
Optical second-harmonic generation by nanostructures: size effects and the role of 
quantum chaos 

0 .  A. Aktsipetrov, P. V. Elyutin, A. A. Nikulin, and E. A. Ostrovskaya 

M. K Lomonosov Moscow State University, 119899 Moscow, Russia 
(Submitted 28 July 1994) 
Zh. Eksp. Teor. Fiz. 107, 96-110 (January 1995) 

We have studied second-harmonic generation in metallic nanocrystals and semiconductor 
quantum dots. Experimentally, the nonlinear response was found to be enhanced as the particle 
radius was reduced from some tens of nanometers to sizes of the order of a nanometer. A 
theoretical description based on noninteracting chaotically moving electrons within each particle 
is encouragingly consistent with the experimental data. O 1995 American Institute of 
Physics. 

1. INTRODUCTION 

The unique physical properties of metallic nanocrystal- 
lites and semiconductor quantum dots have been widely 
studied in recent years. This is especially true of experimen- 
tal observations and theoretical descriptions of the various 
size-induced quantization effects in such quasi-zero- 
dimensional systems,' which can be used as the structural 
components of modem composite materials and high-speed 
optoelectronic devices (such as optoelectronics switches, 
memory cells, etc.). 

The spatial confinement of electron motion in metallic 
nanocrystallites and semiconductor quantum dots strongly 
influences both the linear and nonlinear properties of these 
systems. Enhanced optical nonlinearity in quantum dots (as 
compared with a bulk semiconductor sample) was predicted 
by Nakamura et al.' for the case in which there is significant 
size-induced quantization of exciton motion. Various third- 
order nonlinear optical effects have been investigated in 
semiconductor microcrystallites embedded in a glass matrix: 
degenerate four-wave mixing; nonlinear absorption: and 
coded second-harmonic generation.5 Third-order (cubic) op- 
tical nonlinearity has been the preferred mode: experimental 
studies of cubic effects have been more convenient, given the 
assumption that quadratic effects like the generation of the 
reflected second harmonic should be negligible in macro- 
scopic samples containing quantum dots and metallic nanoc- 
rystallites, and that those samples are centrosymmetric media 
(at the macroscopic level). The size dependence of the qua- 
dratic response of metallic and semiconductor nanostructures 
was first reported in Refs. 6 and 7. 

Theoretical examination of the nonlinear optical re- 
sponse of small particles requires that one transcend the stan- 
dard methods of solid-state theory. Particle shape and size 
take on special importance, since an appreciable fraction of 
the atoms in small particles are at the surface. Many theo- 
retical models of small-particle optical response (in metallic 
nanocrystallites and quantum dots) presuppose a centrosym- 
metric shape (typically spherical)? A more realistic study of 
quadratic optical effects in small (nanometer-size) particles 
require allowance for variations in particle shape. 

These variations, which are present in all mesoscale sys- 
tems, cannot be discounted for at least two reasons. Firstly, 

the quadratic susceptibility of centrosymmetric systems van- 
ishes in the dipole approximation. One might therefore ex- 
pect that a small reshaping that breaks the inversion symme- 
try of the particles should lead to a sizable increase in 
second-harmonic optical response, due to the onset of a non- 
vanishing dipole contribution to the quadratic susceptibility. 
Secondly, a deviation from exact symmetry can destroy the 
integrability of electron motion. In the latter case, an electron 
in a small particle would have to be described by a quantum- 
chaotic system model. Its energy spectrum, the wave func- 
tions of stationary states, and the matrix elements of dynami- 
cal variables would then become random quantities subject 
to statistical de~c r i~ t ion .~ , ' ~  We would then be dealing with 
two fundamentally distinct sources of irregularity in the 
physical quantities. The first would be the mesoscale nature 
of the system, which is manifested in fluctuations of particle 
shape and other parameters characterizing the system. The 
second would be chaotic electron dynamics, which would 
show up no matter what the assumed shape of any particular 
particle, yielding electron motion that is no longer integrable. 

