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A new Monte Carlo trajectory algorithm is proposed for calculating the electronic properties of 
two-dimensional Cu-0 clusters. This algorithm is an extension of the one described 
previously by J. E. Hirsch et al. for the one-dimensional Hubbard model. The energy E, the 
occupation numbers (N,) and (No) of the copper and oxygen orbitals, respectively, the optical gap 
in the one-particle spectrum AOp,, the spin correlation functions Si j ,  and the momentum 
distribution functions n(k) were calculated for a series of Cu-0 clusters with Na=12, 24, 30, 48, 
54, 60, 78, 96, 102, and 108 sites. The properties listed above were determined for the first 
time as a function of the dimensions of the system. Specifically, it was found that at some critical 
value of N, the quantities E, (Ncu), (No), and Sij no longer depend on the cluster size. The 
antiferromagnetic correlation length was calculated and found to be three lattice periods (-1 nm) 
at Na=54; this agrees with the experimental value and is much less than the linear size of a 
cluster. It is shown that the character of the suppression of the antiferromagnetic correlations 
accompanying doping with electrons and holes, as observed previously in the cluster 
Cu408, is also maintained for large systems; this indicates that a "magnetic" mechanism of 
attraction operates between excess carriers in a CuO, plane. O 1994 American Institute of 
Physics. 

1. INTRODUCTION 

The discovery of high-T, superconductors has stimu- 
lated great interest in electronic systems with strong correla- 
tion effects. The most popular models are the ~ u b b a r d l - ~  
and ~ m o r ~ ~  models. The latter model describes the CuO, 
plane-the basic structural element of these compounds. In 
spite of the large number of treatments (see, for example, 
Refs. 2, 3, 5, and 6) that have been carried out, Emory's 
model is not adequately understood and it is difficult to make 
analytical investigations within this model. As a result, nu- 
merical methods, such as the exact diagonalization method 
(EDM)~-" and the Monte Carlo method (MCM),"-'~ be- 
come important. These methods make it possible to calculate 
accurately the properties of the ground and excited states in 
finite systems. A distinguishing feature of the EDM is that 
the energy of the ground state (at T=O) and the correlation 
functions in small finite clusters (the number of atoms 
Na-10) can be calculated to any desired accuracy. The re- 
sults obtained for Cu-0 clusters with the E D M ~ , ~ , ~ ~ , ~ ~ , ~ ~  
have demonstrated that carriers can be attracted to one an- 
other as a result of antiferromagnetic correlations; this points 
to a magnetic mechanism of high-T, superconductivity. The 
EDM can also be used to investigate the excited states of a 
 stern.'^,^^ This makes it possible to determine the elec- 
tronic properties, such as the density of one-particle 

the dynamic c o n d u c t i ~ i t ~ ~ ~ ' ~ ~  and others. 
The fundamental drawback of the EDM is that the size 

of the working memory and the speed of modern computers 
limit the cluster sizes, and this makes it impossible to inves- 
tigate the effect of cluster sizes on the electronic and ther- 
modynamic properties. This is especially clearly demon- 
strated in the case of the CuO, plane. Indeed, the maximum 

Cu-0 cluster with the symmetry of the Cu0, plane and al- 
lowing application of the EDM is C U ~ O , . ~ O  The next square 
cluster has Na=24 atoms and can no longer be handled by 
the EDM (the Hamiltonian matrix contains more than 1016 
elements, even for an undoped dielectric state of this cluster). 

For this reason, quantum Monte Carlo methods must be 
used to investigate the effect of the cluster size on the prop- 
erties of a  stern.'^-'^ These methods make it possible to 
calculate the properties of large clusters (Na= 100-200). The 
drawback of these methods is that it is impossible to inves- 
tigate the most interesting range of low temperatures T-100 
K, since in this case the statistical errors grow rapidly and the 
computing time increases. Monte Carlo methods have been 
used to calculate the density of one-particle  state^:^-,^ the 
momentum d i s t r i b ~ t i o n , ~ ~ - ~ ~  and the charge, spin, and pair 
correlation func t ion~ ,3~-~~  They have also been used to study 
the pairing for one- and two-dimensional sys- 
tems in the Hubbard, t-J,  and Emory models with 
Na-20-100. 

