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The drift of a binary gas mixture in capillaries induced by a resonant light has been studied 
theoretically. The surface (accommodation) mechanism and bulk (buffer) mechanism of the effect, 
which are governed respectively by the difference in the accommodation coefficients and 
the cross sections for the collisions of excited and unexcited particles of the absorbing component 
have been analyzed. The hydrodynamic, the intermediate, and the Knudsen drift regimes 
have been examined. The plots of the kinetic coefficients, which characterize the light-induced 
flows of the components of the mixture, versus the Knudsen number, the ratios of the 
molecular masses, and the effective diameters of particles of the absorbing and buffer gases have 
been obtained. O 1995 American Institute of Physics. 

1. INTRODUCTION 

The phenomenon of light-induced drift (LID) in bulk, 
which was predicted by Gel'mukhanov and ~ha la~ in , '  can be 
described as the appearance of a directed flow of gas which 
absorbs light selectively with respect to the velocities of mol- 
ecules and which is found in a mixture with a buffer gas. The 
presence of a buffer gas, whose molecules interact in differ- 
ent ways with the excited and unexcited particles of the ab- 
sorbing gas, is of fundamental importance for the existence 
of light-induced drift in bulk. As a result of such interaction, 
the buffer gas also flows in the direction opposite to the 
light-induced drift. It follows from the momentum conserva- 
tion law that in the case of unrestricted gas the hydrody- 
namic (average-mass) flow of a mixture is generally equal to 
zero (if light pressure is ignored). The mechanism for light- 
induced drift in bulk in the case of unrestricted, spatially 
uniform gas was analyzed in detail by Dykhne and 
  taro st in.^ 

In the case of a restricted gas mixture a surface light- 
induced drift occurs as a result of different interactions of 
excited and unexcited particles of the active component with 
the boundary between the phases.334 A so-called collisional 
light-induced drift is also known to exist in a restricted gas 
for different transport cross sections for collisions of excited 
and unexcited particles?."n each case, the wall changes the 
total momentum of the gas mixture, stimulating its macro- 
scopic flow. Near the boundary between the phases, there are 
therefore not only oppositely directed flows of active gas and 
buffer gas but also a hydrodynamic flow of the entire mix- 
ture. However, far from the wall (on the order of ten mean 
free paths of molecules) its effect on the state of the gas 
becomes unimportant and, according to the momentum con- 
servation law, there is no hydrodynamic flow of the mixture. 

At the qualitative level, an analysis of the contribution to 
the net effect of light-induced drift in the capillary of each of 
the three aforementioned mechanisms is fairly straightfor- 
ward. At a low concentration of the absorbing gas, the colli- 
sions between its molecules can be ignored; i.e., the "colli- 
sion" mechanism is absent. With regard to the other two 
mechanisms, the contribution from each of them to the light- 

induced drift is different, depending on the values of the 
Knudsen number (Kn=lIR,, where 1 is the mean free path of 
molecules in the gas, and Ro is the radius of the capillary). In 
the hydrodynamic regime (Knel) ,  only a few particles of 
the active gas interact with the surface of the capillary. Spe- 
cifically, only those particles which are situated in the thin 
(on the order of 1) layer near the wall interact with the sur- 
face of the capillary. For K n e l ,  the bulk ("buffer") mecha- 
nism for light-induced drift is therefore the controlling 
mechanism. In the intermediate regime (Kn-1), a significant 
contribution from each mechanism is expected. In the free- 
molecule regime (Kn+l), in which there are no collisions 
between particles of the active gas and the buffer gas, only a 
light-induced drift at the surface-a directed flow of the ab- 
sorbing gas-is possible, while the buffer gas is at rest. 

Such a picture was observed in the experimental study7 
of a drift of sodium vapor in an atmosphere of inert gases. It 
was established that the velocity of light-induced drift is a 
nonmonotonic function of the buffer gas pressure. The veloc- 
ity reaches a maximum value in the intermediate regime and 
then decreases with further decrease of the gas pressure in 
the capillary. 

Experimental studies of light-induced drift in capillaries 
over a wide range of Knudsen numbers can be reliable 
sources of information about the transport and accommoda- 
tion properties of excited particles. An adequate theory must 
be developed for this purpose. 

