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The Helmholtz equation is solved in the pairwise interaction approximation (also called the 
Bourret approximation) for the mean field-for an ensemble of realizations-in an unbounded 
nonuniform medium described by a normalized binary correlation function 
q(rl,r2)=[exp(-rla)]cos(pr), where r=rl-r2, a is the spatial scale of the correlations, and p is 
a reciprocal lattice vector, determining the regular properties (short-range order) of the 
nonuniform medium. The scattering coefficients y and the phase (v) and group (c) propagation 
velocities of electromagnetic waves corresponding to two roots of the dispersion relation are 
calculated. O 1995 American Institute of Physics. 

A great deal of attention is being devoted to problems 
involving wave propagation in nonuniform The 
problem of solving the wave equation for the initial (in gen- 
eral, field can usually be reduced to solving the 
corresponding equation (in some approximation5) for a scalar 
wave.6 

In the present paper we solve the problem of the propa- 
gation of scalar waves in an unbounded, nonabsorbing non- 
uniform medium with short-range order. Spatial dispersion 
on a macroscopic scale is taken into account. The dynamic 
characteristics of the nonuniform medium are calculated by a 
method proposed in Refs. 3 and 4 and elaborated in Refs. 6 
and 7. Attention is focused mainly on calculating the param- 
eters of the mean field, which has the form of a monochro- 
matic plane wave. 

First, we generalize the expression for the binary corre- 
lation function of a completely disordered medium with 
sharp boundaries between grains of nonuniformity. The co- 
ordinate dependence of this function has the form1'* 

where a is the spatial correlation scale. Short-range order 
gives rise to damped oscillations of the corfelation function 
with increasing values of its argument. The function 

v(r, ,r,)=cp(p)= *(p)cos p r  (1.2) 

is the simplest function that takes into account the oscillatory 
damping of the correlation function while preserving the par- 
ity of the function. In what follows we employ a correlation 
function of the more general form 

(P(P)= *(p)cos bp, b=ap, (1.3) 

where p is a reciprocal lattice vector, which determines the 
regular properties (short-range order) of the nonuniform me- 
dium. The physical meaning of the generalization (1.3) is 
that in the limit a+w the correlation function will be strictly 
periodic (which corresponds to a layered medium), and in 
the limit b+O we arrive at the case (1.1) (completely disor- 
dered macroscopically isotropic medium with no short-range 
order). 

2. DISPERSION RELATION 

We consider a scalar monochromatic field E(r,t) 
=E(r)exp( - i wt) described by the Helmholtz equation 

For definiteness, we take the random scalar field E to be the 
permittivity of the nonuniform medium. Then E will be the 
electric field strength, which is related to the induction D by 
D = EE; kc is the wave number in a uniform medium (com- 
parison medium) with permittivity E,; and c ,  is the speed of 
light in free space. 

Averaging Eq. (2.1) over a statistical ensemble of real- 
izations (the average is denoted by the angular brackets) and 
introducing via the equation 

(D)=(EE)=;,(E) (2.3) 

the total effective permittivity operator ;,, we arrive at the 
Helmholtz equation 

for the mean field (E). Here, j is the identity operator. To 
solve Eq. (2.4), it is necessary to find the explicit form of the 
operator g* . A method for doing this is described in, for 
example, Ref. 6. Here, we present the basic results required 
for our subsequent calculations. 

Introducing the Green's operator H, of the Helmholtz 
equation for the comparison medium 

we write the operator 6, in the pairwise interaction approxi- 
mation 

. " , = ( E ) ~ + ( E ~ Q ~ E ~ ) ,  (2.6) 

The required parameters of the mean field can be calcu- 
lated using (2.6) together with Eq. (2.4). According to Eq. 
(2.6), only information about the pairwise (two-particle) in- 
teractions between the nonuniformities described by the ran- 
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dom field ~ ( r )  is required to find i,: The approximation 
(2.6), written in terms of the operators L , or H ,  = - i, ' , is 
called the Bourret approximation.' 

