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A general singly periodic solution of the Maxwell-Bloch equations describing self-induced 
transparency in a medium composed of two-level atoms has been obtained. The solution is 
represented in effective form and depends on all four parameters of the problem (the 
Riemann invariants). The Whitham equations are derived, which give the evolution of the 
Riemann invariants for modulated periodic solutions. O 1995 American Institute of Physics. 

1. INTRODUCTION small, the evolution of such a wave is described by Whith- 
am's modulation equations.15"6 In Section 4 we obtain the 

Since its theoretical prediction in Ref. 1, a large number Whitham equations for the case of self-induced transparency, 
of papers [see, e.g., Ref. 2 (review)] have been dedicated to which generalize the equations of Ref. 10. 
self-induced transparency (SIT), and have investigated the 
behavior of SIT solitons (also called 27r pulses) in various 
concrete situations. However, the theory of periodic pulses or 2. PERIODIC SOLUTIONS OF THE SIT EQUATIONS 

self-induced transparency waves has been substantially less 
well-developed, although experiments have been carried out 
(see, e.g., Ref. 3) which have studied the evolution of this 
type of periodic pulse. 

Since the SIT equations are exactly integrable: their pe- 
riodic solutions can, in principle, be found by numerical in- 
tegration using the finite-zone method;,6 which, however, 
for a number of equations, including the SIT equations, turns 
out to be ineffective. As a consequence, previous studies 
have been devoted either to particular periodic solutions ob- 
tained by elementary  mean^^-^ or simplifying assumptions 
have been introduced into the method of finite-zone 
integration,10 as a consequence of which the solutions that 
have been obtained depend on fewer parameters than is nec- 
essary in the case of the general one-phase solution. For this 
reason it has been impossible to use such solutions to de- 
scribe the evolution of a sufficiently generally modulated 
periodic wave. Reference 11 proposes a modification of the 
finite-zone integration method which allows one to obtain 
periodic solutions of a broad class of integrable equations in 
effective form. This approach has been used to describe pe- 
riodic waves in fiber-optic waveguides12 and in magnets- 
both isotropic magnets13 and in magnets with a single-axis 
anisotropy.14 In the present paper we apply the method de- 
veloped in Ref. 11 to the SIT equations, thanks to which we 
obtain a general periodic solution of these equations in ef- 
fective form. In addition, in contrast with Ref. 10, we take 
account of inhomogeneous broadening, which is very impor- 
tant experimentally. We neglect relaxation processes, so that 
the field intensity of the wave is assumed to be strong 
enough that the wave period is much shorter than the relax- 
ation time (see below). Sections 2 and 3 are devoted to pe- 

We take the SIT equations in the Lamb form17718 

1 
E5=(d), dr+2iAd=En, n,= - - (Ed* +E*d), 

2 
(1) 

where E is the electric field intensity of a wave propagating 
in a resonant medium of two-level atoms along the 5 axis, A 
is the frequency offset parameter of the atomic transitions 
from the oscillation frequency of the electromagnetic field of 
the wave, and d and n are the dipole moment of the transi- 
tions (polarization) and the population of the atoms, respec- 
tively. They are related by the equation 

ldI2+n2= 1,  (2) 

which reflects the conservation of probability: the total prob- 
ability that an atom can be found in the upper or lower level 
is equal to unity. In a unit volume the atoms are distributed 
over the frequency offset parameter A according to the dis- 
tribution function g(A), so that the total polarization of the 
medium is given by 

In what follows, angular brackets always denote this kind of 
average. System (1) is written in the characteristic variables 

where x and t are the dimensionless spatial coordinate and 
time. 

The solution of Eqs. (1) by the inverse scattering trans- 
form method is based on their representation as the two con- 
sistent linear ~ ~ s t e m s ~ . ' ~  

riodic solutions of the SIT equations. 
In real physical problems, periodic waves are invariably 

dql  l d ~ = F + ~  + G+2, ld(=A +B+z, 

inhomogeneous. If the degree of inhomogeneity is relatively d + 2 l d ~ = H + l  -F&,  ddJ l/d5=C+1 -A +2, (5 )  
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where in the given case 

c=-'(2!L) 4 A-A ' 

and A is the spectral parameter. It is convenient to transform 
to the spherical vector ( f , g , h )  whose components are built 
up from the two basis solutions ,~,b~) and of sys- 
tems (5): 

Their evolution in r and 6 is described by the following 
linear systems of equations: 

It is easy to convince oneself that the length of the vector 
( f  7g7h) 

is an invariant of this evolution. 
Periodic solutions are distinguished by the condition that 

P(A) be a polynomial in A. For many physical applications it 
is enough to know only the one-phase solutions, for which 
P(A) is (in our case) of the fourth degree: 

It is natural to seek the solution of systems (9) in the form of 
a polynomial of second degree in A for f  and first degree in 
A for g  and h .  Equations (9) then yield 

here f l  and a are as yet unspecified constants. Substituting 
expressions (12) in Eq. (10) and equating the coefficients of 
the terms in h3 and the free terms allows us to express f  and 
a in terms of the zeros Xi of the polynomial P(A): 