We have attempted to theoretically study the bulk 
(buffer) mechanism and surface (accommodation) mecha- 
nism for light-induced drift of a binary gas mixture in a 
capillary for arbitrary Knudsen numbers. 

2. STATEMENT OF THE PROBLEM 

Let us consider mass transfer in a binary gas mixture 
which fills a capillary, whose length L is much greater than 
its radius Ro.  The flow profiles in this case depend solely on 
the radial coordinate i ,  and end effects can be ignored. 

A traveling light wave, which is directed along the z axis 
of the capillary, is absorbed by the particles of one of the 
components in the electronic (for atoms) or vibrational- 
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rotational (for molecules) transition from the ground state n 
to an excited state m. The frequency w of the monochromatic 
light is offset from the center of the absorption line, w,, , by 
R =  (w- w,,)4 w, om, . Because of the Doppler effect, only 
those particles of the absorbing component whose projection 
of the velocity v1 in the direction of the wave vector k are 
close to the resonance value kvl=O interact with the light. 
The particles which have absorbed light change their trans- 
port properties-in particular, the collision cross section. The 
gas can therefore be considered a three-component mixture. 
The particles of the mth and nth components of the absorb- 
ing gas in this case have the same masses m, = m, = ml but 
different effective diameters, d,Zd,, and they can undergo 
mutual transformations due to the radiative decay of an ex- 
cited level or to stimulated and collision-induced transitions. 

The velocity distributions of the excited f, and unex- 
cited f, particles of the absorbing gas have a Bennett peak 
and a dip, respectively, near the resonant velocity,8 
vlz= cRlk. At R f  0, these distributions are asymmetric about 
vlz=O. There exist therefore oppositely directed macro- 
scopic fluxes of excited J, and unexcited J ,  particles along 
the capillary. Because the excited and unexcited particles in- 
teract differently with the wall and the buffer particles, the 
partial fluxes J, and J, experience different resistances, 
which gives rise to a net flow of the absorbing component in 
the capillary, J1 = J, + J,-the light-induced drift, which 
causes the gas mixture to segregate. 

The distribution of the excited f, and unexcited f, par- 
ticles of the active component and the distribution of par- 
ticles of the buffer gas, f2 ,  satisfy the coupled kinetic 
equations8 

where 

r, is the radiative decay constant, r is the homogeneous 
half-width of the absorption line, Sij are the Boltzmann col- 
lision integrals between particles of the ith and jth species, 
E, is the electric field amplitude, dm, is the dipole moment 
of the m-n transition, f i  is Planck's constant, and ~ ( v )  is the 
saturation parameter, which characterizes the induced transi- 
tion probability and which is proportional to the radiation 
intensity I. 

We assume that the collisions of gas particles with the 
capillary wall are elastic, and that they can be approximated 
by a specular-diffuse Maxwell model, according to which 
some particles E~ of ith species, after a collision with the 
wall, are diffusely scattered with a Maxwellian velocity dis- 

tribution, while the remainder 1 -.si are specularly reflected. 
We can then write the boundary conditions for Eqs. (1) as 
follows: 

Here n is the inner normal to the capillary wall; the super- 
scripts +, s, and - denote respectively the reflected par- 
ticles, the diffuse particles, and the particles incident on the 
surface; nf is the number density of the diffusely scattered 
particles of the ith species, mi is the mass of the particles of 
the ith species, kg is the Boltzmann constant, and T is the 
gas temperature. 

Let us consider the case in which the saturation param- 
eter is small, K(v)+~.  This imposes a corresponding con- 
straint on the intensity I. The states of the components will 
then be slightly out of equilibrium and the distribution func- 
tions can be written in the form of small perturbations of the 
Maxwellian distributions: 

mi )3'2 ( miv2) 
exp - - i=m,n,2, (3) 

2kBT ' 

where nio is the equilibrium number density of the ith com- 
ponent. 

Let us assume that particle-particle collisions are elastic. 
Each collision rate yi = yii + yij + yik (where yii , yij , and yik 
are the effective elastic collision rates of particles of the ith 
species with particles of the ith, jth, and kth species, respec- 
tively) in this case is much higher than the radiative decay 
rate r,,, ; i.e., rmi= r m /  y i 4  1.  

