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A theoretical study is made of Faraday rotation of the polarization plane of optical solitons in 
tenuous media. A "derivative nonlinear Schrodinger equation" (DNSE) is obtained for 
the electric field intensity of a pulse in the low-frequency nonresonance limit. It is shown that 
the direction of rotation of the polarization plane of a DNSE soliton is opposite that of a 
linear plane wave. With the help of the proposed method of analytic continuation of the dispersion 
parameters to the complex plane we obtain a general rule which allows one to determine the 
angle of rotation of the polarization plane per unit length for arbitrary relations between the 
frequency and duration of the optical soliton-from envelope pulses to video pulses- 
without solving the master system of nonlinear equations. An analysis is given of the 
Macaluso-Corbino soliton effect, which is expressed by nontrivial dependences of the polarization 
plane rotation angle of the pulse on its frequency and inverse length, when the magnitudes 
of the latter quantities lie in the vicinity of the resonance frequencies of the medium. O 1995 
American Institute of Physics. 

1. INTRODUCTION 

It is well known that as a electromagnetic plane wave 
propagates in a medium in the direction of an external mag- 
netic field B, it undergoes rotation of its polarization plane 
(the Faraday effect). In recent years more and more attention 
has been given to the nonlinear Faraday effect in high- 
intensity light fields, which depends strongly on the intensity 
of the latter.'-4 The nonlinear Faraday effect has been stud- 
ied both in solids and in gases. It has been investigated 
mainly in setups using continuous laser illumination. The use 
of pulsed radiation can manifest the characteristic features of 
the purged nonlinear Faraday effect, which are not revealed 
by continuous radiation. 

The creation of coherent pulses of ever shorter duration 
is one indicator of progress in laser physics. At the present 
time, under experimental conditions it has been possible to 
generate femtosecondS and picosecond6 pulses with duration 
of the order of one period of the electromagnetic oscillations 
(video pulses). Following these experiments, several theo- 
retical papers have appeared, dedicated to the interaction of 
such pulses with matter.'-'' The most recent papers have 
examined soliton regimes of propagation of video pulses, 
analyzed their amplification and self-compression in non- 
equilibrium media, and studied the parametric generation of 
higher harmonics of the initial signals. The concept of an 
envelope for video pulses loses meaning since in the theo- 
retical treatment of their interaction with matter in the wave 
equations and constitutive relations the approximation of 
slowly varying amplitudes and phases is inapplicable.12 In 
such cases use has been made of the approximation of low 
density of the optically active atoms13 and also very short or 
very long pulses (in comparison with the atomic 

the pulsed Faraday effect for various splittings of the atomic 
lines in external magnetic fields. The cases of the normal and 
anomalous Zeeman effect, and also the Paschen-Back effect, 
are considered from a common standpoint. The most detailed 
analysis is given to the Faraday effect in pulses containing a 
small number of oscillations. In Sec. 2 the master system of 
Maxwell equations and constitutive relations is written down 
for the probability amplitudes of occupation of the Zeeman 
sublevels in the dipole approximation. Here account is taken 
of the optical transitions which form the main spectral series. 
In Sec. 3 on the basis of the low-frequency nonresonance 
approximation for the complex electric field intensity we ob- 
tain the "derivative nonlinear Schrodinger equation," which 
belongs to the class of equations that can be integrated by the 
inverse scattering transform method. On the basis of its 
single-soliton solution we carry out a detailed analysis of the 
pulsed Faraday effect in the low-frequency region. Section 4 
is dedicated to a comparison of the pulsed Faraday effect and 
its linear analog. There an analysis is also given of the modu- 
lational instability of a plane wave in a nonlinear medium, 
which leads to the formation of solitons. Section 5 is con- 
cerned with methodology. The case of ultrashort pulses, in- 
vestigated there, provides an additional argument for the 
method of analytic continuation of the dispersion parameters 
into the complex plane, which is proposed in Sec. 6. The 
latter method allows one to formulate a combination rule for 
finding the rotation angle per unit length for arbitrary fre- 
quencies and durations of an optical pulse. Section 7 presents 
an analysis of the Macaluso-Corbino effect, which has to do 
with the dependence of the Faraday rotation angle on fre- 
quency and pulse duration. The final section summarizes re- 
sults and presents some generalizing conclusions. 

The use of the latter approximations allows one to signifi- 
2. THE MASTER 

cantly simplify the theoretical investigation of the nonlinear 
problem. Let us examine the Faraday effect for ultrashort pulses in 

The present paper is dedicated to a theoretical study of gaseous media, not resorting to the slowly varying amplitude 
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FIG. 1. Optical u-transitions in the presence of anomalous Zeeman 
splitting for the main spectral series of the sodium atom. 

and phase approximation. As the gaseous media, we will 
consider rarefied vapors of sodium and mercury. We will 
make use of the energy-level diagrams of the main spect~.al 
series of the sodium atom (the so-called D-lines with wave- 
lengths 5890 and 5896 A, Ref. 12) under conditions of 
anomalous Zeeman splitting (AZS) (Fig. 1) and the 
Paschen-Back effect (PBE) (Fig. 2). For completeness, vvre 
will also consider normal Zeeman splitting (NZS) (Fig. 3). 
The triplet splitting of the familiar optical line 2537 A of 
mercury vapor14 can serve as an example of the latter. 

A study of the pulsed Faraday effect in gaseous media 
differs significantly from such a study in solid media for two 
main reasons. First, in gases the optical spectra of the atonns 
differ practically not at all from the spectra of the iso1atr:d 
atoms. Second, inhomogeneous broadening in gases is si,g- 
nificantly less than in solids. In gases the lines of the Zeeman 
splittings are usually easy to distinguish. In solids, on the 
contrary, the inhomogeneous broadening of spectral lin~es 
significantly exceeds the distance between the Zeemitn 
sub level^.'^ Usually, inhomogeneous broadening in gases is 

about 10% of the distance on the frequency scale between 
the nearest Zeeman components. If the frequency offset of 
the optical signal from the resonance line exceeds the mag- 
nitude of the inhomogeneous broadening, then the latter can 
be neglected in the zeroth approximation, which is what we 
will do. In this regard, cases in which inhomogeneous broad- 
ening has no qualitative effect on the dynamics of the pulses, 
whether in gases or in solids, will be noted below. 

