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We carry out a temporal analysis of resonance fluorescence, taking accurate account of the 
energy dependence of the width of the initial state. This enables us to more completely determine 
the formation dynamics and spatial propagation of scattered-particle wave packets. We 
calculate the lifetime of the isomeric excited state of the scattering nucleus as a function of the 
energy of the scattered radiation. O 1995 American Institute of Physics. 

1. INTRODUCTION 

In recent years, experimental techniques-particularly 
those employing high-power pulsed synchrotron sources of 
highly monochromatic resonance gamma rays-have made it 
possible to measure the energy and temporal distribution of 
resonantly scattered photons.1 As a consequence, it has be- 
come necessary to derive a comprehensive description of the 
temporal and spatial dynamics of the resonance scattering of 
particles by a quantum system in a discrete quasistationary 
state. 

The quantum theory of the resonance scattering of pho- 
tons by a quasistationary excited level of an atom (nucleus) 
was developed by Weisskopf and ~ i ~ n e r . ~  Later  result^^-^ 
determined the lifetime of the nucleus in the excited state, or 
as it is often put, the scattering collision time. According to 
the latter work, the lifetime of a virtual excited state can be 
defined to be the mean time delay of an incoming particle in 
the nuclear interaction region. The collision time was pre- 
dicted to depend on the energy of the scattered particle. For 
an isolated resonance, that dependence is given by 

where AE is the difference between the energy of the inci- 
dent particle and the nuclear transition energy, and y= l / rO  is 
the width of the metastable state. Note that Eq. (1) was de- 
rived under the assumption that the energy distribution of the 
original photons is much narrower than that of the nuclear 
level (y). Subsequent work has been based on similar ap- 
proximations, either implicit or explicit. 

Experimentally, however, the most frequently encoun- 
tered situation is one in which the width of the energy dis- 
tribution for the scattered-particle wave packet is comparable 
to that of the quasistationary state. Hence, there is consider- 
able practical interest in developing a theoretical description 
of the temporal and spatial laws governing the formation of a 
wave packet in resonance scattering, incorporating the actual 
spectrum of scattered radiation, and with no assumptions 
about the form taken by the distribution function for 7. Fur- 
thermore, it is important that the theoretical description of 
such a wave packet be consistent with the initial experimen- 
tal conditions. 

Our results are, on the one hand, intended to describe 
real experiments, while on the other they are of a rather 
general nature and are not tied to any specific experimental 
scheme. The resulting theory, despite being based specifi- 
cally on the scattering of resonant photons, is general both in 
content and applicability. 

2. THEORY 

We first consider the physical statement of the problem 
of the interaction time during resonance scattering of reso- 
nant particles by a quasistationary level. With no loss of 
generality, we can for the sake of definiteness analyze 
nuclear resonance scattering of Mossbauer gamma rays. 
Since the resonance scattering will depend heavily on the 
energy distribution of the incoming radiation in the range of 
the natural width of the excited nuclear state, we assume a 
rather general expression for the energy distribution of the 
scattered radiation-a Lorentzian with arbitrary width yo. It 
follows from Wigner's definition2 that to calculate the inter- 
action time in the general case, we must find the wave func- 
tion for the state (including the scattered photon) as a func- 
tion of time and location in space r, and then determine the 
wave packet's propagation time delay, as compared with the 
usual delay rlc,  in the nuclear interaction region. To do a 
thorough job, we must solve the time-dependent Schrodinger 
equation for resonance scattering as a function of the spectral 
distribution of the incident flux. In the resonance approxima- 
tion and at times t s ~ ' ,  where q, is the energy of the 
resonant nuclear transition, Heitler's method5 enables us to 
solve this problem for an arbitrary spectral width of the scat- 
tered radiation. 