For an optically thin medium, the change in intensity A I  
along the length of the capillary is small, and in first approxi- 
mation the dependence of the perturbation on the longitudi- 
nal coordinate z can be ignored. We assume that the radiation 
intensity is uniform along the cross section of the capillary. 
The saturation parameter ~ ( v )  in this case does not depend 
on the radial coordinate r, and neither transverse diffusive 
flow nor light-induced diffusive striction and expulsion of 
particles by the light field occur.g 

The assumption that the induced transition probability is 
low implies that the density of excited particles is much 
lower than the density of unexcited particles. Let us also 
consider the case in which the density of buffer particles is 
much higher than the density of absorbing particles. We thus 
have n,+n,4n2 and n,=(n,+n,)4n2. The collision in- 
tegrals s,, , s,, , s,, , and s,, in Eqs. (1) can be ignored in 
this case. Since collisions between particles of the absorbing 
gas are disregarded, only two light-induced drift 
mechanisms-the bulk (buffer) mechanism and the surface 
mechanism-are important. 

The kinetic equations (I), linearized with respect to the 
perturbations of the distribution functions hi and with respect 
to the small parameters rmi=Frn ly i ,  nm/nn,  n,ln2, and 
nn/n2, can be put in the form 
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where 

Here cil is the vector component of the dimensionless ve- 
locity of the particles of ith species along the cross section of 
the capillary. 

We will use second approximations of the linearized 
elastic-collision integrals Li .lo Retaining only the odd terms 
in the velocity c, (only these terms determine the gas flow) 
and disregarding such a subtle effect as the isothermal heat 
transfer, we can write these approximations as follows: 

where 

Here Ui, Pi,, , and pi are the partial velocity, the stress ten- 
sor, and the pressure of the ith component, respectively. The 
expressions for the frequencies in terms of the particle 
masses and the Chapman-Cowling R integrals are given in 
Ref. 10. The rarefaction parameter Ri is inversely propor- 
tional to the Knudsen number [see expression (15)]. 

We note that kinetic equations (4) for the excited and 
unexcited components of the absorbing gas do not depend on 
each other or on the equation for the buffer gas. On the other 
hand, the last expression in (4) in terms of the collision in- 
tegral L2 includes the characteristics of each component of 
the absorbing gas. The distribution function of the buffer 
particles can therefore be determined only after solving the 
first two equations of the system (4). Such a substantial 

mathematical simplification is the result of an assumption 
that the concentration of the absorbing gas is low. 

The linearized boundary conditions (2) for the perturba- 
tion functions hi have the form 

The second term on the right side of the expression for h+ in 
(7) does not depend on the molecular velocities, and there- 
fore does not contribute to the macroscopic velocity or the 
stress tensor [Eq. (6)]. We will therefore omit it below. 

Equations (4)-(7) can be used to uniquely determine the 
functions hi(r,c), where i=m,n,2. We feel, however, that it 
would ultimately be worthwhile to consider the resulting 
flows of the absorbing gas J1 and the buffer gas J 2 ,  averaged 
over the cross section of the capillary: 

Here J = J1 + J2 is the average flow of the gas mixture. 
For the numerical calculations it is convenient to use the 

dimensionless quantities Gl  and G,, which are related to the 
flows J1 and J2 by 

where 

Here n = nm + n, is the particle concentration of the absorb- 
ing gas. 

For any parameter values rl(k6 and fll(kd ,), the value 
of K can be expressed in terms of the plasma function." In 
the case of inhomogeneous broadening (T4kdl) and homo- 
geneous broadening (r%-kd l) the value of K is 

3. SOLUTION OF THE KINETIC EQUATIONS 

We will use the integral-moment method based on the 
transformation of the integrodifferential kinetic equation for 
the distribution function to a system of integral equations for 
its moments. 