In the one-dimensional propagation of an electromag- 
netic wave along the B, direction (along the z axis), only the 
u transitions (Mi-M,=?l, where Mi is the projection of 
the total angular momentum of the atom in the jth state onto 
the z axis) contribute to the dynamics of the electric dipole 
interaction.'' Thus, in the case of anomalous Zeeman split- 
ting and the Paschen-Back effect, the Hilbert space of the 
atomic states, which is mapped into itself by electric dipole 
transitions, divides into two independent (invariant) sub- 
spaces. Within the first take place transitions from the lower 
Zeeman sublevel of the s state, and within the second. take 
place transitions from the upper sublevel of the same state 
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for the Paschen-Back effect 

FIG. 3. Optical a-transitions in the presence of normal Zeeman splitting for 
the mercury atom. 

(Figs. 1 and 2). In the case of normal Zeeman splitting we 
have one invariant subspace, which coincides with the initial 
Hilbert space. 

The Schrodinger equation for the probability amplitudes 
a]; (the minus sign refers to the first subspace, and the plus 
sign refers to the second) is written in the form of a system 
of equations: 

N 
dbf I , 

db' 1 I-- - iwj,blT + - ( d j , ~ ) b f ,  dt fi 

Here bJ; =al;exp(- i ~ F t l h ) ,  E: is the energy of the Zeeman 
sublevel of the S-state, oj, and dj, are, respectively, the 
frequency and matrix element of the dipole moment of the 
quantum transition from the sublevel of the S-state to the jth 
state, E is the electric field vector of the pulse, and N is the 
number of levels in the invariant subspace (for AZS, PBE, 
and NZS, N=4, 3, 3, respectively). Below we allow for the 
fact that the a transitions, which form symmetric Zeeman 
spectral lines relative to the unperturbed transitions, possess 
mutually complex-conjugate dipole moments with real and 
imaginary parts which are perpendicular and equal in 
magnitude.15 Consequently, Idj+l=ldj-l=djl (see Figs. 1, 2, 
3). The expression for the dipole moment djk of the quantum 
transition between the jth and kth levels can be written in the 
form 

where ex and e,, are the unit basis vectors of the correspond- 
ing axes of the Cartesian coordinate system. Here the kth 
level is assumed to be the ground level. Applying Eq. (3) to 
the quantum transition schemes depicted in Figs. 1, 2, and 3, 
we find for anomalous Zeeman splitting 

d2-=d2+=d211*, d3-=d3+=d211; 

and for normal Zeeman splitting 

Here we have introduced the unit complex vector 
I= (ex+ ie,,)ld. 

We augment system (I), (2) by the Maxwell equation 

where c is the speed of light and n is the concentration of the 
interesting atoms. 

Below we assume that prior to the action of the pulse 
upon the medium, only the sublevels of the S-state that differ 
one from the other by the Larmor precession frequency 
%=eB,/mc have nonzero occupation probability. Here e 
and m are the charge and mass of the electron, respectively. 
If we assume that the medium is initially in thermodynamic 
equilibrium, then the given assumption is valid for tempera- 
tures T G f i ~ ~ , ~ / k ~ ,  where k, is the Boltzmann constant (see 
Figs. 1-3). Setting w1,2-l~15 S-l, we obtain ~ 6 1 0 ~  K. The 
latter condition is usually easily satisfied for gaseous media. 

3. LOW-FREQUENCY NONRESONANCE PULSES 

Following Refs. 8 and 9, we will examine system (1)- 
(4) first in the approximation 

p - 1 ~ 1 , 2 ~ m i n % 1 ,  (5 )  

where rmin is the characteristic minimum time scale of the 
pulse. In this case, the solution of system (2) can be sought 
by the method of successive approximations in the small 
parameter p ,  which is proportional to the derivative on the 
left-hand side of Eq. (2). In the zeroth approximation we can 
neglect the left-hand side of Eq. (2). We can then take it into 
account in the second approximation, etc. As a result, we 
obtain the expansion 

If we restrict ourselves to the first term (6), we will have a 
local temporal coupling between the dynamical parameters 
of the pulse and the medium. This locality corresponds to the 
nondispersive approximation. We set b: = b:o in the second 
term of the right-hand side of Eq. (6), where bFo is the value 
of b,' before the laser pulse enters the medium. The meaning 
of approximation (5) is that variations of the pulse param- 
eters should be slow in comparison with the characteristic 
frequencies of the atomic processes. The pulse interacts 
weakly with the medium, exciting it only insignificantly. As 
a result, the amplitudes b? are "deformed" only weakly as a 
result of the action of the pulse. Thus, under condition (5) the 
interaction of the laser signal with the medium can be con- 
sidered weakly nonlinear. Since the second term of expan- 
sion (6) is of a higher order of smallness than the first, the 
above-mentioned substitution satisfies condition (5). 
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We will give further attention to the integrals of the mo- 
tion following from Eqs. (1) and (2) (the conservation laws 
of total probability in the invariant subspaces of the atomic 
states): 

where W: and W ,  are the probabilities of initial occupation 
of the upper and lower Zeeman sublevels of the e1ectroni.c 
S-state, respectively. In normal Zeeman splitting we have 
only one level corresponding to the s-state. Invoking Eqs. (6) 
and (7), we find 

where @E,+iE , .  Substituting Eqs. (6) and (8) on th~e 
right-hand side of Eq. (4), after multiplying by I we have 

Here we have introduced the static index of refraction 

the low-frequency dispersion coefficient 

and the nonlinearity 

The meaning of the appearance of the zeros as the arguments 
of the dispersion coefficient will become clear in Sec. 6. 

The right-hand side of Eq. (9) contains dispersion artd 
nonlinear terms whose order of smallness relative to the left- 
hand side of Eq. (9) is -p. Therefore it is natural to use the 
approximation of unidirectional pulse propagation with VI:- 

locity near clNo. Toward this end, we introduce the local 
time ~t - Nozlc and "slow7' spatial coordinate l=,u.z. 
Then, neglecting powers of p higher than the second, nre 
obtain dldt =dldr d 2 / d ~ 2 . - ( ~ o l ~ ) 2 d 2 / d &  ( 2 p ~ ~ l ~ ) d ~ l  
dldr .  As a result, the given formal approach reduces to a 
reduction in the order of the derivative in Eq. (9). Transform- 
ing back from the slow coordinate to z, we find after int~e- 
grating Eq. (9) with respect to r 

Equation (13) is known as the "derivative nonlinear Schro- 
dinger equation." (DNSE)'~ In some articles it is called the 
"modified nonlinear Schrodinger equation."'7,'8 The DNSE, 
as was shown in Ref. 16, can be integrated by the inverse 
scattering transform method. Its two-soliton solution was ob- 
tained in Ref. 19, and its multisoliton solution, in Ref. 20. 