The wave function for the system consisting of the 
nucleus plus electromagnetic field looks like 

where cpp) and cp,* are the nuclear wave functions in the 
ground and excited states, with energies Eo and E n ,  respec- 
tively; Inh) is the wave function of the electromagnetic field 
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in an n,-photon state; In,-1, 1,) is the wave function of the 
field in a state with one absorbed photon of frequency ox and 
an emitted photon of frequency o,. The Hamiltonian of the 
nucleus+field system can be written in the form5 

where H:) is the Hamiltonian describing the nuclear state, 
H, is the electromagnetic field Hamiltonian, and the third 
term represents the interaction between the nucleus and the 
field, whose vector potential is A(r,t). J(r,t) is the nuclear 
transition current. We seek time-dependent functions (2) for 
the initial conditions A (0)= 1, B,(O) = C,,(O)=O. According 
to Ref. 5, we have for the Fourier transforms of these ampli- 
tudes 

Here Hxlo  is the nuclear transition matrix element involving 
absorption of a photon A from the incident flux; Hy, is the 
matrix element for a transition to a state with spontaneous 
emission of a photon a, while the photon A remains ab- 
sorbed; y is the total width of the excited nuclear state (k=c 
=I). 

Note that in the expression for the width T(E) of the 
initial state-which consists of the incident radiation and a 
scattering nucleus in its ground state-the sum over A de- 
notes summation over frequencies and angles of the incident 
gamma-ray flux. The finite width of the scattered-particle 
spectrum can therefore be accommodated by evaluating this 
sum in the appropriate manner. 

The matrix element H,,, corresponds to a transition with 
absorption of a photon A from the incident flux, so IH,~,)' is 
proportional to the number of photons n,. The summation 
Z, can be replaced by an integral, averaging over all oscil- 
lators of the field. Then r (E )  becomes 

where E, =En-o, is the energy of the excited nuclear state, 
and a photon of frequency o,, has been absorbed. The mean 
number ii, of photons of frequency q arriving per oscillator 
can be expressed in terms of the incident intensity: 

We assume that the incoming radiation has a Lorentzian 
spectrum peaked at energy %+A, with a width of yo: 

where A is the offset between the center of the incident spec- 
trum and that of the absorption spectrum, and %=En-E,. 
Integrating (5) over energy E,, we obtain T(E) 

where a= ~ , l o ( q ) ( 2 ( ~ d o o ) ,  and r+ = y+ yo. Substituting 
this result into (4), taking Fourier transforms, and calculating 
squared moduli of the corresponding time-dependent ampli- 
tudes, we obtain (for y= yo) 

where p =A'+ g, f = a lp ,  v= yf, and (= Af. In integrating 
over E, in (9), we have allowed for the spectral distribution 
of the incident radiation. To make the meaning of these ex- 
pressions (9) clear, we have plotted them in Figs. 1-3 for 
various values of A. 

In deriving (9), it should be noted that in addition to the 
resonance approximation, we have taken advantage of the 
smallness of 11 relative to y. This corresponds to assuming 
low probability of resonance fluorescence per unit time com- 
pared with the inverse of the total lifetime of the isomeric 
nuclear state. Since the scattering probability is proportional 
to the mean number of incident photons ii,, this assumption 
is equivalent to assuming Fixel, which will hold unless the 
incoming photons come from a laser. 

The above expressions completely describe resonance 
scattering by an isolated level, and imply that the probability 
of finding the system in a given state depends on the time in 
a nonexponential fashion-the time dependence of all three 
probabilities is basically dictated by two exponentials and a 
set of oscillatory functions. In two cases, the time depen- 
dence simplifies: when the width of the energy distribution 
of the incident photon flux is much larger than that of the 
isomeric level, and when scattering takes place far from reso- 
nance (@A). For an illustration of the first case, consider 
Eq. (5) for r(E). Since we are dealing with values of the 
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This shows that IB(t)I2, which gives the probability of find- 
ing the nucleus in the excited state at time t, is a factor a / ~ ~  
down from I ~ ( t ) 1 ~  and Ic(t)I2. 

For arbitrary A and t, we can use (9) and neglect terms 
proportional to c? to obtain the probability per unit time of 
finding the nucleus in the corresponding state: 

FIG. 1. Plots of I ~ ( t ) l '  at various values of shift a) A=O; b) A=% c) 
A=3 y. 

energy E close to Eo,  only photons of energy oh close to o, 
(to within y) can be absorbed; moreover, since H and p 
depend weakly on o h ,  we can substitute LA=% in both. 
Then r will be independent of E .  In the second case, 
~ ~ / $ 9 1  (as before, we assume an isolated resonance with 
Am,). We see from (9) that for t 9 l l y  in this limiting case, 
the expressions for the probabilities, which were derived to 
order d h 2 ,  retain the terms proportional to an exponential 
with exponent 7, which agrees with the transition probability 
per unit time for the process usually referred to as Rayleigh 
scattering: 

I ~ ( t ) l ~ =  ( 1  - 2 a / ~ ~ ) e - ~ * ,  I ~ ( t ) ( ~ = 2 a l A ~  

Here C r  is proportional to the experimentally observed in- 
tensity of the scattered radiation or the intensity of converted 
electrons. It can be shown that to order a, C r  = y~ , I~ , ( t )12 ,  
i.e., it is proportional to the population of the excited state. 
The observed intensity can also be calculated by starting 
with B r  and integrating it over all nuclear illumination onset 
times from 0 to t. 