Gor'kov and ~ l iashber~"  modeled an electron in a small 
metallic particle using a completely random Hamiltonian be- 
longing to a Gaussian ensemble. Subsequently, concurrently 
with the development of chaotic dynamics, Buch et a1.12 and 
Berry et al.13 related the applicability of such a model to the 
size of the stochastic component at the energy surface of the 
system's classical analog. Although the relationship was es- 
tablished by analysis of two-dimensional systems (billiards 
and nonlinear oscillators), it was widely assumed to hold in 
three dimensions as well. To the best of our knowledge, how- 
ever, there have thus far been no systematic studies of the 
nonlinear optical properties of metallic nanocrystallites and 
quantum dots based on quantum chaos theory. Specifically, 
there is as yet no faithful model with which to calculate the 
quadratic susceptibility of such systems. 

In the present paper, we report an experimental and theo- 
retical study of the quadratic optical response of metallic 
nanocrystallites and quantum dots as a function of mean par- 
ticle size. In the experimental part of this study, we have 
relied on the generation of a reflected second harmonic. We 
lay special stress on the role played by the chaotic nature of 
electron motion in the theoretical interpretation of the size 
effects that we observed. 

50 JETP 80 (I), January 1995 1063-7761 195101 0050-08$10.00 O 1995 American Institute of Physics 50 



Our proposed model for calculating the small-particle 
response is based on two ideas. The first is that we assume 
the model matrix elements and energy-level separations to be 
random quantities with statistical properties dictated by the 
theory of strongly chaotic quantum systems. The second is 
that we invoke the correspondence principle to describe the 
smoothed behavior of these quantities, which are averaged 
over energy ranges that contain sufficiently many energy lev- 
els of the system. In particular, we replace the mean squared 
matrix elements of dynamical quantities with a specially nor- 
malized spectral density of their classical analogs.14 In Sec. 
4.2, we compare the size dependence of the quadratic sus- 
ceptibility obtained in the quantum-chaotic model with that 
obtained via an alternative approach based on a model of 
regular electron motion. 

2. EXPERIMENT 

2.1. Metallic nanocrystallites 

The size dependence of giant second-harmonic genera- 
tion was studied in island films with ultrasmall particles (is- 
lands) of silver. Island-film samples were prepared by evapo- 
rating all elements in a high-vacuum chamber with a residual 
pressure of order lop9 Torr. The substrate for the island film 
was a surface of NaCl monocrystals coated with a thin film 
of SiO. Prior to deposition, the NaCl monocrystals were 
heated to 700 K for surface cleaning. A 50-nm layer of SiO 
was then deposited, followed by the silver. The deposition 
rate was 2 nm sec-'. Following deposition of the silver 
nanocrystallites, the films were coated with 50 nm of amor- 
phous SiO to protect the metallic nanocrystallites from the 
influence of the ambient medium. 

Following deposition, the resulting structures were sepa- 
rated into individual samples, which were subsequently in- 
vestigated in nonlinear optics experiments and with a trans- 
mission electron microscope. Using a JEM 100 C electron 
microscope, we determined the following parameters of the 
island film: the mean particle radius R,  which ranged from 1 
to 10 nm in our samples, the mass thickness dm, which 
ranged from 0.1 to 3.4 nm, and the filling factor q, which 
ranged from 0.07 to 0.4. The characteristic particle radius 
was determined by averaging over an ensemble of several 
hundred islands. 

We irradiated the island films with a Q-switched 
Y A G : N ~ ~ +  single-mode p-polarized laser (wavelength 1064 
nm, pulse width 15 ns, repetition rate 12.5 Hz); the pump 
power density was I,-0.5 MW cm2. No sample breakdown 
was observed at that intensity. Radiation at the frequency of 
the second harmonic was separated out with a double mono- 
chromator, and its intensity I,, was measured with a photo- 
multiplier and a standard electronic sampling system. The 
detection system was calibrated in intensity using the re- 
flected second harmonic signal for bulk samples of silver, 
which has the well-known value 1 ~ , / 1 ~ = 1 . 4 . 1 0 - ~ ~  in cgs 
units.15 

