.8) is obvious: 

No= 1,  Oo= @,+&. (4.1) 

Conditions for the existence of a solution of Eq. (4.1) for a 
finite cell with associated boundary conditions are given be- 
low (Sec. 6). 

We analyze the stationary solution (4.1) for stability by 
introducing the deviations N '  and @I, 

N = l + N r ,  @=@,+@' .  (4.2) 

The present work is restricted to the case 

o0=0, (4.3) 

i.e., the side wall temperature in a stationary and spatially 
uniform state is assumed to be equal to the critical tempera- 
ture T,, Eq. (1.2). 

We next assume small deviations from the stationary so- 
lution (4.1) and linearize Eqs. (3.7) and (3.8). Solutions of 
the resulting linearized equations are assumed to take the 
form 

exp(- ~ R T +  i p z ) ,  (4.4) 

FIG. 4. Neutral curve. I1 is the domain of absolute instability. 
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FIG. 5. Steady-state oscillations of the spa- 
tial distribution of a) dimensionless absorp- 
tive component concentration N, Eq. (3.7); 
b) temperature O, Eq. (3.8). L = 6 0  cm. The 
remaining parameters are the same as in Eq. 
(6.5). 

yielding the dispersion relation two roots of the dispersion relation (4.12), p ,  and p 2 ,  coa- 
- - - - 

lesce (pl =p2) at a certain frequency R=Rc, whereupon the 
n 2 +  in[( 1 + Alp2+ 11 -p2( 1 + A ~ 2 )  - i c ~  = O. (4.5) dispersion relation becomes 

The dimensionless frequency R is a complex quantity, 

R = R 1 + i R " .  
where p 3  and p4  are the two remaining roots. Comparison of Here we only give the solution of the dispersion relation 

(4.5) for the unstable branch, Eqs. (4.12) and (4.13) allows one to determine the R, at the 
merger point. The domain of absolute instability is bounded 

~ ' = ~ ~ [ l - ( l + A ) ~ ~ ] ,  (4.6) by the so-called neutral curve in the (c2,A) plane, on which 
R," = 0.  The parametric equation of the neutral curve 

a " =  - c2(3A +2)p2(p2-p:), (4.7) 

obtained in the long-wavelength limit x3(A- 1 ) 4 + ~ 2 2 ( 2 ~ - 5 ) ( ~ - 1 ) 2 + ~  

P e l ,  (4.8) 

In Eqs. (4.6) and (4.7) the following notation has been used: 

We see from Eq. (4.9) that if 

then in the long-wavelength region (Fig. 3) 

the stationary solution (4.1) becomes unstable (RM>O). 

Neutral curve 

The fact that the dispersion relation (4.5) has roots in the 
upper half of the R plane implies that a small initial pertur- 
bation (4.4) in an infinitely long cell builds up exponentially, 
i.e., the system is unstable. 

For an unbounded system there are two possibilities. In 
the first, an initial perturbation in the form of a wave packet 
of finite spatial dimensions builds up everywhere in space; 
this is known as an absolute instability. If the packet is trans- 
ported along the cell so rapidly that the perturbation every- 
where tends to zero as t+w,  then the instability is of the 
convective type.7 

To determine the domain of absolute instability, we re- 
write the dispersion relation (4.5) as an equation in p: 

According to Ref. 7, the values of R determining the nature 
of the instability are chosen from among those R for which 

follows directly from Eqs. (4.12), (4.13), and the condition 
(a," = 0). Here x=R2>0 ,  R"=O. 

Equations (4.14) and (4.15) can be solved analytically 
for A=O and A a l ,  giving 

c 2 = 8 ,  x = 1 ,  for A = o , E ~ = ~ - ~ o A - ~ ,  
(4.16) 

x = 2 A 1 ( 1 - 2 0 ~ )  for A S 1 .  

For the intermediate range of the parameter A, Eqs. (4.14) 
and (4.15) were solved numerically. The results are given in 
Fig. 4. 

The present derivation of the neutral curve (4.14)-(4.15) 
suffers from one major drawback. We have not proven the 
second necessary criterion for absolute instability, namely 
that when the roots p 1  and p 2  leave the neutral curve, they 
deviate from one another and wind up on opposite sides of 
the real axis in the p plane for R"+w (Ref. 7). To remedy 
this problem, an alternative, rigorous but more cumbersome 
derivation was carried out, based on a direct determination of 
the roots of the dispersion relation (4.12) using the Ferrari 
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method.' As a result, we were able to show that the paramet- 
ric equations (4.14) and (4.15) are indeed the equations of 
the neutral curve. 

To find out whether the region of absolute instability lies 
above or below the neutral curve (4.14)-(4.15), we explored 
numerically the merger of the roots p(C4) of (4.12), the po- 
sitions of the roots being determined by the Ferrari method. 
It was found that above (below) the curve the merger occurs 
for fl1'>O (RM<O). Thus, in the region above the neutral 
curve (Fig. 4) the system is absolutely unstable. 