We now examine in more detail the calculation of the 
collision time. According to the classic work of Weisskopf 
and wigner2 and smith: the collision time can be defined as 
the difference between the time spent by an incident particle 
in the interaction region and the time needed to traverse that 
region in the absence of interaction, in the limit as the region 
over which all possible particle-scattering trajectories are 
summed goes to infinity. This definition of the collision time 
corresponds uniquely to the time-independent statement of 
the scattering problem, and cannot fully accommodate the 
dynamics of wave packet formation during the collision pro- 
cess. At the same time, the time-dependent theory enables 
one to allow for the spatial and temporal dynamics of wave 
packet formation, and thus more accurately to determine the 
delay associated with excitation of an isomeric nuclear state 
of the scatterer. 

FIG. 2. Plots of I~(t)1'(2 f ) - I  at various values of shift a) A=O; 
b) A=% c) A=3y.  
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FIG. 3. Plots of Ic(t)I2 at various values of shift a) A=O; b) A= y, 
c) A=3y.  

To obtain an expression for the collision time, we make 
use of the wave function qA, (r,t) of the scattered radiation, 
which is related to the amplitude CA,(t) by a Fourier trans- 
form: 

r , t  = dk, exp[i(k,r- ~,t)]C~,,(t). I (12) 

Calculating this integral, we can show that TAU (r,t) takes 
the form 

where ~ = t - r / c .  Since CAl~,,(r,t)12 is the probability of 
detecting a scattered photon at a distance r from the nucleus 
at time t, the mean collision time is given by 

By virtue of (13), we can transform from qA,(r,t) to Bh(7) in 
(14). As in (9), for an arbitrary ratio between the width of the 
incident spectrum and that of the isomeric level of the scat- 
tering nucleus, we have 

- e - ~ t + ~ t  cos((t)] + 2 -yoA[e- Y'+V' sin( (t) 

where T-= y- yo. For arbitrary y and yo, the expression for 
I A  ( t)  1 looks like (9) if we replace y with r+/2. Making use 
of (15), we also obtain an expression for t from (14) to 
zeroth order in a: 

The first term in (17) is a generalized expression for i.' We 
emphasize here that (16) and (17) represent not the total 
duration of the scattering process but the time delay due to 
resonant excitation of the scattering nucleus. This comes 
about because in using (15) we have subtracted the term 
proportional to exp(-2 ~ t )  from IB(t) 1 2. 

Equation (13) tells us that the probability of detecting a 
scattered photon at a point r and time t is proportional to 
CAJ~(t)I2,  SO from here on we analyze the temporal depen- 
dence in terms of this quantity. For simplicity, we assume the 
y= yo. From (9), the monotonic dependence of (B(t)I2 on 
time is dictated, as noted above, by the two exponentials 
with arguments proportional to 7 and y. Since we are also 
assuming that @y, we can identify a time interval 
y-1<t=3 7-I over which the temporal evolution of I B(t) 1 is 
governed solely by exp(-27t). At times tsyU1,  where exp 
(-2 7t)-1, the dominant influence is exp(- yt). 

In temporal experiments in which the initial state of the 
system is fixed at t =0, one measures the total duration of the 
resonance scattering process (which we denote by T). The 
above analysis of the present solution shows that the duration 
of measurements At and the calibration accuracy of the tem- 
poral origin of those measurements can have a significant 
influence on the results. The experimental mean duration of 
resonance scattering is given by an integral over At: 

Changing the limits of integration in this expression can alter 
the result significantly. For example, if the lower limit is 
greater than f l ,  the integrand of (18) will be dominated by 
the exponential with argument - 7, while the contribution 
due to terms -exp(- yt) will be relatively minor. This im- 
plies that the temporal origin must be specified to an accu- 
racy of at least f l .  On the other hand, if we make the upper 
limit of the interval At much greater than y-1(-77-1, for 
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example), terms -exp(-2qt) will also figure prominently. 
As a result, the optimal At is of order f l .  We then have 
~ = i ,  and we can actually measure the duration of the reso- 
nance process itself in such an experiment. 