Island-film samples differed from one another not only 
in terms of the mean radius R of islets, but in terms of the 
surface density N ( ~ ~ ) ,  and therefore the filling factor 
q(Ag)=.sm(Ag)~2 varied from sample to sample. The mea- 

FIG. 1. Second-fiarmonic size-induced ephancement factor G as a function 
of mean radius R for silver particles (R in nanometers). Arrows indicate 
anomalies in the experimental size dependence. 

sured value of the second harmonic intensity 12, cannot di- 
rectly characterize the size effect in the quadratic optical re- 
sponse of the islands, since in our experiment 12, depended 
on two arguments, R and q(Ag) (or R and n(Ag)). In order to 
isolate the unadulterated size effect, the measured intensity 
of the second harmonic was normalized via the procedure 
described in Sec. 2.3. The resulting size dependence is illus- 
trated in Fig. 1. 

2.2. Semiconductor quantum dots 

In the present experiment, the second harmonic was gen- 
erated by reflecting a 1064-nm Y A G : N ~ ~ +  laser beam from 
the surface of a composite material-a glass matrix with em- 
bedded crystallites of CdSe. Other details of the experiment 
have been described in Sec. 1.1. 

The sample of semiconductor-doped glass was prepared 
by repeated annealing.17 The density of CdSe by volume was 
approximately 0.5%, and the semiconductor content was uni- 
form throughout the glass rod. Nanocrystallites in various 
parts of the glass rod ranged in size from 5 to 50 nm, which 
was achieved using a special secondary heating process. The 
monotonic progression of mean particle size along the ex- 
perimental specimen was maintained by monitoring the ab- 
sorption band edge. 

The procedure employed to prepare the specimens that 
we studied thus ensured a constant filling factor 

471. 
4 

(CdSe) = - (CdSe)R3 

3 9 

where n(Cdse) is the bulk concentration of CdSe crystallites. 
In contrast to the situation in island films, this enabled us to 
treat the measured second-harmonic intensity solely as a 
function of R (see inset in Fig. 2). The experimental data 
normalized in accordance with the procedure described in 
Sec. 2.3 are shown in the main panel of Fig. 2. 

2.3. Experimental data processing 

The second-harmonic radiation was generated in these 
experiments by reflection from a macroscopically disordered 
two-dimensional (in the case of island films) or three- 
dimensional (in the case of CdSe crystallites in a glass ma- 
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FIG. 2. Second-harmonic size-induced e?hancement factor G as a function 
of mean radius R for CdSe crystallites (R in nanometers). The inset shows 
the intensity I,, of the second harmonic (arbitrary units) as a function of R .  

trix) array of particles. To identify the pure size effect in the 
quadratic response, it was necessary to derive an expression 
relating the intensity of the second harmonic to the effective 
quadratic susceptibility x2=cr21V of an individual particle 
(where cr2 and V are the quadratic polarizability and volume 
of a particle). More specifically, the particles can be consid- 
ered dipoles oscillating at the frequency of the second har- 
monic, since the parameters of the systems treated here 
satisfy 

where R is the mean particle radius, i is the mean distance 
between neighboring particles, and A, is the pump wave- 
length. For silver islands i(Ag)m(n(Ag))-ln, while for CdSe 
crystallites 5(CdSe)m(n(CdSe))-1'3, where n(Ag) (n(CdSe)) denotes 
the surface (bulk) particle density. The radiation detected at 
the second harmonic-from both the metal and semiconduc- 
tor particles-was diffuse and depolarized, confirming the 
noisy nature of the nonlinear optical sources: 

where an overbar denotes averaging over the ensemble of 
particles. Taking (1) and (2) into consideration, we can write 
out an expression for the measured intensity of the diffuse 
component of the second harmonic generated by a disor- 
dered array of particles, 

Here n = n(Ag), n(cdse), V is the mean particle volume, I, is 
the pump intensity, and L (o) and L (2w) are local field fac- 
tors that describe the mean corrections to the field introduced 
by the linear response of the environment of a particle at the 
pump and second harmonic frequencies. We assume that 
fluctuations in the local field factor and particle volume are 
negligible compared with fluctuations in the quadratic sus- 

ceptibility. The local field factor depends on the local envi- 
ronment of the particles, and therefore turns out to be a func- 
tion of the filling factor q (q = q(Ag),q(CdSe)). 