In what follows it will be convenient to introduce the 
points p and p* of the so-called auxiliary spectrum at which 
g  and h ,  taken as functions of A, vanish: 

comparison with Eq. (12) then gives 

Substituting relations (14) into Eqs. (9) leads to the evolution 
equation for p :  

The constant l/a turns out to be related (after averaging over 
A) to the phase velocity of the wave. In order that this ve- 
locity (in the variables x and t) not exceed the light velocity, 
it is necessary to take the minus sign when extracting the 
root in Eq. (13): 

a = - m .  (18) 

The phase velocity in the variables 6 and r is equal to V, 
where 

The variable p depends only on the phase 

W =  T +  .$/v (20) 

and is a solution of the equation 

If p is known, then the field E can be found with the help of 
equations which follow from Eqs. (9) and (15): 

Hence we see that 

where E depends only on the phase W  and satisfies the equa- 
tion 

We will carry out the actual integration of the equations 
by the method of Ref. 11. The initial condition for the SIT 
master equations should be matched with the initial condi- 
tion for Eq. (21) in such a way that identity (10) is satisfied, 
where f ,  g ,  and h  are defined in agreement with Eqs. (12) 
and (14). Therefore it is convenient to parametrize p(v) in 
such a way that the indicated equality is satisfied automati- 
cally. We take as the parameter v the quantity 
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and rewrite the identity (10) in the form 

where the Si  can be expressed according to the formulas of 
Viite in terms of A,-A in the same way as si  are expressed 
in terms of Xi, in particular, S 4  = I I ( A i -  A )  = a 2 .  Equating 
the coefficients of the powers of A-A, we obtain the alge- 
braic system 

which coincides, except for the notation, with system (2.6) in 
Ref. 11. We will implement the solution found there: 

S s2  p - v  
f l = ~ ,  a n = - + -  

16 2 ' 

Here R(v)  is the cubic resolvent of P(A): 

R ( v ) =  v 3 - 2 p v 2 + ( p 2 - 4 r ) v + q 2 ,  (29) 

whose zeros are expressed in terms of the zeros X i  of P(A) by 
the simple symmetric formulas 

The quantities s ,  p ,  q ,  and r are expressed in terms of the 
coefficients of P(A) as follows: 

In writing Eqs. (27) and (28) we have made use of the cir- 
cumstance, obvious from Eqs. (29) and (30), that p ,  q ,  and r 
do not vary when the zeros hi are shifted by the constant 
term A. This also ensures that p and v = I ~ 1 ~ / 4  are indepen- 
dent of the frequency offset A. 

The zeros hi comprise, as in Ref. 11, two complex- 
conjugate pairs 

whence formulas (30) become 

v l =  - ( a - ~ ) ~ ,  v 2 = ( y -  s ) ~ ,  v 3 = ( y +  s ) ~ .  (33) 

The quantity v, positive by definition, varies within the in- 
terval v 2 6  v d  v3, SO that p, according to Eq. (28), describes 
an oval in the complex plane enclosing the zeros A, and 
A3 = AT (see Ref. 11). The dependence of v on the phase W 
is determined by1' 

Integrating this equation, we obtain a simple expression for 
the dependence of the intensity [El2 on the phase W :  

l ~ 1 ~ = 4 v = 4 [ ~ ~ +  ( v 2 -  v 3 ) s n 2 ( \ r l = ~ , k ) ] = 4 ( y  

+ 16 y s s n 2 { [ J ( y +  ~ ) ~ + ( a - ~ ) ~ ] w , k ) ,  

(35) 

where the parameter of the elliptic function k is given by 

and the initial condition is chosen such that the intensity 
takes its maximum 4 ( y + a 2  at W=O. Knowing v, it is not 
hard to find n with the help of the second of relations (27). 

It is convenient to express the field E in terms of the 
Weierstrass elliptic functions in analogy with the solution of 
the nonlinear Schrodinger equation studied in Ref. 11. For- 
mula (35) is then found to correspond to the expression 

v =  i P - 4 A 2 w +  w ' ) ,  (37) 

where w' is one of the half-periods of the Weierstrass func- 
tionp (we follow the notation and definitions of Ref. 19). 
Substituting Eqs. (34) and (37) in Eq. (28) gives the follow- 
ing expression for p:  

Integrating Eq. (24), we obtain with the help of Eq. (38) 

w d ( 2 W )  
~ = 2 &  exp[; W + :  1 0 p ( 2 W +  w ' )  - p / 6  ] ' (39) 

where the integral can be calculated and transformed in ex- 
actly the same way as was done in Ref. 11. The final expres- 
sion for the electric field of the wave has the form 

where Ok is the Jacobi theta function, ( (x )  is the Weierstrass 
function, and the parameter x is defined by the relation 
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k r 2 =  1 - k2, and the angle cp has the simple geometric mean- 
ing 

sin cp = 
Iff-PI 

J ( ~ - P ) ' + ( Y -  8)" 

The polarization d can be found with the help of (15). The 
expressions obtained above give the general periodic solu- 
tion of the SIT equations, which depends on the four param- 
eters Xi, i = 1,2,3,4. 