5. INSTABILITY OF A FINITE-LENGTH SYSTEM 

The problem of analytically determining the domain of 
instability of a finite-length system is a difficult one. The 
reason for this is the complication brought about by the 
boundary conditions. The instability criterion begins gener- 
ally to depend on the length L as well. A finite-size system is 
unstable if its length L exceeds a certain critical value LC ,7.9 

which depends on the parameters e2 and A involved in the 
problem (3.7)-(3.8) under study. Here we have introduced 
the dimensionless cell length 

L = L I J D ~ ~ ,  . 
Unfortunately, we have been unable to find a rigorous ana- 
lytic expression for the critical cell length LC.  

We shall present here some qualitative arguments allow- 
ing a rather accurate estimate of the dimensionless critical 
cell length LC(e2 ,~ )  [see Eq. (5.1)]. From the definition (5.1), 
the length LC does not depend directly on the cell length 
(even though the function LC(e2,h) is generally dependent on 
the boundary conditions); hence, it is a characteristic of the 
unbounded medium. But the only spatial scale available in 
the stability analysis of an infinite cell is 2 r lp , ,  where pc is 

the critical wave vector; see Eq. (4.9). With no loss of gen- 
erality, the expression for the critical length LC can be cast in 
the form 

where n =n(A,e2) is in general some function of the param- 
eters A and e2. It is natural to assume that n- 1 and that it 
depends weakly on A and e2. TO test this assumption we 
solved Eqs. (3.7) and (3.8) numerically for the boundary 
conditions (6.1) and (6.2) (with 0 = 0 )  for various dimen- 
sionless lengths L .  We defined LC as the critical length be- 
yond which the cell develops oscillations, and before which 
the solution tends to a stable, spatially uniform one. Calcu- 
lations indicate that n - 3. 

Thus, we suggest the following approximate formula for 
the dimensionless critical length LC : 

above which (L>L,) the system is unstable. 
Additional studies indicate that the semi-empirical for- 

mula (5.3) agrees fairly well with a direct numerical solution 
of the nonlinear equations (3.7) and (3.8). 

6. SELF-EXCITED OSCILLATORY REGIME IN A CELL WITH 
CLOSEDENDS 

The nonlinear equations (3.7) and (3.8) have not lent 
themselves to analytic solution, and were therefore solved 
numerically, subject to appropriate boundary conditions at 
the ends of the cell. 

The first two boundary conditions express the absence of 
any flux of absorbing gas through the ends: 

FIG. 6. Limit cycles corresponding to the 
solution in Fig. 5 for various points in the 
cell: a) xlL=0.5; b) xlL=0.9; c) xlL 
=0.95; d) xlL=0.97. 
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FIG. 7. As in Fig. 5 ,  for L = 100 cm. 

" - Figures 5a and 5b show the solution of Eqs. (3.7) and 
O(z, T)N(z, 7)- - N(z, T) = 0. 

a2 
(6.1) (3.8) with boundary conditions (6.1) and (6.2) in the steady- 

Z = O , L  state regime, for L = 60 cm and parameter values 
The second pair of boundary conditions is dictated by the 

A = l ,  E2=20, nature of heat exchange at the ends. The present work is (6.5) 

limited to the two simplest possibilities: b = l  s-', a=1 cm1s.K D = 2 0  cm2/s. 

where 8 is the end value of O(z, T). The numerical solution 
of Eqs. (3.7) and (3.8) was carried out by setting 8 = 0 .  This 
condition implies that the side wall temperature T, at the 
ends of the cell is equal to the critical temperature T,, 
whereas the second type of boundary condition, Eq. (6.3), 
corresponds to a lack of thermal flux across the ends. The 
choice 0= 0 implies further that the stationary solution (4.1) 
and (4.3) also satisfies boundary conditions like (6.2)-(6.3), 
and corresponds to a side wall temperature 

T , = T , = T ~ + ~ ~ - ~ ~ ,  (6.4) 

which is equal to the end temperature. 
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The parameters A and e2 lie above the neutral curve (Fig. 4). 
The corresponding spatial distributions of N and O are given 
for various times (with the same interval along the time 
axis). The solution represents condensations of the absorbing 
gas traveling from the left to the right end of the cell. We see 
from Figs. 5a and 5b that this choice of L, A, and E~ in Eq. 
(6.5) leads to the self-excited oscillatory regime (indepen- 
dent of the particular choice of boundary conditions). A more 
transparent confirmation of the approach of the above solu- 
tion to a steady-state self-excited oscillatory regime is pro- 
vided by the limit cycle of the solution of Eqs. (3.7) and (3.8) 
in the middle of the cell; see Fig. 6a. The phase trajectory of 
this solution (Fig. 6a) is closed, attesting to the strict period- 
icity of the observed self-excited oscillations. Note that the 
form of the limit cycle of the observed periodic solution of 
Eqs. (3.7) and (3.8) depends on the observation point. Fig- 

FIG. 8. Limit cycles corresponding 
to the solution in Fig. 7 for various 
points in the cell: a) x l L = 0 . 2 5 ;  b) 
x l L = 0 . 5 .  
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ures 6a, b, c, and d, respectively, show phase trajectories in 
the middle of the cell and at points 0.9, 0.95, and 0.97 times 
the cell length from the beginning of the cell. 