The function X 2 ( ~ )  can be defined in terms of the nor- 
malized intensity at the second harmonic: 

In order to express the denominator on the right-hand 
side of Eq. (4) as a known function of the measured param- 
eters R and q, we have made several additional assumptions. 

1. We assume that diversity in particle shape is small 
enough that it does not substantially affect L(2w,q) or V (so 
that V= (4A3/3) .  At the same - time, such variations play a 
key role in the calculation of IX2I2; see Sec. 3. 

2. The linear optical response of a particle can be de- 
scribed with the aid of the local (bulk) dielectric constant: we 
assume that size-dependent nonlocal effects are negli ible at 
experimentally achievable particle sizes (1 nmsRbgk10  
nm, 5 ~ ~ s R ( ~ ~ ~ ~ ) s s o  nm). 

3. L(o,q) was calculated using the expression obtained 
in Ref. 16 in the effective-medium approximation. 

Finally, the enhancement factor describing the size de- 
pendence of the quadratic optical response was taken to be 

G(R) =z~~m)(R)~z~~m~(RmaX), ( 5 )  

where ~:$---10 nm, RE;Se)-50 nm. 
We have plotted the experimental G(R) data for silver 

islands in Fig. 1 and for CdSe crystallites in Fig. 2. It is clear 
that the quadratic response is enhanced by two orders of 
magnitude in metals and five orders of magnitude in semi- 
conductor particles as particle size decreases. 

3. THEORY 

3.1. Model 

We consider a particle to be a noninteracting set of elec- 
trons contained within an impenetrable quasispherical sur- 
face with mean radius R.  In what follows, we call this system 
a (three-dimensional) billiard. In treating interactions be- 
tween the electrons and the crystal lattice, we will assume 
that the electrons obey the same dispersion relation as in 
bulk matter. Since we are dealing with intraband transitions 
in metallic particles and interband optical transitions in semi- 
conductor particles with two different energy bands, for the 
electron mass m we must use the effective mass m , ~  in the 
two cases. In a metallic particle, me, is the mass of a con- 
duction electron, and in a semiconductor it has different val- 
ues in the various energy bands. 

Given the irregular shape of the billiard, we assume that 
the classical motion of the electrons, which are elastically 
reflected from the boundary, is completely ergodic over the 
energy surface. Accordingly, we will describe the quantum 
properties of the electron states in terms of the theory of 
random matrices. 

Let En be an energy eigenvalue, and let A, be the typical 
linear extent of the region of space accessible to an electron 
of energy E n .  The system will be semiclassical if 
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for billiards, A,== R. For metallic particles, we can assume 
that m is the free electron mass me, and that E n  is approxi- 
mately equal to the Fermi energy EF.  For semiconductor 
particles, an E n  can be chosen in the range 
O<En< 2fio-E, , where fio is the photon energy and Eg is 
the band gap. 

Inserting numerical values, we can easily show that our 
model is manifestly semiclassical for metallic particles 

and can be assumed to be semiclassical for semi- 
conductor particles (10-~<[,<1). This justifies our subse- 
quent use of the correspondence principle. 

3.2. Quadratic susceptibility 

By analogy with linear susceptibility, we can assume that 
the effective quadratic susceptibility of an electron in an ex- 
ternal static potential equals the particle's total dipole mo- 
ment per unit volume. 