Let us find here its single-soliton solution in a form con- 
venient for physical applications. It should describe a pulse 
with rotating polarization plane. With this goal in mind, we 
search for the solution in the form 

where K,  and b are parameters. After substituting expression 
(14) in Eq. (13) and separating the real part from the imagi- 
nary, we obtain the system 

Here the prime denotes the derivative with respect to the 
variable r-zlb. We now multiply Eq. (15) by F .  After inte- 
grating, we find, assuming that F-0 as r-zlb++m, 

Substituting Eq. (17) in Eq. (16), we obtain an equation for 
F :  

Integrating Eq. (18) and then invoking Eqs. (17) and (14), we 
find after converting back to the laboratory frame 

Xexp i K&+ ~ ( t - Z I U )  I [ 
where 

(23) 
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A DNSE soliton has two parameters. We choose the fre- 
quency o and the pulse duration rp as the free parameters. 
For wp%=l we have an envelope soliton-an isolated pulse, 
containing within itself many periods of the optical wave. It 
is obvious that the slowly varying amplitude and phase ap- 
proximation is valid in this case. Thus, it is easy to obtain the 
nonlinear Schrodinger equation (NSE) from Eq. (13) for the 
complex envelope, and the soliton (19)-(23) transforms into 
the well-known NSE soliton. If wrpSl, solution (19)-(23) 
describes a video soliton-a pulse containing roughly one 
period. Since P>O, it follows from Eq. (19) that a(O,O)w>O 
(the sign of o determines the direction of rotation of the 
polarizatiotl plane of the pulse for fixed z). Thus, as follows 
from Eq. (22), v < clN, . In addition, the pulse velocity v , as 
in the case of an NSE soliton, does not depend on the am- 
plitude of the pulse (duration r,), but is determined only by 
its frequency. The Faraday rotation angle Acp, of the soliton 
(19)-(23) after the soliton has traversed a distance Az, as is 
evident from Eqs. (19) and (21), is given by 

where the proportionality coefficient between Acp, and Az is 
given by relation (21). Invoking Eq. ( l l ) ,  we can write the 
coefficient cu(0,O) in the form 

The first term here describes the diamagnetic contribution, 
and the second term, the paramagnetic contribution to the 
Faraday effect for a pulse, Mo=2pBn(W; - w:) is the mag- 
netization of the medium, pB=efi/2mc is the Bohr magne- 
ton. In the Paschen-Back case, when the intra-atomic spin- 
orbit coupling is broken, we have C =O. This is explained in 
the following way. ' f i e  main atomic states are the s-states of 
the Zeeman sublevels. In these states paramagnetism of the 
atom is due to the electron spin. When the spin-orbit cou- 
pling is broken, the optical transitions are insensitive to the 
orientation of the electron spins and, consequently, to the 
magnetization of the medium. Therefore in strong magnetic 
fields only the diamagnetic contribution to the Faraday effect 
is nonzero. For sodium vapor, as for mercury vapor (the case 
of normal Zeeman splitting), we have ~ = 8 ~ r d ; , e l  
(hc2rnw:~,,). For anomalous Zeeman splitting both contri- 
butions are nonzero. For sodium vapor we obtain 

Here No,= [ I  + ( 8 ~ r n / h o , ) ( d $ ~  +d i l  +da1)]1'2 is the re- 
fractive index for Bo=O. Here it has been taken into account 
that the frequency separation between the D-lines of a so- 
dium atom is 02-o14~l-1015 S-', SO we can take y -~ , .  
In addition, we have taken into account that y, 
=o1T(4/3)oB, ~ 3 ~ = 0 ~ ? ~ ~ ,  W ~ ? = % T ( ~ / ~ ) W ~  (Ref. 15). 
The quantities d& and dil  can be expressed in terms of d;, 
according to formulas which can be found on p. 201 of Ref. 
15. Hence we obtain dg1 = 6d;, and dal = 2d;, . 

If the medium is in a state of thermodynamic equilib- 
rium before the pulse enters it, then 

For gases and vapors T%=p$dkB-l K and 
~ , = 2 , u ~ n ~ ~ l k ~ ~ .  Hence, and from relation (25), we obtain 
Verde's soliton law 

where the Verde soliton constant R ,  is 

From Eqs. (26), (27), and (30) it is easy to see that the ratio 
of the paramagnetic contribution to the Faraday effect to the 
diamagnetic is equal to hol/kBT%=l. 

At present there are a number of ways to achieve reso- 
nance optical magnetization of media,14 including gases.21 
These methods are based on the selective ability of reso- 
nance atomic transitions to absorb light of fixed polarization. 
As a result, after the various optical relaxation processes 
have run their course, a nonequilibrium distribution of popu- 
lations of the Zeeman sublevels of the S-state is formed, 
optical transitions between which are forbidden. Thus it is 
possible to achieve the result that an overwhelming majority 
of the atoms at some time will have accumulated in only one 
of the sublevels of the S-state, leading to saturation of the 
magnetization of the medium. It is clear that this, in turn, 
leads to a violation of Verde's soliton law (29) and to a 
significant enhancement of the Faraday effect. 

4. CONNECTION WITH THE LINEAR FARADAY EFFECT 

Let us linearize Eq. (13). In this case one of its solutions 
will be a plane wave of the form 

where 

KI~,,= - a(0,0)02.  