Such behavior has also been seen for other values of E,  

A, and L in the domain of instability (5.3); see Fig. 4. The 
solution became more complicated as the cell length in- 
creased, in that the number of absorbing-gas condensations 
increased, and the phase trajectory exhibited a multiperiodic 
behavior in contrast to Fig. 6. The results of a numerical 
solution of Eqs. (3.7) and (3.8) for a cell length of L = 100 
cm [the remaining parameters being as in Eq. (6.5)] are pre- 
sented in Figs. 7a and 7b. The phase portrait of this solution 
at one-fourth the length and midway along the cell are given 
in Figs. 8a and 8b, respectively. 

In both qualitative discussion and numerical work we 
have restricted attention to positive a [Eq. (1.2)]. According 
to Eq. (1.1), the sign of a depends on the sign of the fre- 
quency offset a. In the present work we have treated only 
the optically thin case, Eqs. (3.1), (3.2), and (3.3) [or Eqs. 
(3.7), (3.8)]. These equations are invariant under a change in 
sign of both the parameter a and the coordinate x (a--i 
- a,x+ -x). Thus, changing the sign of a is equivalent to 
changing the sign of the coordinate x or to reversing the laser 
beam propagation direction. Consequently, solution of Eqs. 
(3.1), (3.2), and (3.3) [or Eqs. (3.7) and (3.8)] for a < O  is 
identical to solution of the same equations with a > O  and 
reversal of the x axis (opposite radiation propagation direc- 
tion). 

To conclude, we estimate LID for Li vapor in the buffer 
gas Ne-C2H4. A small admixture of C2H4 molecules is re- 
quired for the collisional transformation of a fraction of the 

absorbed radiative energy into thermal energy.'' Numerical 
calculations for a Li-Ne system yield a critical temperature 
T,a1000 K. LID estimates for a copper cell yield Zc*10 
w/cm2 and LC-10 cm. 

The authors thank S. N. Atutov, A. I. Chernykh, G. Nien- 
haus, A. M. Shalagin, and E. Eliel for fruitful discussions and 
a number of valuable comments. 

This research was supported in part by International Sci- 
ence Foundation Grant No. RCMOOO and by a grant from the 
Russian Basic Research Foundation (RBRF). The financial 
support of the Netherlands Organization for Scientific Re- 
search and the "Universities of Russia" Program is also ac- 
knowledged. 

' F. Kh. Gel'mukhanov and A. M. Shalagin, Pis'ma Zh. Eksp. Teor. Fu. 29, 
773 (1979) [JETP Lett. 29, 711 (1979)l. 

'S. G. Rautian and A. M. Shalagin, Kinetic Problems of Nonlinear Spec- 
troscopy, North-Holland, Amsterdam (1991). 

3 ~ .  G. C. Werij and J. P. Woerdman, Phys. Rep. 169, 145 (1988). 
4 ~ .  I. Parkhomenko, Opt. Spektrosk. 67, 26 (1989) [Opt. Spectrosc. (Rus- 
sia) 67, 14 (1989)l. 

'N. P. Pen'kin and T. P. Red'ko, in Spectroscopy of a Gas-Discharge 
Plasma [in Russian], V. 1, p. 51, LGU, Leningrad (1976). 

6 ~ .  J. Van der Meer, Molecular Collision Processes Studied by Light- 
induced Kinetic Effects, Ph.D. Thesis, Leiden (1992). 

'E. M. Lifshitz and L. P. Pitaevskii, Physical Kinetics [in Russian], Nauka, 
Moscow (1979). 

'A. G .  Kurosh, A Course in Higher Algebra [in Russian], Nauka, Moscow 
(1975). 

9 ~ .  M. Fedorchenko and N. Ya. Katsarenko, Absolute and Convective In- 
stability in Plasmas and Solids [in Russian], Nauka, Moscow (1981). 

''11.1. C. de Lignie and J. P. Woerdman, J. Phys. B23, 417 (1990). 

Translated by E. Strelchenko 

80 JETP 80 (I), January 1995 F. Kh. Gel'mukhanov and T. I. Privalov 80 