In the dipole approximation, the quantum-mechanical 
expression for a typical component x 2 = P ( 2 w )  of the elec- 
tron's effective quadratic susceptibility tensor in an external 
field that varies at frequency w is1' 

e XnrnXmkXkn 
(7) 

nmk 

Here n, m, and k denote electron eigenstates that belong to 
the discrete spectrum, the xij are matrix elements of the Car- 
tesian coordinates between the various states, oij is the cor- 
responding transition frequency, and 4, is the relaxation con- 
stant. summation over all electrons within the particle1 
billiard can be replaced by summation over states n of the 
individual electrons in (7). The matrix elements of the coor- 
dinates in (7) possess the same typical properties as matrix 
elements of dynamic quantities in a quantum chaotic 
system:14 on an energy scale [ p ( ~ ) ] - 1 < ~ ~ 4 ~ n ,  where 
p(En) is the mean density of energy states, the matrix ele- 
ments behave like statistically independent random variables. 
The off-diagonal matrix elements xij have a zero-mean 
Gaussian distribution.14 The nonlinear susceptibility x2 of a 
chaotic system can therefore be considered a statistical vari- 
able. 

A systematic statistical analysis of the quadratic suscep- 
tibility lies beyond the capabilities of existing theory. We 
will assume that fluctuations in the denominator of (7) are 
negligible by comparison with fluctuations in the numerator 
by virtue of the mutual repulsion of energy levels typical of 
chaotic systems.9"0 This enables us to replace the denomina- 
tor with a typical value. Assuming the spectral levels to be 
approximately equally spaced, we henceforth put 
En=fion=finwo, where hoo is the mean spacing between 
energy levels: hwo=[p(~,)]-'. This yields 

where 

and An is a combination of matrix elements: 

The differences A(') and are proportional to the spacing 
between levels: A(') ,(~)=W~. The relaxation constants in (9) 
are assumed equal: am,- Skn= 6. 

The statistical properties of (8) are now governed by the 
statistical properties of the numerator, i.e., by An . Given the 
statistical properties of xij , we have 

From here on, angle brackets denote averaging over a spec- 
tral range AE that encompasses a large number of energy 
levels. 

The reflected second harmonic intensity observed ex- 
perimentally is dictated by ax, the rms value of x,. Bearing 
in mind the Gaussian statistics of the matrix elements xij , we 
can express (8) in a form that includes only the two-point 
correlation function of the An : 

The second sum in (11) can be dropped for the following 
reason. In the semiclassical limit, the two-point correlation 
of matrix elements between adjacent levels can be replaced 
by the correlation of the Fourier amplitudes of the corre- 
sponding classical dynamic variables: 

Since classical stochastic motion in a billiard is a stationary 
random process, the Fourier components of the Cartesian 
coordinates under such motion is &correlated:19 

where S(w) is the spectral density of one of the coordinates. 
Two-point correlations such as ( [ A d n  + j l )  are therefore neg- 
ligible, and the second sum in (11) effectively vanishes. 

We can thus estimate the typical nonlinear susceptibility 
in our model to be 

In the semiclassical limit, we can estimate this quantity via 
the correspondence principle,'4 which makes it possible to 
express the mean squared matrix element in terms of the 
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spectral density S(W) of the classical coordinate 
(wij=(Ei-Ej(lh) and the density p(E) of the energy levels 
(E=(Ei+E,)/2): 

Assuming that the particles are approximately spherical, 
we can adopt for our model the spectral density obtained 
from the theory of stochastic motion in a quasicircular two- 
dimensional billiard." The approximate expression for s ( ~ ) ,  
which is good to about lo%, is then 

s ( w ) - s ~ ( u ) = ~ o R ~ ( w / ~ ~ ) ~  for o > 2 f l 7  (16) 

and S(o)=O for o<2fl. The characteristic frequency is 
f l = v 1 2 ~ ,  where v is the electron velocity. 

The density of states p(E) for a metallic particle can be 
calculated directly: 

where V-4?rR3/3 is the volume of the billiard. A semicon- 
ductor particle can be reduced to an effectively "metallic" 
system by introducing the composite density of states2' 

where Ec(p) and EV(p) are the dispersion relations for the 
conduction and valence bands, and the electron reduced mass 
is 

where mc(mv) is the electron effective mass in the conduc- 
tion (valence) band. 