Relations (31) and (32) tell us that the linear low- 
frequency (w<.ol,,) plane wave propagating with phase ve- 
locity c/No experiences Faraday rotation. The rotation angle 
of its polarization plane is given by the expression 

Comparing this formula with expressions (24) and (21) re- 
veals the connection between the Faraday rotation angle of 
an optical soliton Acp, and of a linear plane wave Aqin of 
identical frequencies when propagating in the same medium: 

The minus sign in front of the brackets indicates that the 
direction of rotation of the polarization plane of the optical 
soliton is opposite that of the linear plane wave. In addition, 
the shorter the pulse for a given frequency, the more strongly 
will the soliton Faraday effect be manifested. In the case of 
envelope solitons, for which Orp%=l, the difference from the 
linear effect consists only in the sign. Thus, for a quantitative 
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description of the nonlinear pulsed Faraday effect given con- 
dition ( 3 ,  it is sufficient to know a quantitative characteristi~c 
of the corresponding linear effect and then invoke formula 
(33). Here it is important that the anti-renormalization factor 
in front of Aqin  in relation (33) depends only on the puls~e 
parameters and not those of the medium. This allows us to 
determine Acp, without having to solve the nonlinear consti- 
tutive relations. The values of A q i n  can be taken, for ex- 
ample, from experiments in the linear region. 

Let us trace out how a wave train of frequency w<w1,, 
after it has entered the medium in question can be trans- 
formed into a soliton of the type (19)-(23). In this case., 
linearization of Eq. (13) is unavailable. Equation (13), like 
its linearized variant, admits a solution in the form of a plane 
wave (31), (32), up to the substitution 

where a, is the amplitude of the plane wave. Here the phase 
can be represented in the form 

Obviously, the expression in brackets plays the role of the 
wave number k. Hence we can find the dependence 
w=o(k,at). Noting that the two last terms inside the brack- 
ets are of a higher order of smallness than the first, the given 
dependence can be found by the method of successive ap- 
proximations. As a result, we obtain the following nonlinear 
dispersion relation: 

to which we can apply the Lighthill criterion for the stability 
of a nonlinear plane wave22 

Application of criterion (35) to Eq. (34) leads to the require- 
ment that a(0,O)wlp be negative. Since in our case p>O [see 
Eq. (12)], the stability criterion can be written in the form 
a(O,O)w<O. In the opposite case the plane wave experiences 
a modulational instability, breaking up into solitons. Earlier, 
we already spoke about the fact that a soliton of the type 
(19)-(23) under the condition P>O satisfies the inequality 
a(O,O)w>O. It follows from what has been said that this type 
of soliton can be formed in a nonlinear medium as a result of 
the modulational instability of the initial wave train. 

The physical meaning of inequality a(O,O)w/p>O is that 
the angular momentum of the pulse is conserved. The direc- 
tion of the angular momentum of the electromagnetic pulse 
is determined by the direction of the Faraday rotation of the 
polarization plane. As a result of interaction with the atomic 
a-transitions, the optical wave acquires a nonzero spin. It 
was shown above that given condition (5), the directions of 
the Faraday rotation for a linear plane wave and an optical 
soliton are opposite. How then does the breakup of the initial 
train of plane waves into solitons take place, with the mo- 
mentum conservation law for the pulse remaining in force? If 
the inequality a(O,O)wlp>O is satisfied, the first and second 
terms on the right-hand side of Eq. (34) have different signs. 

In the initial wave packet can be found Fourier components 
for which at>a(0,0)wl~. Then the second term prevails 
over the first, and the sign of K in Eq. (34) becomes opposite 
that of K,~,, . AS a result, the direction of the angular momen- 
tum of the given Fourier components is opposite to that for a 
linear wave pulse. From these components (19-23) is then 
formed a DNSE soliton. 

Let a wave packet of duration r0 and spectral width 
Aw- 70' be incident upon the boundary of the nonlinear me- 
dium under consideration. For this case we can write the 
threshold condition I dk,,(z =0) > 14;- a(O,O)/~rO, where 
Idth is the minimum value of the amplitude upon entrance to 
the medium for which a soliton can be formed. Let us esti- 
mate the value of Idth for magnetized sodium vapor. Em- 
ploying Eqs. (11) and (12), we find that I $ I t h  
- hwl /(d21 6). Setting wlrO-10, wl - l~ ls  sP1, 
d2,-10-l8 cgs Oe units, we find that 11/4,~-5.10~ V/cm. The 
given field strengths correspond to intensities I-1012 
w/cm2, achievable at present with CO, lasers. Note that in 
the case of NSE solitons there also exists a minimum thresh- 
old amplitude at the medium boundary:23 14,-70'. It is 
easy to show that the latter condition can be obtained, like 
the corresponding condition for the DNSE case, via physical 
arguments based on the conservation of angular momentum 
of the pulse. 

With the development of the modulational instability a 
packet of light energy in the form of a soliton begins to lag 
behind the low-amplitude plane waves moving ahead with 
velocity c/no. These low-amplitude waves are precursors of 
the soliton. According to Eq. (33), the direction of the Fara- 
day rotation of the precursors should be opposite that of the 
soliton. 

Employing Eqs. (33) and (20), we can write down an 
expression for Acps in terms of the intensity, I= v 11,h,1~/4.rr, of 
the pulse: 

where l l v  is given by Eq. (22) and, as was noted above, 
depends only on the frequency of the signal-not on its in- 
tensity. 

Expression (36), like solution (19)-(23), does not go 
over to the linear case when P=O. This is because the soliton 
solutions are nonperturbative, i.e., they are fundamentally 
nonlinear, and depend nonanalytically on the nonlinearity pa- 
rameter p as p+O. 

Let us make some numerical estimates. Let a video soli- 
ton, for which wrp-1, propagate in strongly magnetized so- 
dium vapor (anomalous Zeeman splitting). Then its intensity 

Setting w, -10~~ s-', w-1014 s-I, and d2,-lo-'' cgs Oe 
units, we find that I-1013 w/cm2. In obtaining this estimate, 
we assumed that the magnetization of the vapor is near satu- 
ration: Mo--2hn and the refractive index is essentially 
equal to unity. We will now estimate the Faraday rotation 
angle per unit length of the video soliton: 
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Setting n-10" cmP3 and w/wl-0.1, we find that K,-Io-~ 

rad/cm. Similar estimates show that in the Paschen-Back 
effect and normal Zeeman splitting, I-10" w/cm2, and K, is 
~, /0+-10~-10~ times smaller than for anomalous Zeeman 
splitting. 