3. SPECIAL CASES 

Let us consider some special cases in which the general 
solution simplifies substantially. 

Let p = a ,  i.e., all the Xi lie on one vertical line. Then, by 
analogy with the nonlinear Schrodinger equation," we find 

where W= T+ ,$/V and 

If we set a= y in these expressions, so that the two pairs of 
zeros Xi merge into one pair, then we obtain the well-known 
one-soliton ~olut ion '~ 

E(7,,$)=4y exp - 2 i a ~  

where 

When we let &+ y in Eq. (40), we obtain 

FIG. 1. Distribution of the electric field intensity of a wave for A , = l + i ,  
A,= 1 +2i  (curve I) and A, = l + i ,  A 2 = 2 + i  (curve 2). The slow evolution of 
the parameters A, (in comparison with the oscillations of the wave field) is 
described by the Whitham equations. 

(47) 

where W = T+ ,$/V and 

If now we set a = P ,  we regain the soliton solution (45). It is 
clear from the formulas that the period of the wave decreases 
with increasing field intensity. Hence it follows that the field 
intensity must be large enough that it will be possible to 
ignore relaxation processes (see the Introduction). 

By way of illustration, Fig. 1 shows the intensity distri- 
bution 1 ~ 1 ~  in the wave for two sets of values of the param- 
eters: A,=l+i, h2=1+2i (curve 1) and X1=l+i, X2=2+i 
(curve 2). 

4. MODULATED WHITHAM EQUATIONS 

In weakly inhomogeneous periodic solutions, the param- 
eters Xi become slowly varying functions of the spatial coor- 
dinate and time. The smallness of the variation of the Xi over 
one wavelength and during one period of the wave allows us 
to average the equations of motion for Xi over the rapid 
oscillations and obtain what we may call the modulated 
Whitham equations15716 for the case of a periodic solution of 
the SIT equations. 

To derive the Whitham equations, we will make use of 
the method developed in Refs. 10, 12, 13, and 20 and based 
on writing the generating function of the conservation laws 
of the equations, given as a condition of consistency of linear 
systems (5)  and (9), in the form 

Substituting Eqs. (6), (7), and (14) in Eq. (49) and making 
use of relation (16), we rewrite Eq. (49) in the form 
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where the functions f ,  g ,  and h  are normalized by the con- 
dition f - gh = 1. We average (50) over one period 

and, to distinguish this average from the average over the 
inhomogeneous broadening, we will denote this average by a 
horizontal bar over the quantity to be averaged. The condi- 
tion of vanishing of the singular terms which arise as a result 
of differentiating with respect to the "slow" vari- 
ables T and X gives the equations 

Thus we obtain the Whitham equations in diagonal Riemann- 
ian form 

where the characteristic velocities are given by 

Invoking the obvious relations [see Eqs. (51) and (19)] 

we rewrite Eq. (54) in the simple form 

Introducing the wave vector K of the nonlinear wave 

we rewrite Eq. (55) in the universal form 

analogous to that derived earlier for other equations.12'13'20-23 
In all these cases, the same differential operator appears in 
the expressions for the Whitham velocities, acting on the 
phase velocity of the nonlinear periodic wave. In essence, 
formula (57) signifies conservation of "the number of 
waves" 

when the wave number K and the phase velocity V=RIK 
are expressed in terms of the Riemann invariants Xi (see 
Refs. 22 and 23). 

Note that the Whitham equations for self-induced trans- 
parency we have derived contain as special cases many pre- 
viously considered systems. If inhomogeneous broadening is 
absent, so that the distribution function g(A)=@A-A,,) and 
the average over A vanishes, then as Ao+O we obtain from 
Eqs. (57) the Whitham equations for a so-called AB 
system:' and as AO+m, Eq. (57) goes over to the Whitham 
equation for the nonlinear Schrodinger equation.24 It can be 
shown that this generality is due to the fact that the indicated 
integrable equations correspond in the inverse scattering 
transform method to the same Zakharov-Shabat spectral 
problem. 

5. DISCUSSION 

We have obtained a periodic solution of the SIT equa- 
tions which depends on all four parameters of the problem, 
Xi, i = 1-4. In the weakly inhomogeneous case, the param- 
eters Xi play the role of the Riemann invariants whose evo- 
lution is described by the Whitham equations. The fact that 
the parameters hi are complex points to the instability of the 
periodic solutions, analogous to the instability of the periodic 
waves described by the nonlinear Schrodinger equation. 
However, as the modulus of the elliptic functions approaches 
unity, the instability growth rate approaches zero, and the 
solitons which arise in the one-dimensional case are stable. 
Hence, a long light pulse is unstable against decay into soli- 
tons in a resonant medium. The qualitative picture of the 
evolution of the leading edge of the pulse is analogous to that 
considered in Ref. 10, and the evolution of the perturbation 
far from the leading edge is analogous to the case of the 
nonlinear Schrodinger equation studied in Ref. 25. Note that 
the indicated modulation pulse instability can serve as a 
means of experimental verification of the theory. Another 
qualitative confirmation is the slow increase with time of the 
wavelength in a periodic pulse sequence detected in Ref. 3. 
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