Using the boundary conditions (7), we integrate each of 
the kinetic equations in (4) in the direction of the velocity 
vector ciL (Fig. 1).12 Using the expressions for the perturba- 
tion functions hi which we obtained and the definitions (6) 
for macroscopic quantities, we obtain the following three 
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FIG. 1. Diagram of the integration in the direction of c, . 

systems of integral equations for dimensionless velocities ui 
and stress tensors qr, of the absorbing component (i = m, n) 
and the buffer component (i=2) of the gas mixture: 

1. For the absorbing gas we have i = m,n. 

2. For the buffer gas we have 

) + 2[( 1 - (hi\)+ (hi;)) 7T2rz 

where 

r- rr rN- r1 
e= - e0=- F o r m  

A=-,  
Jr- rr I ' IrN-r117 2v 1 

Tp(t)= xP exp(-x2- t/x)dx, I," 

The argument t of the functions T, in Eqs. (10) and (11) is 
t = ~ ~ l r - r l l ,  and the argument t in Eqs. (12) and (13) is 
t = ~ ~ l r - r ' l .  The integration in (10)-(13) is over the cross- 
sectional area of the capillary, 2. 

Equations (10)-(13) are Fredholm integral equations of 
the second kind. For the solution of these equations it is 
convenient to use the Bubnov-Galerkin method,13 since it 
allows us to calculate the coordinate-averaged flows J1 and 
J 2 ,  without calculating the velocity ui and stress qrZ profiles 
(i=n, m, 2). The convergence rate of the method depends on 
the choice of the approximating expression for the macro- 
scopic parameters. The experimental study of Chernyak and 
coworkers12 has shown that approximations of the type 

provide sufficiently accurate results (within an error of -3%) 
for the fluxes of absorbing and buffer particles over the entire 
range of Knudsen numbers. 

Substituting relations (14) in the integral equations (10)- 
(13) and requiring that the expressions which we obtained be 
orthogonal to each basis function [1 and r2  for (10) and (12), 
r for (11) and (13)], we obtain a system of linear algebraic 
equations for the unknowns al i ,  a,,, and a,,. The orthogo- 
nality condition of the two arbitrary functions f and g has the 
form 

We choose the effective collision rate yi2 in the form 
yi2= vi;), where i=m,  n, and we choose the rate y22 in the 
form y2,= ~$3- v$;), by analogy with the Bhatnagar-Gross- 
Krook model for a one-component gas. The gas particles are 
modeled as elastic, rigid spheres with diameters d m ,  dn , and 
d, for the excited, unexcited, and buffer particles, respec- 
tively. The rarefaction parameter Rn can then be related to 
the Knudsen number: 
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1 
- 

I 
Kn= 2 

Kn '  Rot 

where 1, is the mean free path of the unexcited particles of 
the absorbing gas. 

To reduce the number of adjustable parameters and to 
simplify the numerical calculations, we restrict the analysis 
to an approximation in which the difference between the di- 
ameters of the excited and unexcited particles is small and 
we assume that the scattering of particles at the capillary wall 
is nearly diffuse. As a result, we introduce the small param- 
eters 

Linearizing expression (9) with respect to the parameters 
(16) for the flow of the absorbing gas (light-induced drift), 
we obtain 

where 

The dependence of the kinetic coefficients G(,') and Gi2) 
on the molecular masses is determined totally by the factor 
@. The quantities A,, A,, B,, B2, C1, C2, and D depend 
solely on the rarefaction parameter R. 

In a similar way, we obtain the following expression for 
the flow of buffer gas: 

The kinetic coefficients G(:) and Gi2) depend on the rarefac- 
tion parameter R and on the ratio of the masses mllm2 and 
the diameters dn/d2 of the particles of the absorbing gas and 
the buffer gas. 

The average flow of the gas mixture is given by the 
expressions 
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J=J1+J - G ( ~ ) A . + G ( ~ )  d), 
- 29;; dn2 

The absorbing and buffer gas flows and the flow of the 
mixture as a whole are therefore determined, as can be seen 
from relations (17), (20), and (21), b the kinetic coefficients 

1 2  
(27 G('), G('), G?), GL2), G('), and G which characterize the 

surface mechanism and the bulk mechanism of these flows. 
The error in the numerical calculations of the Galerkin 

coefficients for determination of the constants a,,, azi, and 
a3i in relations (14) does not exceed 0.1% for all the given 
parameter values. 