Variational Monte Carlo r n e t h ~ d s ~ ~ - ~ '  based on mini- 
mizing an energy functional with different types of varia- 
tional functions are distinguished from quantum, "thermal" 
Monte Carlo methods, which employ the Trotter 

and the Metropolis algorithm.44 Variational 
Monte Carlo methods, which in many cases satisfactorily 
describe the ground state, are very sensitive to the initial 
approximation and the form of the model being investigated. 
The results are strongly affected by the choice of the varia- 
tional f u n ~ t i o n . ~ ~ ' ~ ~  In this sense, quantum Monte Carlo 
methods are more universal. They are divided into so-called 
determinant algorithms:2,4s extended to interacting 
systems46'47 by means of the discrete Hubbard-Stratonovich 
transformation proposed by J. E. ~ i r s c h ; ~  and trajectory 
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methods.'2,'3,49,50 In these algorithms the d-dimensional 

quantum problem reduces to a (d +L)-dimensional classical 
problem; in addition, L =l  for trajectory Mont Carlo meth- 
ods and L 2 1 for determinant methods. 

We note that trajectory algorithms are much more effi- 
cient and converge more rapidly than determinant algo- 
rithms, but they have been developed mainly for one- 
dimensional fermion systems. (However, these algorithms 
are used successfully for two-dimensional Heisenberg 
antiferromagnets5' and for o n e - d i m e n ~ i o n a l ~ ~ , ~ ~ ~ ~ ~  and 
two-dimen~ional~~ systems with boson degrees of freedom.) 
The efficiency of these methods is based on the fact that the 
calculation employs a canonical ensemble with a fixed num- 
ber of particles. This reduces considerably the size of the 
Hilbert space of the possible site states. As the number N, of 
sites in the system increases, the number of Monte Carlo 
steps required increases as N,, while the number of steps 
increases as -N: in the case of determinant Monte Carlo 
methods.46 

Determinant Monte Carlo methods have been used suc- 
cessfully to study both one- and two-dimensional 
systems.36,55,56 These methods are based on a transformation 
of the statistics of the fermion degrees of freedom to Ising- 
spin-type statistics. This simplifies the Monte Carlo proce- 
dure and makes it possible to circumvent questions concern- 
ing the dimension of the system.46 This transformation must 
be paid for by working with the grand canonical ensemble 
with a variable number of particles and a considerably 
slower rate of convergence than in the case of trajectory 
methods. In the Monte Carlo procedure the Green's function 
is calculated This simplifies the subsequent cal- 
culations of the correlation functions3' and makes it possible 
to calculate the band ~ t ruc tu re~~-~ '  and the momentum 
distribution.29330 One drawback of determinant Monte Carlo 
methods as compared to the trajectory algorithm is that the 
number of spin variables over which the Monte Carlo proce- 
dure is performed increases (i.e., the dimension of the corre- 
sponding classical problem increases) as the number of 
bands in the model under study increases, since under a dis- 
crete Hubbard-Stratonovich transformation each pair inter- 
action results in the appearance of a new spin variable.46948 

Determinant algorithms also come in several modifica- 
tions. For example, M. Imada et ~ 1 . ~ ~  proposed a combina- 
tion of the standard "thermal" Monte Carlo method and 
Gram-Schmidt reorthogonalization at low temperatures; this 
makes it possible to investigate states with lower energy. A 
combination of the standard Monte Carlo process and mo- 
lecular dynamics is considered in Ref. 38. S. sorellaS7 pro- 
posed a modified Monte Carlo procedure for analyzing the 
ground state of a fermion system by means of special pro- 
jection operators. This made it possible to investigate the 
distribution function n(k)30,32 and show that there is no 
Fermi discontinuity for a one-dimensional one-band Hub- 
bard model. 

We recall here one other problem that complicates the 
Monte Carlo procedure: the minus sign problem. This prob- 
lem arises for two- and three-dimensional fermion systems.58 
It arises as a result of the antisymmetry of the fermion wave 
function. This results in the appearance of a negative sign in 

the statistical weight of different Monte Carlo configurations 
and it increases the statistical errors and the computational 
time. In Ref. 58 different methods are proposed for solving 
this problem, depending on dhether or not the average sign 
of a configuration approaches zero or a constant in the limit 
T+O. 