To calculate the parameters of the wave, we employ the 
dispersion relation 

corresponding to the integral equation (2.4) for the mean 
field (E), which has the form of a uniform plane wave: 

The function i ,(x,q) is the Fourier transform, written in di- 
mensionless variables, of the kernel E,(r,w) of the operator 
E* , and the spatial scale a of the correlations, which appears 
in Eqs. (1.1) and (2.8), is determined by the coordinate de- 
pendence of the two-point correlation function 

of the random field E(r), which here and below is assumed to 
be statistically 

The analysis given below is based on the investigation of 
the roots of the dispersion relation (2.8), which determine the 
parameters of the plane wave (2.9). In the approximation 
(2.6) for the function E,(x,q) we obtain 

Here, y=ak is the dimensionless wave vector, and the Fou- 
rier transform Q,(y,q) of the kernel of the operator Q, from 
Eq. (2.7) has the form 

For direct calculations we employ the normalized two-point 
correlation function of the form (1.3) introduced in Eq. 
(2.11). The Fourier transform of the function (1.3), which is 
denoted by the same letter (with a different argument), is 

Substituting Eq. (2.15) into Eq. (2.13), we find 

The choice of the arbitrary parameter E, is determined by the 
specific problem being solved. We used the condition 

which simplifies the expressions (2.12) for i , and the roots 
of Eq. (2.8). To study small fluctuations, it is best to choose 
the quantity D < 1  as a small parameter. 

As follows from Eq. (2.16b), the parameters of the wave 
depend on the angle O=arccos (xblxb) between the wave 
vector x and the reciprocal lattice vector b. In the general 
case, the function F is 

If, however, the wave propagates along the layers, then cos O 
=O and the expression (2.18a) simplifies to 

In the general case, the coordinate dependences (1.2) and 
(1.3) of the two-point correlation function (2.11) are too 
complicated to be able to solve the dispersion relation (2.8) 
analytically. Even for the simplest correlation function (1.1), 
the solution must be limited to approximations of this solu- 
tion which refer to a limited range of wave numbers. It is 
convenient to classify them on the basis of the asymptotic 
solutions of Eq. (2.8) in the case of a disordered nonuniform 
medium described by the exponential function (1.1). 

These ranges are as 

I - long-wavelength range q< 1,  (2.19) 

1s - transitional region q-q,,= 1,  (2.20) 

s - short-wavelength range 1 <q<  11 6 ,  (2.21) 

su - transitional region 1 q q s , ,  1 (2.22) 

u - ultrashort-wavelength range 1 < 11 JD< q. 
(2.23) 

We note that the asymptotic ranges (2.19) and (2.23) 
always hold, while the short-wavelength asymptotic range 
(2.21) is clearly defined only for small enough values of D. 

3. DISCUSSION 

We consider below some characteristics of the field 
(2.9), calculated on the basis of the dimensionless wave 
number x satisfying the dispersion relation (2.8) for a me- 
dium described by the effective permittivity E, . 

We introduce the dimensionless scattering coefficient as 
a quantitative measure of wave scattering 

where y is the intensity damping coefficient of the wave.' 
The dimensionless velocities are given by 

where v, and c, are, respectively, the phase and group ve- 
locities of the monochromatic plane wave in a medium with 
the effective properties. 

The correlation function (1.3) contains two parameters: 
the scalar parameter a (spatial scale of the correlations) and 
a vector parameter p (characterizing the short-range order). 
In the limit a+m, the exponential approaches 1 and the cor- 
relation function is strictly periodic, which characterizes a 
layered medium. The other limiting case (p-0, a #m) cor- 
responds to a completely disordered medium. In intermediate 
cases, the degree of ordering is determined by the ratio of a 
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FIG. 1. 

and llp. One other parameter must be taken into account- 
the wave vector k, whose orientation relative to p strongly 
influences the dynamic properties of the inhomogeneous me- 
dium. 

The solution of the dispersion relation (2.8) contains two 
roots, one of which gives in the long-wavelength limit Ray- 
leigh's law for the scattering coefficient (= (frequency)4), 
while the other root is virtually independent of the frequency, 
although its contribution to scattering is negligible, as will be 
illustrated below. Keeping this in mind, we shall term the 
wave corresponding to the first root a real wave and the wave 
corresponding to the second root a virtual wave. Figures 
1-2, discussed below, correspond to the function (2.18b), 
which describes wave propagation perpendicular to the vec- 
tor p. 

Figure 1 displays the phase velocity 6 and the group 
velocity E for a real wave as a function of the logarithm of 
the dimensionless wave number q. The numbers on the 
curves are the values of the parameter n = -log D. Figure l a  
refers to a completely disordered medium (b =O), and Fig. l b  
refers to the case b=10. Comparing the graphs shows that 
short-range order affects mostly the dispersion of the group 
velocity. The dip in the group velocity becomes less pro- 
nounced as b increases, and in accordance with the well- 
known solutions,8p9 the dip vanishes completely in the limit 
of a strictly periodic layered medium. 