+ i ~ .  cos 0 -1, 
dt 

5. ULTRASHORT PULSES 
where 

Let us now consider the ~ a s e ~ - ~  

where rmaX is the maximum time scale of the pulse. Note that 
the energy ho,,, is of the same order of magnitude as the 
ionization energy of the atom. Therefore, for condition (37) it 
is necessary to take ionization processes into account. 
Strictly speaking, under condition (37), for optical frequen- 
cies such processes should play a dominant role, and for a 
correct solution of the problem it is fundamentally necessary 
to take them into account. However, in our case the use of 
approximation (37) has rather a methodological significance. 
It is the limiting case opposite to Eq. ( S ) ,  upon which we will 
base the method of analytic continuation of the dispersion 
parameters to the complex plane in the following section. 
Therefore we will not take into account transitions to the 
continuous spectrum, and will remain within the framework 
of the model proposed in Sec. 2. 

Following Ref. 24 and generalizing the treatment given 
there, we write 

After substituting Eq. (41) in Eq. (4) and using the unidirec- 
tional propagation approximation (see Sec. 3), we obtain 

d2 8 
- = - R sin 8, 
d z d ~  

Here ~ t - Z I C .  Employing the one-soliton solution of the 
sine-Gordon equation (44) 

- 112 
t-zlv 

we find that 

t-zlv 
~ = K ~ z $ - ~ K , u T ~  th -, T~ 

The idea behind approximation (38) is that the phase of the 
atomic dipole moment tracks the phase of the electric field of 
the pulse, but shifted by ~ 1 2 .  In this case system (1)-(4) can 
be solved by the method of successive approximations in the 
parameter W1,2Tma, (Refs. 10 and 11). Substituting Eqs. (38) 
into Eqs. (1) and (2), taking account of relation (3), we find 
in the zeroth approximation 

where V-'=c- '+R$. 
From Eq. (47) it follows that K, is the Faraday rotation 

angle per unit length of the video soliton (46). From Eq. (43) 
we find that for the Paschen-Back effect and normal Zeeman 
splitting K,=O, and for anomalous Zeeman splitting 

Thus, in the presence of spin-orbit interaction, assuming con- 
dition (37), there remains only the paramagnetic contribution 
to the Faraday rotation of a video soliton, which is propor- 
tional to the magnetization of the medium. where 

6. A COMBINATION RULE FOR DETERMINING THE 
FARADAY ROTATION ANGLE PER UNIT LENGTH OF AN 
OPTICAL PULSE 

After substituting Eqs. (39) and (40) in the right-hand sides 
of Eqs. (1) and-(2); we obtain expressions in the first ap- The magnitude of the Faraday rotation angle per unit 
proximation for the time derivatives of the atomic ampli- length of an optical pulse for arbitrary w and 7, can be found 
tudes. Employing these expressions, we find after simple but by a generalization to the two-parameter case of the method 
cumbersome calculations proposed in Refs. 25 and 26 for one-parameter solitons. This 
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method allows one to establish relations between the gee- 
metric parameters (width, velocity) of the soliton without 
first solving the nonlinear equation (or system of equations') 
in explicit form. The method is based on the assumption that 
the initial nonlinear system has a solution in the form of a 
traveling, exponentially localized pulse. This solution, gem- 
erally speaking, must possess the soliton properties of elastic 
interaction with solitons like itself. Let the initial linearized 
system generate a dispersion relation of the form 

In the one-parameter case, the frequency and wave numbeir 
are replaced by the imaginary w+i/rp ant1 
k+i/v rp . Substituting these expressions in Eq. (49) gives a 
relation between the velocity of the soliton v and its duration 

r~ . 
If the nonlinear system generates two-parameter soli- 

tons, it is natural to analytically continue the dispersion pa- 
rameters o and k to the complex plane as a generalization of 
the one-parameter case: 

Substituting expression (50) in Eq. (49), after separating the 
real and imaginary parts, we obtain two equations: 

Relations (51) between four parameters leave two free, for 
which we can choose, for example, o and 7,. 

The foregoing procedure can be justified in the following 
way. An exponentially localized two-parameter pulse fall!; 
off at its "tails" like exp[-It -z/v l/r,+i(ot - kz)]. Since 
the intensity of the pulse is low in the tails, we can use an 
approach here associated with the linear approximation. R e  
call, however, that the very existence of localized solution!; 
of finite amplitude is fundamentally associated with nonlin- 
earity. The application of this method to the derivative non- 
linear Schrodinger equation and the nonlinear Schrodingel. 
equation leads to a relation between the velocity of the soli- 
ton and its duration, which coincides with relation (22). 

Substitutions (50) admit of a simple quantum-field inter- 
pretation. Let rp-+w. In this case we have a monochromatic 
wave with frequency o and wave number k or a photon with 
energy hw and momentum hk. The appearance of imaginary 
additive terms in w and k means that the photon in a state 
with energy hw and momentum hk has a finite lifetime 7, 
(the mean free path of the photon is equal in this case to 
v r p )  In quantum field theories such imaginary additive 
terms in the poles of the Green's functions appear as a result 
of the interaction of the particles with each other. The inter- 
action of the photons with each other by way of the medium 
is due to the nonlinearity, which, together with the disper- 
sion, generates the nonperturbative soliton solutions. Thus, 
the duration rp of a two-parameter soliton can be interpreted 
as the lifetime of a photon in a state with energy ho. The 
spatial dimension of the soliton u r p  plays the role of the 
mean free path of the photon forming, among others, the 
given soliton. In this case, for envelope solitons w + r ~ '  and 
for video solitons 05rp1. In the latter case one can hardly 

speak any more of individual photons with frequency w since 
the spectral width of the soliton r ~ '  exceeds the frequency of 
the oscillation o. 

Linearization of system (1)-(4) reduces to the equality 
b'-b' - ,,, but b: and I) enter the picture in the role of small 
dynamical parameters. The Faraday effect can be represented 
in the form of a superposition of right- and left-polarized 
waves. In this case 

The subscript r corresponds to the right-polarized wave, and 
the subscript 1, to the left-polarized wave. The Faraday rota- 
tion angle per unit length of a plane wave is given by 

Since we have chosen o and rp as the free parameters, 
they will not differ for the right- and left-polarized waves. 
The parameters u, and v , ,  and k, and k, will differ. The 
difference between u r  and ul  is a manifestation of soliton 
circular dichroism, which shows up as a difference in the 
mean free paths of the left- and right-polarized photons. As- 
sume that system (1)-(4) admits the existence of solutions in 
the form of exponentially localized, isolated traveling pulses. 
We represent the phases of the left- and right-polarized 
waves in the form 

where we have introduced the effective wave numbers 
k l , r = k l , r - ~ ~ ~ l , r .  The velocities u,,,(o,rp) are found from sys- 
tem (51) after making substitutions (50). Thus, in a frame of 
reference moving with velocity u,,, we have the effective 
wave number kl,r. Accordingly, for the Faraday rotation 
angle per unit length of the soliton we have expression (54) 
with the replacement kl,,+kl,, : 