Interest in the direct experimental determination of the 
resonance-scattering interaction time using nonmonochro- 
matic radiation has risen in recent The theoretical 
calculations in Refs. 1 and 9 were largely qualitative, and in 
our view the analysis of experimental considerations was in- 
complete, although the derived values of i do depend on the 
energy of the incident radiation, and they differ from y-l in 
the case of strict resonance, which is consistent with our own 
results. 

We now calculate the probability amplitude for detecting 
a nucleus in an excited state at point r and time t. The wave 
function of that state is 

We assume that the incoming flux is incident along the Z 
axis (i.e., k,= k, =0, k,#O) and that its spectrum is given by 
Eq. (7). Carrying out the integration in (19), we find 

where c, as usual, is the speed of light, and r=t-zlc. To a 
first approximation in a, the probability is 

Iqh(z , t )12=(~2+I ' : /4) -1{(~2+r : /4+2~6 

+ [I? + /2)sin(A r)]exp[ - rr + 12 - yt]). 

(21) 

The argument z in (21) runs from Z, to Z2 (Z2 -2, = d, 
where d is the target thickness). The probability vanishes at 
all other values of Z. To zeroth order in a; we clearly obtain 
the usual exponential dependence on the depth of penetration 
of radiation in matter. 

3. CONCLUSION 

To conclude, we briefly discuss the principal results. The 
expressions derived here for the overall wave function de- 

scribing the resonance scattering of a photon by a quasista- 
tionary level indicate that its temporal behavior depends 
strongly on the energy distribution of the incident photon 
flux. We especially emphasize that averaging over the energy 
spectrum must take place in two steps: we first average over 
the width T(E) of the initial state, and then, transforming 
from the E-representation to the t-representation of the am- 
plitudes, we average the squared modulus of the wave func- 
tion over the spectrum of the incident radiation. Since the 
energy dependence of r (E )  for an arbitrary width of the 
incident spectrum is pole-like (which only ceases to be the 
case for a very broad distribution, yoP y), additional expo- 
nential functions of the time enter into the amplitudes when 
one goes from the E-representation to the t-representation. 

Finally, we have what in our view is the most important 
conclusion, which follows from an analysis of Eq. (21). The 
probability at time t of finding a nucleus in the excited state 
at some point z inside the scattering target, as we have al- 
ready pointed out, is governed by two exponentials with ar- 
guments of order yt and 777. Since it is essentially always 
true that y>q, the probability of detecting the excited state 
in the target at tPyP1 as well is appreciably greater than 
zero. This can have an extremely important impact on the 
dynamics of wave function formation and propagation in a 
resonant medium. This is particularly so as the results de- 
rived here imply that long-lived space-time oscillations are 
superimposed on the exponential decay. 

'V. G. Smimov and Yu. V. Shvyd'ko, Zh. Eksp. Teor. Fiz. 95, 777 (1989) 
[Sov. Phys. JETP 68, 444 (1989)l. 

'v. E Weisskopf and E. P. Wigner, Ann. der Phys. 19, 546 (1961). 
3 ~ .  Segr;, Rend. Acc. Lincei 9, 887 (1929). 
4 ~ .  Heitler and S. T. Ma, Proc. Roy. Irish Acad. 52, 109 (1949). 
'W. Heitler, Quantum Theory of Radiation, 3rd ed., Oxford Univ. Press, 
New York (1954). 

'M. L. Goldberger and K. M. Watson, Collision Theory, Wiley, New York 
(1964). 

'A. I. Baz', Ya. B. Zel'dovich, and A. M. Perelomov, Scattering, Reactions, 
and Decays in Nonrelativistic Quantum Mechanics, Nauka, Moscow 
(1966), pp. 212-218. 

'E. T. Smith, Phys. Rev. 118, 349 (1960). 
'A. V. Davydov and P. I. Romasheva, Izv. Akad. Nauk SSSR, Ser. Fiz. 45, 

1874 (1980). 

Translated by Marc Damashek 

49 JETP 80 (I),  January 1995 V. V. Lomonosov and S. B. Sazonov 49 