3.3. Approximate parity 

In a centrosymmetric system, the coordinate matrix ele- 
ment xi, between states [i) and (j) of the same parity van- 
ishes identically. Since at least one such element enters into 
each term in the sum (7), the quadratic susceptibility of a 
spherically symmetric particle vanishes as well. A small par- 
ticle with a slightly deformed surface remains close to 
spherical in shape, but its central symmetry may be broken. 
We assume that all classical integrals of the motion are com- 
pletely destroyed in an asymmetric particle, except for a 
parity-specific discrete integral of the motion with no classi- 
cal analog (at least for an individual trajectory), which may 
be only weakly broken. By definition, the parity P, of an 
eigenstate is 

where Wn(r) is the wave function for the state In) in the 
coordinate representation. The origin is chosen in (20) to be 
at the center of the sphere that approximates the particle. If 
the particle is only slightly asymmetric, we expect that 
IPnl=l. The sign of P, can then be used to classify states as 

being "almost even" or "almost odd." Matrix elements xi, 
between states with "almost the same" parity can differ from 
zero, and can be estimated to be 

where 7 is a dimensionless parameter that accounts for the 
extent to which the particle deviates from being centrosym- 
metric, while i is a typical matrix element between states of 
"almost opposite" parity, and is given by the semiclassical 
asymptotic form (15). 

The asymmetry coefficient 7 can be derived from addi- 
tion considerations. Let the particle surface be given by 
r=R(cp,O), where 8 and cp are the azimuthal and polar 
angles of a spherical coordinate system. We shall assume that 
the function R(8,cp) takes on random values. The deviation of 
a particle from sphericity is given by 

where ?=R and dfl=sin 8 d8dcp. In an ensemble of ran- 
domly shaped particles, the deviations from sphericity will 
conform to some distribution. We that in mind, we define the 
asymmetry coefficient to be 

where the overbar here represents an ensemble average, just 
as in Eq. (2) (see Sec. 2.3). The value of a, can be obtained 
from additional considerations. 

An irregular but almost spherical surface can be modeled 
as a randomly deformed sphere22 

where  el is the depth of modulation and F(q,B) is a ran- 
dom function with the following three properties. 

1) F(cp,8) can be expanded in essentially a finite number 
of spherical harmonics: 

where the P;"(X) are the associated Legendre functions. 
2) F(cp,B) is random: the coefficients a, and P, are ran- 

dom numbers with equal probability of taking the values 1, 
0, and - 1. 

3) The objects we are studying are exceedingly small 
particles of crystalline matter. We can therefore use the lat- 
tice constant cu, as the elementary deformation "step size" 
(or the minimum modulation amplitude). The effective har- 
monic I can then be defined as the ratio of the length of a 
deformed arc on the surface to the modulation amplitude: 
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where z is an integer; and 

max NR~Nmax-R/aO,  

min NL'Nmin- 1. (27) 

The shape parameter, which defines the surface modulation 
amplitude in terms of the total number of harmonics 
N = (N,-N,+ I)', is approximately 

Once the shape function R(cp,8) has been defined, the 
degree of asymmetry 7 can be viewed as the degree of 
modulation, which can be characterized by the mean devia- 
tion from sphericity. A calculation of uf using (22), with 
additional averaging over an ensemble of various deforma- 
tions, yields 

Thus, 7 depends on just two parameters that characterize 
the shape of the particle: the depth of modulation E and the 
total number of harmonics N. Since these parameters are 
related to the particle size via (27) and (28), the asymmetry 
coefficient introduces an additional size dependence in the 
nonlinear susceptibility. 

The information accessible about the details of particle 
shape1 is not sufficient to directly determine E,  N, NR,  and 
NL. We therefore choose plausible values for these quantities 
that are consistent with experimental measurements. Bearing 
in mind the possibility of subsequent experimental research, 
however, there are a number of considerations involved in 
the parametrization of particle shape in terms of N, NR, and 
NL- 

1) The estimation of N, NR,  and NL presupposes the 
feasibility of experimentally scanning the surface of an indi- 
vidual particle and subsequently tabulating the surface func- 
tion R(8,cp) (24) on a (8,cp) coordinate grid. Using the data 
thus obtained, the surface of each particle in the experimental 
sample must be Fourier-analyzed to yield the dependence of 
the spectral density S: on the harmonic number n.  The typi- 
cal width A: of the spectrum S: then determines NL, NR,  
and N= A:+ 1 (a superscript 0 denotes quantities pertaining 
to an individual particle). 