The analytic ex ressions for the kinetic coefficients GP), 
(2Y GI2), Gf ) ,  and G2 were obtained only for large and small 

values of the Knudsen number. 
1. An almost free-molecule regime (KnP1 or R 41): 
The quantities contained in expressions (18) and (19) 

have, up to terms of order R, the form 

For the kinetic coefficients which characterize the flow of 
absorbing gas we then obtain 

The expressions for the kinetic coefficients which character- 
ize the buffer gas flow have, up to terms of order R2 In R, the 
form 

where 

2. Hydrodynamic regime with slipping (Kne l  or RP l ) :  
The quantities contained in expressions (18) and (19) 

have, up to terms of order R-', the form 
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TABLE I. The quantities A l ,  A2,  B 1 ,  B2 ,  C l ,  C2, and D contained in Eqs. (18) and (19). 

For the kinetic coefficients which characterize the absorbing 1  
gas flow we then obtain G P 1 = [ Q 1 ( f  + 6 d a 4 )  +a5] ,+..., (29) 

1  
(26) 

where 
G ~ " = J ; ; R ~  +..., 

(1  + m i  lm2)3'2 a - a - ml /m2 
4 - ( 3 + 5 m l l m 2 ) ( l + d , / d 2 ) "  ' - 3 + 5 m l / m 2 '  1 2  

+... . (27) The results of numerical calculations of the quantities 
A,, A,,  B l ,  B2 ,  C1, C 2  and D for intermediate Knudsen 

We note that the G I 2 ) =  -2IR was obtained numbers are presented in Table 1. The magnitude of the ab- 
in Ref. 2. The difference by a factor of 2  from the first term sorbing gas flow for intermediate ~~~d~~~ numbers can be 
on the right-hand side of Eq. (27) is attributable to the fact determined from E ~ ~ .  (18) and (19) for any molecular mass 
that an approximation of a spatially homogeneous gas was ratio 
used in Ref. 2. 

For kinetic coefficients which characterize a buffer gas 
flow we have, for R a l ,  4. DISCUSSION OF THE RESULTS 

Figures 2a and 2b show the plots of the kinetic coeffi- 
1  

Gl"=[~ , ( -&+3f iUi i )  + a 5 ]  , + ,  (28) cients G?' and G?), which characterize the surface mecha- 
nism and the mechanism for the light-induced drift in bulk, 

FIG. 2. Plots of the kinetic coefficients G(,') 
(a) and G$') (b) versus the rarefaction pa- 
rameter R.  I - m l l m 2 9 1 ;  2 - m l l m 2 S l ;  
3--m,/m2-1. 
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plotted as a function of the rarefaction parameter R for three 
molecular mass ratios m lm291, mllm2%l, and ml/m2=l. 
We see that G?' and GI" depend weakly on the molecular 
mass ratio only in the intermediate regime (R-1). The de- 
pendence of LID on the molecular mass manifests itself prin- 
cipally in terms of the rarefaction parameter R [see Eq. (15)l. 

The kinetic coefficients which characterize the flow of 
buffer gas depend strongly on the molecular mass ratio 
mllm2 and on the diameters dlld2. These dependences are 
illustrated in Figs. 3 and 4. The flow of buffer gas decreases 
as its molecular weight increases. The Lorentz gas-mixture 
model is realized in the limit m2%ml : a small admixture of 
a light, absorbing gas diffuses through the heavy, stationary 
buffer gas. 

We note that the dependence of the kinetic coefficients 
G$') and Gi2) on the diameter ratio d,ld2 of the particles of 
the absorbing and buffer gases is determined by the gas flow 
regime (Figs. 4a and 4b). While in a nearly free-molecule 
regime at R>1 GP) and GL2) increase only slightly with in- 
creasing parameter d,ldz, they actually decrease in the in- 
termediate and hydrodynamic regimes at R 3 1. 

In the particular case of a Na-He gas mixture (absorbing 
gas-sodium vapor, buffer gas-helium), we constructed 
curves for the kinetic coefficients Gil), Gil), 
G ( ~ ) = G J ~ ) + G & I )  and Gi2), Gi2), G ( ~ ) = G ( ~ ) + G & ~ )  versus 
the rarefaction parameter R. These curves are shown in Fig. 
5. 