Substituting relations (52) and (53) in system (1)-(4), mak- 
ing the replacements (SO), and invoking relation (55), we 
find 

where 

In the derivation of relations (56) and (57) it was assumed 
that 4.rrd7,n/hojk@l. This approximation is equivalent to 
replacing the refractive index in Eqs. (11) and (22) by unity. 
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Setting w=T;'=o in Eq. (57), we obtain an expression 
which coincides with the expression for a(0,O) given by Eq. 
(11) up to the previously noted replacement No+l. If 
T;'+w, then from Eqs. (56) and (57) we find that K ~ + K ~  

[see Eq. (43)l. 
Thus, the expression for K, obtained for these two limit- 

ing cases coincides with the corresponding expressions ob- 
tained previously by other means. This fact can serve as one 
argument in favor of the method proposed here, which has 
allowed us to obtain a quantitative characteristic for the 
pulsed Faraday effect, namely K,(w,T;') for arbitrary w and 
7;'. Here, however, we must mention a restriction related to 
relaxation: ~ ' % T T ~ ,  (T;)-', where T; and T2 are the re- 
versible and irreversible phase relaxation times, respectively. 
There is another restriction on 7;' that is due to the possi- 
bility of neglecting ionization processes (see Sec. 5). In other 
words, the quantity 7;' should not exceed eilfi, where ei is 
the ionization energy of the atom. The above restrictions on 
7;' can be written in the form of a double inequality: 

The restriction on the frequency of the pulse brought about 
by the possibility of neglecting inhomogeneous broadening 
has the form 

for all j and k. 
The combination rule (56), (57) allows one, without 

solving the initial coupled system of material equations and 
Maxwell's equations, but only making use of the diagram of 
allowed a transitions, to determine the value of the Faraday 
rotation angle per unit length of laser pulses for arbitrary 
quantitative relations between their frequency and duration. 
This rule is valid not only for the vapors under discussion, 
with their specific Zeeman splitting diagrams, but for all rar- 
efied, in particular gaseous, media. Here the criterion of rar- 
efaction has the form 

for all j and k. 
In general the combination rule for finding the Faraday 

rotation angle per unit length of the pulse, given conditions 
(58)-(60), can be formulated in the following way. Let the 
diagrams of the a transitions corresponding to the Faraday 
effect be known. Then with each such transition we associate 
a term of the form 

where Wk is the population of the level from which the tran- 
sition originates with the arrival of the pulse. We then put a 
plus sign in front of this term if the transition from the kth to 
the jth level is accompanied by a decrease in the projection 
of the total angular momentum onto the direction of the mag- 
netic field, and a minus sign in the opposite case. Allowing in 
this way for all possible transitions, we obtain an expression 
for a ( w , ~ ~ ' ) ,  substitution of which into Eq. (56) gives the 
desired result. Note that the given rule is also valid in the 
case in which all of the levels are differently populated be- 

.fore the arrival of the pulse. This assertion can be easily 
confirmed by calculations for the level diagram described in 
this section. In the latter case, according to the given rule, 
each pair of levels in the diagram of the a transitions is taken 
into account twice: the transitions "lower to upper" and "up- 
per to lower". We thus conclude that the term (61) corre- 
sponds to each pair of levels, up to the replacement 
Wk-+ Wk- Wj . In this case, in choosing the sign of the term 
(61), the more populated level of the given pair of levels is 
taken as the initial one. Then we must make the replacement 
w:-+ W: - W; in expression (57), which is valid for the level 
diagrams depicted in Figs. 1-3. Thus, equalization of the 
populations in a system of optical transitions leads to a de- 
crease in the Faraday rotation angle per unit length of a light 
pulse. 

7. THE MACALUSO-CORBINO SOLITON EFFECT 

In the case of linear plane waves, the Macaluso-Corbino 
effect is manifested as an abrupt increase in the Faraday 
rotation angle per unit length in the vicinity of the resonance 
frequencies with multiple changes in the sign of rotation. The 
frequency of a plane wave in the linear region is its only free 
parameter. The solitons which have been examined here are 
two-parameter nonlinear solutions of system (1)-(4). The 
frequency w and the duration T, have entered as the two 
independent parameters. Note that the expression for 
K,(w,T;') [see Eqs. (56) and (57)] can be written in the form 
of a real function-of the complex variable R=w+i /~ , :  

Here we have taken note of the remark made at the end of 
the previous section regarding the nonzero population of all 
the levels forming optical a-transitions. The function K,(R) 
has poles on the real axis corresponding to the resonance 
frequencies of the medium: R =  +wjk for all j and k. At these 

- 
points w= + wjk , 7, '=0 [recall, however, restrictions (58)- 
(60)]. The zeros of K,(R) lie in the vicinity of the above- 
mentioned poles and form closed curves around them. The 
sign of ~ , ( f l )  inside the regions formed by these curves and 
its sign outside them differ. Figures 4 and 5 show such 
curves for magnetized sodium vapor for anomalous Zeeman 
splitting and the Paschen-Back effect, respectively. In the 
latter case we have one such curve. Its closure takes place to 
the side of o;?,; however, in this case the values of 7;' are so 
large that the left side of condition (58) is violated. For this 
reason only that part of the curve is depicted in Fig. 5 that 
has immediate physical meaning. For normal Zeeman split- 
ting, the described curve is identical to the corresponding 
curve for the Paschen-Back effect. Therefore all conclusions 
drawn in what follows for the Paschen-Back effect hold 
equally for normal Zeeman splitting. 