Note that R(8,cp) reproduces the particle shape with no 
significant distortion only if the scanning step size is at most 
&ao, where a. is the lattice constant. 

2) In an ensemble of particle shapes in an experimental 
sample, NL, NR,  and N all conform to some distribution 
P ( v ) ( v = N ~ , N ~ , N ~ ) .  Histograms of P(v) enable one to de- 
termine NL, NR,  and N from (27) and (28) (these we intro- 
duced for a "typical" particle in the sample) by finding the 
means of the corresponding distributions. 

Note that the ensemble of particles must be large to pro- 
vide the necessary raw data for the determination of P(v) to 
sufficient accuracy. Specifically, if we assume that the indi- 
vidual realizations of particle shape are statistically indepen- 

dent, then to estimate NL, NR,  and N on the basis of P(v), 
we must process approximately 103spectra S: by the time we 
have v-10. 

3.4. Size dependence 

The final expression for the nonlinear susceptibility, in- 
cluding the asymmetry coefficient, is 

where Xnmk is a typical term in the sum (14). The transition 
from a sum to an integral in this expression, which is pos- 
sible in the semiclassical limit, 

enables one to obtain the scaling expression 

where K is a numerical factor, and a,,, ga t ,  and Eat are 
atomic units of length, electric field strength, and energy; E 
is the typical system energy. 

The estimator (32) is based on the semiclassical expres- 
sions (15) and (16) for the matrix elements of a coordinate. 
The frequency scale in Eq. (16) for a metallic particle is set 
by the Fermi velocity: for a particle with radius ~ = 5  nm we 
obtain fl=1014 secC1. For a semiconductor valence band, the 
frequency is of the same order of magnitude. 

The characteristic energy I? and the numerical coeffi- 
cient K depend on the type of particle. For metallic nanoc- 
rystallites (silver in particular), K-3.10C5, and 

~ - [ ( ~ , + 2 h w ) ( h w ) ~ ] ~ ~ ~ E , ~ ~ ~ .  (33) 

For semiconductor (CdSe) quantum dots K ~ I O - ~ ;  the 
characteristic energy E is dictated by the width of the band 
gap E, and the photon energy hw: 

~ = [ ~ , ( h w ) ~ ] ~ ~ ~ ( 2 h o - E , ) - " ~ .  (34) 

If 2hw-E,+O, the energy E goes to infinity. In that event, 
our model can be viewed as being semiquantitative, since the 
requirement for semiclassical behavior is close to not being 
satisfied. 

We note from (32) that the nonlinear susceptibility of an 
individual particle is a strong function of its size. The form 
of the dependence dictated by Eq. (32) can be compared with 
the experimental data. 

4. RESULTS AND DISCUSSION 

4.1. Size dependence of quadratic susceptlbility 

Figures 1 and 2, respectively, show the second-harmonic 
size-related enhancement factor G as a function of the radius 
of a metallic and semiconductor particle. In either case, it is 
proportional to the square of the susceptibility of an indi- 
vidual particle [X2]2 (see Sec. 2.3). 
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Depending on the specific irregularities in the particle 
surface, the theoretical formula (32) will yield a variety of 
size dependences. Surface modulation by a fairly large num- 
ber N of harmonics with NminSNSN,, ,  is the most plau- 
sible, both for metallic nanocrystallites and semiconductor 
particles, and it leads to a size dependence in the asymmetry 
coefficient 

Substituting (35) into (32), we obtain the susceptibility scal- 
ing law, 

The corresponding theoretical plots for metallic nanocrystal- 
lites and semiconductor particles appear in Figs. 1 and 2. 

4.2. Comparison with alternative theories 

In the present work we have studied the effects of par- 
ticle asymmetry on the quadratic optical response under the 
assumption that the perturbations in shape are large, so that 
the motion of electrons is completely nonintegrable. It must 
be stressed, however, that it is the breakdown of central sym- 
metry rather than dynamical chaos per se that leads to the 
effects considered here. 