The directions of the surface components of the J, and 
J2 streams are determined by the difference in the accommo- 

FIG. 3. Plots of the kinetic coefficients 
G$') (a) and G?) (b) versus mllmz for 
d l l d z = l .  1--R=0.1; 2 - R = 1 ;  3-R 
= 10. 

dation coefficients of the unexcited and excited particles of 
the absorbing gas A&=&,-E, and the offset between the 
radiation frequency and the center of the absorption line, 
O=w-w,,. If AOO, the directions of the surface flow 
components of the absorbing and buffer gases at LR>0 coin- 
cide with the direction of radiation, but at LR<0 they are 
opposite the direction of radiation. The fact that the surface 
components of J1 and J2 have the same direction is consis- 
tent with momentum conservation in the interaction of the 
gas with the wall. 

The directions of the bulk components of J, and J2 are 
determined by the difference in the diameters of the excited 
and unexcited particles of the absorbing gas, Ad, and the 
offset LR. If Ad>O, the direction of the bulk component of 
the absorbing gas flow at LR<O is the same as the direction of 
radiation, but the direction of the bulk component of the 
buffer gas in the case of collisions between molecules is 
opposite the direction of radiation, consistent with the mo- 
mentum conservation law. At R>O, the two gas flows re- 
verse directions. 

We see in Fig. 5a that upon transition from free- 
molecule regime to hydrodynamic regime the value of G?), 
which characterizes the surface component of the absorbing 
gas flow, decreases monotonically. Such a dependence is at- 
tributable to the fact that the relative number of particles that 
collide with the capillary walls decreases with increasing rar- 
efaction parameter R, which decreases the importance of the 
walls as a buffer, causing G(,1) to decrease. 

The kinetic coefficient Gf) ,  which characterizes the sur- 

FIG. 4. Plots of the kinetic coefficients G$') 
(a) and G$*) (b) versus dlld2 for m1/m2=1. 
1 - R  =0.1; 2-R = 1; 3-R = 10. 
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FIG. 5. Plots of the kinetic coefficients G(:), Gil), G(') (a) and 
G\'), Gi2), G(') (b) versus the rarefaction parameter R for the gas 
mixture Na-He. I-Eqs. (22) and (23); 2-Eqs. (24) and (25); 

G(2) 3-Eqs. (26) and (27); 4-Eqs. (28) and (29). 

face component of the buffer gas flow, depends nonmono- 
tonically on R. In the transition from the hydrodynamic re- 
gime to the intermediate regime (up to the value of R=0.5), 
the increasing flow of the absorbing gas (of its surface com- 
ponent) drags an increasing amount of the buffer gas because 
of the collision of molecules. However, a further decrease of 
pressure in the capillary (at R ~ 0 . 5 )  decreases the number of 
collisions between molecules, and hence reduces the drag. In 
the free-molecule regime the buffer gas is stationary. 

The kinetic coefficient G?), which characterizes the bulk 
component of the absorbing gas flow, also depends non- 
monotonically on the rarefaction parameter R. In this case 
Ci2)<0 (Figs. 5a). For R=0.8, this dependence has a mini- 
mum (the absolute LID is at a maximum), but in the hydro- 
dynamic (R +m) and the free-molecule (R 4 0 )  limits 
G(:)=o; i.e., there is no light-induced bulk drift. The kinetic 
coefficient Ci2)>0, which determines the bulk component of 

The dependence of the LID on the gas pressure in a 
capillary obtained in this study is in qualitative agreement 
with the experimental data of Ref. 7. Unfortunately, it is 
technically difficult to quantitatively compare theory with 
experiment7 because of the lack of initial data. The basic 
difficulty of such a comparison, however, has to do with the 
fact that the theoretical model is based on the assumption 
that the radiative decay rate of an excited level I', is low 
compared with the elastic collision rate yi .  In other words, 
the dimensionless parameter T m i = T m l y i < l ,  a condition 
which is usually satisfied for molecular gas. Under experi- 
mental conditions: the parameter Tmi increases from 0.3 at 
high pressures to 140 at low pressures. 

The research described in this paper was made possible 
in part by Grant No. RG4000 from the International Science 
Foundation. 
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