Figures 4 and 5 also depict curves along which 
~,(R)=const. The fact that the zeros and poles of the func- 
tion ~ ~ ( 0 )  are found right next to each other is indicative that 
in these regions there take place abrupt variations in the be- 
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FIG. 4. Isolines  co con st in the quadrant 
o>O, rpl>O of the complex a plane and 
schematic graphs of K,(w) and ~ ~ ( 7 ; ' )  for 
the case of magnetized sodium vapor in 
the presence of anomalous Zeeman split- 
ting. The straight lines o/ol=O and 
(wlrp)-''0 are the symmetry axes of the 
isolines. The region K ~ < O  is hatched in, 
K,>O everywhere else. The arrows at- 
tached to the isolines indicate the direction 
of decreasing K,. The following notation 
has been used: p' = o, lw l ,  p =2, 3, 4. 
The dashed curve in the lower graph of 
K ~ ( O )  corresponds to K ~ ~ , , ( W )  with atomic 
relaxation taken into account. 

havior of the Faraday rotation angle per unit length. We will 
refer to the dependence of the latter on the complex variable 
a ,  when the values of its modulus IIR/ lie in the vicinity of 
the resonance frequencies of the medium, as the Macaluso-. 
Corbino soliton effect. Thus, the Macaluso-Corbino solitor~ 
effect consists in the dependence of the Faraday rotation 
angle per unit length not only on the frequency of the pulse., 
but also on its duration. With increasing amplitude of the: 
electric field of the pulse, the rate of the induced transitions 
increases and, as a result, the inverse duration of the pulse: 
grows. Therefore, nonzero values of 7;' characterize the de-. 
gree of optical nonlinearity. In this regard, the functionall 
dependence ~~(7;') for @=const should qualitatively coin-. 
cide with the functional dependence of K, on the amplitude: 

of the electric field of the pulse. Note that K,(LR) has an 
isolated zero at IR=O. In the vicinity of this point the func- 
tion K,(IR) has no singularities and behaves like ~ ~ - 1 ~ 1 ~ .  
This region corresponds to the low-frequency approximation 
investigated in Sec. 3, which bears no relation to the 
Macaluso-Corbino effect. Drawing straight lines parallel to 
the w axis through the isolines ~,(IR)=const, we obtain the 
behavior of ~ , (w)  for various values of 7i1=const (Figs. 4 
and 5). The straight lines w=const intersecting the same iso- 
lines give us a picture of the dependences ~~(7; ' )  or K,(J@~I) 
for fixed frequency of the pulse (Figs. 4 and 5). 

For magnetized vapors in the case of anomdlous Zeeman 
splitting, the behavior of K,(w) depends substantially on the 
value of 7;' (or, equivalently, on the amplitude of the soli- 

FIG. 5. Isolines  co con st in the quadrant 
o>O, rpl>O of the complex plane and 
schematic graphs of K,(OJ) and ~ ~ ( 7 ; ' )  in the 
case of the Paschen-Back effect for sodium 
vapor. The notation is the same as in Fig. 4. 
For normal Zeeman splitting, the Faraday 
spectra coincide with the Faraday spectra in 
the case of the Paschen-Back effect. 
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ton). Thus, if W , T ~ - ~ O ~ ,  the function K,(w) changes sign sev- 
eral times in the vicinity of the resonance frequencies. How- 
ever, for w ~ T ~ - 1 0 ,  the functional dependence ~ , ( w )  
"smoothes out" substantially in the vicinity of the resonance 
frequencies: the function K,(w) has a broad plateau over a 
region that extends somewhat beyond the resonance fre- 
quency band and does not change sign even once. For the 
Paschen-Back effect and normal Zeeman splitting, and also 
for the case of nonmagnetized vapors in the presence of 
anomalous Zeeman splitting, the sign of ~ , ( o )  is determined 
by the offset of the frequency 6.1 from resonance (Fig. 5). Just 
such a dependence was obtained in Refs. 3 and 27 for Fara- 
day rotation in a high-power continuous laser beam for a 
system of alkali atoms. 

In the case w=const the behavior of K,(T;') is deter- 
mined to a significant degree by the specific value of o .  If 
oeo,,,, then in nonmagnetized sodium vapors, like for the 
Paschen-Back effect and normal Zeeman splitting, K,(T;') 
has a broad maximum in the vicinity of 7;'' ol,, (Fig. 5). In 
this region the video soliton acquires spectral components 
with frequencies near o,,,, thereby causing resonance ampli- 
fication of K,. However, it is clear that the contribution of 
these resonance components to the Fourier spectrum of the 
video soliton is not large in comparison with the frequency 
components for which w<w,,,. This also explains the broad- 
ness of this maximum. If the vapor is not magnetized, the 
dependence ~~(7;') does not have a local extremum, being 
everywhere monotonic (Fig. 4). The characteristic absolute 
value of K, for magnetized vapors exceeds the corresponding 
value in the absence of magnetization, and also in the pres- 
ence of the Paschen-Back effect and normal Zeeman split- 
ting, by a factor of w,/o,-10~-10~. 

The behavior of K,(T;') when the soliton frequency is 
near one of the resonance frequencies is curious. In this case 
for the Paschen-Back effect and normal Zeeman splitting, K, 

falls off monotonically with increasing 7;' (Fig. 5). For 
anomalous Zeeman splitting, one can observe dependences 
K,(T;') accompanied by a sign change in K, (change of di- 
rection of the Faraday rotation angle) and the existence of a 
local extremum (Fig. 4). To observe this effect, the offset of 
w from resonance should not exceed a small multiple of o,. 
Then the value of 7;' for which K, changes sign and has a 
local extremum varies from several to several tens of o,, 
which corresponds to durations ~ ~ - 1 0 - l ~  s with a fill fre- 
quency of 0-10" s-'. This is the regime in which self- 
induced transparency is observed.12 However, the presence 
of more than two quantum levels ensuring a transitions is 
fundamental here. In a system with one a transition, there 
cannot be any changes of sign in the Faraday rotation angle, 
nor can ~~(7; ')  have a local extremum. 

The dependences K,(w) do not reduce to similar limiting 
cases for linear plane waves in the limit 7 i1=0 (see Figs. 4 
and 5). This again emphasizes the fundamentally nonlinear 
character of solitons. 

In conclusion, note that the function ~ , ( f l )  defined by 
Eq. (62) is not analytic, i.e., the Cauchy-Riemann conditions 
are not fulfilled for it except at the point R=O. This is ex- 
plained by the fact that the propagation velocity of the soli- 
ton differs from the phase velocity of the wave. Therefore 

expression (55) for K, is written in terms of the effective 
wave numbers k,, , which do not reduce to the wave numbers 
k , ,  in the limit T;'=o. Thus, the fundamentally nonlinear 
nature of solitons (the nonanalytic character of the depen- 
dence of the soliton solutions on the nonlinearity parameter 
as the latter tends to zero) is the reason for the nonanalyticity 
of the dependence of the Faraday rotation angle per unit 
length on R over the entire complex plane with the exception 
of the point fl=O, where the Faraday effect is absent. 