We now discuss in greater detail the trajectory Monte 
Carlo algorithms.12,15,59,60 First developed by J. E. Hirsch 
et a1.,l2-l4 these algorithms ,are employed exclusively for 
one-dimensional fermion systems. The main idea of the al- 
gorithm is to transform the d-dimensional quantum problem 
to a (d + 1)-dimensional classical problem by introducing 
"time" slices on the imaginary time axis O<r<P=l/T and 
to implement the Monte Carlo procedure in the space imagi- 
nary time r--coordinate L. The transformation from the one- 
to the two-dimensional (in real space) problem is in principle 
possible (as noted in Ref. 13), and it has been used for boson 
degrees of but it involves the above-mentioned 
sign problem and can result in large statistical errors and 
greater computing time. It is this difficulty that has prevented 
applications of this algorithm to two-dimensional fermion 
systems. 

Trajectory algorithms are less sensitive to the multiband 
nature of the models considered than are determinant algo- 
rithms, since in the latter case the dimension of the corre- 
sponding classical problem increases with the number of 
bands and is obviously 2 d  + 1, while for trajectory Monte 
Carlo methods it always equals d + 1. It is very important that 
the calculations are performed with a fixed number of par- 
ticles (and when spin is present, the projection of the total 
spin ( S , )  is also fixed). This is convenient for both efficient 
convergence and analysis of the density dependence. 

Summarizing the analysis of Monte Carlo algorithms, 
we note that because of the great difficulties of using stan- 
dard Monte Carlo algorithms to investigate two-dimensional 
multiple-band models, more and more attention is increas- 
ingly being devoted to simplified Hamiltonians which make 
it possible to decrease the number of possible states in the 
system (t-J-type  model^^^.^^'^^). We believe that this is often 
unjustified and does not correspond to real experimentally 
measured parameters of strongly correlated systems such as 
high-T, superconductors (see, for example, the parameters of 
the expanded Hubbard ~ a m i l t o n i a n ~ ~ ' ~ ~ ) .  In addition, the 
computational results often do not agree with experiment as 
well as does the multiband Emory model.@ 

In the present paper we present an efficient new trajec- 
tory Monte Carlo algorithm for calculating the properties of 
two-dimensional Cu-0 clusters. This method is based on 
dividing the three-dimensional space-time grid into three-site 
0-Cu-0 cells, and it extends to a two-dimensional grid the 
corresponding partition presented in Refs. 12-14 for the one- 
dimensional Hubbard model. In this algorithm the sign prob- 
lem, which is an obstacle to the development of trajectory 
methods in two-dimensional fermion systems, has virtually 
no effect on the convergence because the average sign of the 
Monte Carlo configuration approaches a constant value. The 
algorithm makes it possible to calculate the properties of 
Cu-0 clusters with Na=24, 30, 48 ,..., 108 ,... sites with con- 
vergence as good as in the standard one-dimensional 
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! 0 * FIG. 1. Square clusters in the CuO, plane. *-copper atoms, 
0 O-axygen atoms. The figure shows clusters with N, sites: N,=12 

0 * ( I ) ,  24 (2), 30 (3), 48 (4), and 78 (5). Atoms belonging to a cluster 
0 are connected by lines. 

0 0 0 0 0 0 0 0 0  
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systems13 and much better than in standard determinant and 
variational Monte Carlo methods.29946 For this algorithm, the 
multiband nature of the model considered is unimportant, 
and as in any trajectory method, the calculation is performed 
for a canonical ensemble with a fixed total number (N) of 
particles and total spin projection (SZ). 

In this paper we consider a sequence of Cu-0 clusters 
with Na=12, 24, 30, 48, 54, 60, 78, 96, 102, and 108 atoms. 
The clusters possesses square symmetry and admit periodic 
boundary conditions. The energy, the occupation numbers, 
the correlation functions, the optical gap in the one-particle 
spectrum, and the momentum distribution of the carriers are 
calculated. These properties are determined as functions of 
the cluster size. 