Figures 2a and 2b display the parameter v=d log yl 
d log q as a function of the logarithm of the dimensionless 

wave number. The values n = -log D are indicated by the 
numbers on the curves. Figure 2a corresponds to a com- 
pletely disordered medium (b =0), while Fig. 2b corresponds 
to the case b=5. If the scattering coefficient were a power- 
law function of the frequency, then the parameter v would be 
the exponent. For the three asymptotic laws, the values of v 
are 4, 2, and 0 (Rayleigh region, short wavelengths, and the 
geometrical optics region). The peaks correspond to the fact 
that the power-law approximation for the scattering cross 
section is incorrect near the transition from short wave- 
lengths to ultrashort wavelength. Comparing Figs. 2a and 2b 
shows that short-range order results in narrowing (or vanish- 
ing) of the short-wavelength asymptotic range. For example, 
if for a completely disordered medium the v=2 asymptotic 
behavior is first observed at n=3, then in the presence of 
short-range order it is first observed only at n =6. 

Comparing the log(q) dependences of the scattering co- 
efficient of the real and virtual waves shows that the differ- 
ence of the corresponding curves for the cases b = 0 and b = 1 
is appreciable only for long wavelengths. 

In the ranges (2.19)-(2.21), the contribution of the vir- 
tual component can be neglected. Moreover, the scattering 
coefficient of this wave is much greater than that of the real 
wave. These parameters become comparable for the two 
components only at the transition region (2.22). In this case, 
to calculate the wave process in a nonuniform medium, 
Bourret's approximation must be used and both waves must 
be taken into account. Comparing the frequency depen- 

FIG. 2. 
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dences with the propagation velocities of the real and virtual 
waves shows that the phase and group velocities of the vir- 
tual wave, in contrast to the real wave, increase with increas- 
ing wave number, and instead of a dip, as in the case of a real 
wave, the group velocity of the virtual wave exhibits peaks 
near the transition from short to ultrashort wavelengths. The 
wavenumber dependences of the phase and group velocities 
are similar to the curves obtained by reflecting the curves for 
a real wave about the fi = i = 1 axis. 

The calculations based on the solution of the dispersion 
relation (2.8) revealed that the effects observed in completely 
disordered random inhomogeneous media also occur in me- 
dia with short-range order. The existence of short-range or- 
der greatly influences the shape of the curves of 6, i ,  and ? 
as a function of log(q) only for short wavelengths (2.21), 
and less strongly for long wavelengths (2.19) and ultrashort 
wavelengths (2.23), where the well-known asymptotic laws 
for ? hold ( y  a q4 and ?=const, respectively). 

This investigation was based on a calculation of the 
mean field in the Bourret approximation, which makes it 
possible to take into account macroscopic spatial dispersion 
(owing to the presence of nonuniformities of the medium) 
and to incorporate all wavelengths within the same approach. 
If, however, the spatial dispersion is neglected, then different 
computational schemes must be used in different 
ranges.1.'0-13 Note also that the mean-field calculation of the 
scattering coefficient y gives a value which is somewhat too 
high.14 

The results obtained can be used to describe wave propa- 
gation in randomly nonuniform media with short-range or- 
der. The characteristics of wave propagation in completely 
disordered media, described by an exponential correlation 
function of the material parameters, which is obtained from 
Eq. (1.3) by setting b=O, were studied in Refs. 1, 3, 6, 7, 10, 
12, and 13. This situation is typical of one-phase polycrys- 
tals. For materials with a more complicated structure, such as 
multiphase polycrystals and composite materials, short-range 
order is always manifested, as a result of which the correla- 
tion function exhibits oscillatory damping. Such a coordinate 
dependence has been observed experimentally for fiber com- 
posite mater ia~s . '~ '~~  

If a multiphase polycrystal or composite material is mac- 
roscopically isotropic, then short-range order will be taken 

into account by the expression (1.3) with bp= bp. We note 
that a similar situation occurs at the molecular level in liq- 
uids, where short-range order also shows up.17 Another lim- 
iting case corresponds to b=const#O, where we obtain a 
stochastic medium with short-range order in the case p(lb and 
a uniform medium in the case plb. The latter case corre- 
sponds to a stochastic layered medium, in which the alterna- 
tion of layers exhibits short-range order. 

In summary, our results describe a wide class of materi- 
als which possess stochastic structure and which can be mac- 
roscopically isotropic as well as anisotropic. 
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