8. CONCLUSION 

In the present paper we have carried out a theoretical 
study of the Faraday effect for optical solitons over wide 
intervals of their frequency and duration, from envelope 
pulses to video pulses. In this regard, the approach consid- 
ered here is valid mainly for media which have low atomic 
density and possess magneto-optical activity. In addition, it is 
assumed that inhomogeneous broadening of the optical tran- 
sitions is much less than the distances between the Zeeman 
sublevels. In the case of sodium and mercury vapors we have 
examined Faraday rotation of optical pulses from the same 
viewpoint for anomalous and normal Zeeman splitting and 
for the Paschen-Back effect. We have obtained the "deriva- 
tive nonlinear Schrodinger equation" (13) for the electric 
field intensity in the low-frequency limit IRleojk (for all j 
and k). In this case the frequency of the pulse is far from 
resonance. Therefore the assumption of smallness of inho- 
mogeneous broadening is superfluous here. In addition, the 
low-frequency limit (5) allowed us to obtain equation (13) 
without resorting to the assumption of low density of the 
medium. Consequently, Eq. (13) should describe the pulsed 
Faraday effect for solids as well as gases. Here it is important 
that the electronic spectra of the atoms responsible for the 
magneto-optical activity not be subjected to substantial dis- 
tortions in the crystal. The latter conditions are fulfilled for 
admixtures of rare-earth elements in solid salts and solutions. 
The paramagnetism of rare-earth ions is due to the unfilled 
4f subshell, whose electrons are screened from the influence 
of neighboring atoms by the outer electrons. As a result, 
rare-earth ions under such conditions behave like atoms of a 
rarefied gas.28 Obviously, relation (33) between the Faraday 
rotation angles per unit length for a soliton Acp, and for a 
plane wave Av,~, is also valid here. It is remarkable that the 
ratio AcpSlAqin does not depend on the properties of the me- 
dium, but is determined only by the frequency and duration 
of the optical soliton. In this case it is sufficient to know the 
magnitude of A@, , which allows one to predict Acp, without 
resorting to cumbersome calculations. Here it turns out that 
the Faraday rotation angle for a pulse and for a linear wave 
are oppositely directed, which points to the threshold nature 
of the formation of a DNSE soliton. 

At low temperatures ( T < h d k , - 1  K) the magnetiza- 
tion of the paramagnetic impurities in solid solutions is near 
saturation: Mo-2pBn. In this case Verde's soliton law (30) is 
not fulfilled [see Eqs. (25) and (28)]. The ratio between the 
paramagnetic contribution to the Faraday rotation angle and 
the diamagnetic is estimated to be o,/%-lo3-lo4, and the 
first term on the right-hand side of Eq. (24) can be neglected. 
The diamagnetic contribution to the Faraday rotation angle 
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in the case of anomalous Zeeman splitting can compete with 
the paramagnetic term only at very high temperatures ~210 '  
K, which are encountered, for example, in the vapors of mol- 
ten metals. 

The combination rule for finding the Faraday rotation 
angle per unit length of an optical soliton formulated in Sec. 
6 allows us to state that Eq. (13) remains valid in the low- 
frequency limit (5) when all possible a transitions between 
the discrete levels, not just the levels forming the main spec- 
tral series, are taken into account. Thus, for example, the 
transition from one of the Zeeman sublevels of the 3 2 ~  state 
to one of the sublevels of the 6 2 ~  state corresponding to the 
wavelength 2853 A (Ref. 12) can be taken into account by 
redefinition of the coefficient a(0,O) in Eq. (13). To be more 
specific, the expression for a(0,O) that takes account only of 
the a transitions within the main spectral series can be aug- 
mented by a term of the form 2md? ,  ~ ~ l ( T i c w ? , ) .  Other a 
transitions from the 3 2 ~  sublevels to higher-lying 4 2 ~  and 
5 2 ~  sublevels can be taken into account in an analogous 
way.12 Transitions from 3 2 ~  sublevels to higher-lying Zee- 
man sublevels can be taken into account by redefining the 
nonlinearity coefficient in Eq. (13). Indeed, the contribution 
of these transitions to the complex polarization is propor- 
tional to the product of the population of the 3 2 ~  sublevels to 
the complex electric field strength F E , +  iE, . However, as 
is clear from Eq. (8), these populations are of the order of 
Id2, which proves our assertion. Thus, in the low-frequency 
limit ( 9 ,  Eq. (13) is fairly universal. Equation (13) takes 
account of all possible a transitions between the discrete 
levels of a quantum system possessing magneto-optical ac- 
tivity. The more quantum transitions we take account of, the 
more complicated become the expressions for a(0,O) and P. 
However, in any case the dynamics of the pulse are described 
by Eq. (13). 

Use of the combination rule (56), (57) [see also Eq. (62)] 
in the vicinity of one of the resonance frequencies requires 
great care. First of all, it is necessary to recall inequalities 
(58)-(60). Secondly, use of this rule is based on the assump- 
tion that a stable solution in the form of an exponentially 
localized pulse exists. In general, clearly, it is not simple to 
justify such an assumption. The particular solutions analyzed 
in Secs. 3 and 5 show that in the two opposite limits (5) and 
(37), this assumption is confirmed. In the case of a resonance 
pulse with one a transition we obtain the system of self- 
induced transparency equations, which describes a circularly 
polarized envelope soliton (see Ch. 7, Sec. 7 of Ref. 12). The 
method proposed in Sec. 6 does not yield an answer to the 
question of whether there exist stable soliton-like solutions 
in the case of arbitrary pulse durations and frequency, that 
also take into account all possible resonance and nonreso- 
nance transitions. It would be all the more desirable then to 
have an experimental confirmation of the functional depen- 
dences obtained here of the Faraday rotation angle on the 
frequency and duration (amplitude) of an optical pulse, 

which are the essence of the Macaluso-Corbino soliton ef- 
fect. 

The studies carried out in the present work could aid the 
development of pulsed laser polarimetry.14 The dependence 
of the Faraday rotation angle per unit length on the two pulse 
parameters w and 7;p1 make the Faraday rotation spectra two- 
dimensional, which allows one to speak of fundamentally 
new possibilities in laser magnetic spectroscopy. 
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