We are aware of numerical results which have now been 
obtained for Cu-0 clusters with Na=12 sites (exact diago- 
nalization  neth hod^-^^'^,'^) and Na=48 sites (determinant 
Monte Carlo a combination of the determinant 
Monte Carlo method and molecular and the 
variational Monte Carlo method65). Only one author (M. 
~ m a d a ~ ~ )  investigated a cluster with ~ ,=108 ' )  sites, but he 
calculated only the occupation numbers and the pair correla- 
tion functions. These data are insufficient for determining the 
dependence of the properties on the cluster size. 

The model and the clusters considered are described in 
Sec. 2. The computational procedure employing the new 
Monte Carlo trajectory method is described in Sec. 3. The 
results are presented in Sec. 4. 

2. EMORY MODEL AND CU-0 CLUSTERS 

The best model for investigating the electronic structure 
of Cu02 layers is the two-dimensional multiband Emory 
model: which takes into account the hybridization of the 
copper d and oxygen p orbitals, the difference of the atomic 
levels at the copper and oxygen sites, the Coulomb interac- 
tion at the copper and oxygen sites, and the interaction of 
copper and oxygen sites. 

The Emory Hamiltonian in the hole representation is 

where the operators d& and pk+, create holes in the dx2-,2 
states and the p, , p, states, respectively; (ik) indicates sum- 
mation over nearest neighbors; i and k denote copper and 
oxygen sites, respectively; niu=dLdiu and nku=P~upku;  t 
is the copper-oxygen hopping matrix element; E = E ~ -  .sd is 
the difference of the hole energies at the oxygen and copper 
sites; Ud , U p ,  and V are the Coulomb repulsion energies of 
the holes at the copper and oxygen sites and between these 
sites, respectively. The vacuum for the Hamiltonian (1) is the 
electronic configuration cu3d10 02p6  (the valence state of 
cu+02-).  The insulator (undoped) state corresponds to the 
configuration cu2+02- and half-filling with respect to cop- 
per (the number of holes (N) equals the number of copper 
sites Ncu). 

Next, we partition the CuOz plane into clusters which 
possess the symmetry of an infinite plane (i.e., the symmetry 
of a square) and therefore admit periodic boundary condi- 
tions (see Fig. 1 and Table I). It is convenient to characterize 
each cluster by the basis vectors R1 and R2 (Fig. 1) 

so that the entire Cu02 plane is completed covered by these 
clusters with no superpositions under translations of the form 

R=pR1 + qR2 . (3) 

In Eqs. (2) and (3) n,, n, , p ,  and q are integers, a is the 
lattice period (Fig. I), and i and j are unit vectors along the 
x and y axes. The correspondence between the cluster sizes 
and the numbers n, and n, is given in Table I. The allowed 
reciprocal-space vectors for a given cluster are 

where m, and m2 are integers satisfying the inequalities 
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TABLE I. Possible square clusters in the Cu0, plane. Top two number-lengths of the sides of a cluster in units of 
the lattice period a; bottom number-number of sites in a cluster. The product of the upper numbers gives the total 
number of CuO, cells in a cluster. The asterisks (*) mark clusters investigated in the present work. 

For the numerical calculation all clusters with N,s108 
and even Ncu were chosen (indicated in Table I by an aster- 
isk). The requirement that the number of Ncu be even arises 
because in order to study metal-insulator transitions and to 
investigate carrier pairing, the situation near half-filling by 
copper ((N) =Ncu) is most interesting,'' and for odd values 
of Ncu the total projection of the spin (S,) is different from 
zero, which enhances the finite-size effects. If, however, Nc, 
is an even number, then we have (S,)=O in the undoped 
state, just as in an infinite CuO, plane. 

The obtained sequence of ten clusters with N,=12, 24, 
30, 48, 54, 60, 78, 96, 102, and 108 makes it possible to 
study in detail the effect of the dimension of a system on the 
electronic properties of the two-dimensional multiple-band 
Emory model. 

3. MONTE CARL0 TRAJECTORY METHOD FOR A CuO, 
PLANE 

Method for partitioning the space-time grid 

The basic idea of any trajectory method is to transform 
the d-dimensional quantum problem into a (d+l)-  
dimensional classical problem13 by separating the Hamil- 
tonian into two terms with different types of couplings (even 
and odd in the one-dimensional case13759): 

In the case of a CuO, plane, we propose the spatial par- 
tition illustrated in Fig. 2. The type-1 Cu-0 bonds lie to the 

right and above the copper atoms and the type-2 bonds lie to 
the left and below the copper atoms. It is obvious that such a 
partition divides the entire plane into three-site 0-Cu-0 
cells. 