A different limiting case, in which the changes in shape 
were small and electron motion remained entirely regular, 
was studied in Ref. 6. It was shown there that perturbations 
in particle shape can substantially affect the quadratic optical 
response of a particle consisting of a centrosymmetric sub- 
stance (for example, Ag), since shape asymmetry results in a 
nonvanishing dipole contribution to the susceptibility. The 
presumed regularity of electron motion in this case enables 
one to use perturbation theory based on a coordinate- 
transformation method analogous to that employed in Ref. 
22. This approach yields a somewhat weaker size depen- 
dence - of the G factor for metallic nanocrystallites, G 
cc IX2I2 - R - ~ .  It would seem plausible that G should de- 
pend only weakly on the extent of electron dynamics regu- 
larity. But applying perturbation theory to the particles dealt 
with in this experiment (which have large R and a semiclas- 
sical energy spectrum) seems a bit too bold an extrapolation, 
capable of yielding only qualitative results. 

The function G(R) obtained in Ref. 7 is somewhat less 
consistent with the experimental data for island films than 
the size dependence given by Eq. (36). This discrepancy be- 
comes more noticeable when one uses the correct normaliza- 
tion procedure, which takes account of the diffuseness of the 
second-harmonic radiation (see Sec. 2.3). 

Equation (32) was derived in the nonresonant approxi- 
mation, i.e., neglecting resonance effects associated with in- 
terband optical transitions in sufficiently small particles with 
a spatially quantized energy spectrum. It was shown in Ref. 
7, however, that a resonance mechanism, in and of itself, can 
ensure that there will be an experimentally observable en- 
hancement of the second harmonic in CdSe nanocrystallites, 
so more detailed study is necessary-both theoretical and 

experimental-of the relationship between resonant and non- 
resonant enhancement mechanisms in the optical response of 
crystallites with ~ ( ~ ~ ~ ~ ) - 5  nm. 

Comparison with experiment shows that in either case 
(metallic nanocrystallites or semiconductor dots), the theo- 
retical model employed here satisfactorily reproduces the ba- 
sic trend in the behavior of the size dependence. For at least 
three reasons, however, one should not overestimate the 
agreement between theory and experiment. 

First, certain of the experimental data cannot be recon- 
ciled with the present theoretical model, and may possibly 
suggest a more complicated nonmonotonic size 
dependence23 (the corresponding experimental data points 
are indicated by arrows in Fig. 1). 

Second, the paucity of experimental data on the details 
of particle shape makes this test of the theory incomplete, 
due to a substantial element of arbitrariness in the choice of 
shape parameters. 

Third, in many respects the model studied here is a gross 
idealization. In our opinion, the most important physical fac- 
tors still to be addressed are the following. 

1) The lack of an explicit geometrical criterion for com- 
plete engodicity of motion in a three-dimensional billiard. 
What degree of surface irregularity ensures completely er- 
godic electron motion? 

2) Electron interactions: how do they affect the random- 
ness of electron motion? Conversely, how does stochastic 
motion modify multiparticle excitations such as surface plas- 
mons, which are responsible for the resonant enhancement of 
the local field in metallic nanocrystallites? 

3) Electron penetration beyond the surface due to the 
finite height of the confining potential. By describing the 
particle boundary as an infinitely high potential barrier, we 
have ruled this effect out. It was shown in Ref. 24, however, 
that the quadratic optical nonlinearity of metallic systems 
depends heavily on a self-consistent electron density profile 
in the boundary layer. We may thus question the sensitivity 
of our results to the shape of the boundary potential. 

Every one of the foregoing questions deserves detailed 
and systematic study. Nevertheless, we suggest that the 
present work can serve as a starting point for further experi- 
mental and theoretical work, since our initial results in this 
domain demonstrate the importance of chaotic dynamics for 
a proper interpretation of nonlinear optical effects-and as 
might be expected, other physical phenomena-in solid-state 
nanostructures. 
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