We shall estimate for the partition function 

the computational error that unavoidably arises with such a 
partition. We subdivide the interval [O,P] into L parts of size 
A7=/3/L. We employ the Trotter expansion4' in the limits 
L+m and Ar+O; specifically, we represent exp(-pH) as 
the product of exponentials [exp(- A . r ~ , ) e x ~ ( -  A T H ' ) ] ~ .  

The corrections arising as a result of the noncommutativity 
of the operators is - (AT)~~A,  where A = m a x ( ~ ,  Ud , U p ,  V )  

FIG. 2. Partition of the CuO, plane into two types of bonds for the Monte 
Carlo trajectory algorithm (type 1 bonds are marked by solid lines and type 
2 bonds are marked by dashed lines). 
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FIG. 3. Space-time grid for the Monte Carlo trajectory algorithm. 
The fennion world lines can switch only within the vertical 
hatched faces of the prisms, resting on a 0-Cu-0 cell. 

(see also Ref. 46); in the one-band Hubbard model the error 
is -(AT)'~u (Ref. 13). In the present work we usually chose 
~ T J t A s o . 1 .  

Next, inserting in the standard manner a complete sys- 
tem of functions at each time slice, we obtain 

and n , ~ ,  equal to 0 or 1. For this reason, the trajectories 
(world lines) occur for each spin independently (the trajec- 
tories for different spin projections are independent and in- 
fluence one another only via the matrix elements of the evo- 
lution operator). We note that in each vertical section of the 
lattice obtained along the Cu-0 and 0-0 lines, the standard 
two-dimensional checkerboard lattice obtains, typical of the 
Monte Carlo trajectory method in a system of one- 
dimensional fermions.13 

Transitions from one time slice to another are deter- 
mined by the matrix elements of the evolution operator 

where ~ n , n + l = ( i n I e x ~ ( - A ~ H 1 , 2 ) I i n + l ) .  ( 10) 

and nim,  is the occupation number at the site i by holes with 
spin a at the mth slice of imaginary time from the interval 
C07PI. 

It is convenient to represent the expression (8) graphi- 
cally. Consider a system of identical two-dimensional Cu-0 
clusters with N ,  atoms, lying one above another along the 
time axis, the number of such clusters being 2L (Fig. 3). The 
summation in Eq. (8) extends over all possible closed non- 
intersecting trajectories; the trajectories in the classical lat- 
tice obtained can only be switched along the hatched faces of 
the prisms, resting on the 0-Cu-0 cells (Fig. 3). To each 
lattice site there are associated two occupation numbers nml 

The total number of states of a 0-Cu-0 cell is 64, so that 
each evolution operator (10) is a 64x64 matrix. The matrix 
elements for the expression (10) cannot be calculated ana- 
lytically (unlike spinless-fermion models13 or the reduced 
Hubbard in the one-dimensional situation). To de- 
crease the errors, Eq. (10) was evaluated numerically: 

where the summation is terminated when the required accu- 
racy is achieved. We note that the expression (11) gives a 
nonzero probability for switching of a trajectory along the 
0-0 diagonal even in second order in AT, i.e., a diagonal 
hop appears (though it did not occur in the initial Hamil- 
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tonian). For this reason, hole motion along the 0-0 faces 
must be taken into account, so that Monte Carlo switching 
should occur in all three vertical faces of the prisms (hatched 
in Fig. 3) resting on the 0-Cu-0 cells. 

The summation in Eq. (8) was performed in the standard 
manner over all admissible closed trajectories. The Metropo- 
lis algorithm44 was used to generate different trajectory con- 
figurations. For our problem the algorithm is implemented as 
follows: The entire lattice of dimension 
2(2L X &X a)), where the factor of 2 takes into account 
the spin projections, is scanned, and in each pass over the 
sites an attempt is made to switch a trajectory without break- 
ing and intersecting another trajectory within the hatched 
faces of the prism (Fig. 3). The probability of elementary 
switching of a trajectory is determined by the ratio of the 
product of the matrix elements (11) before and after switch- 
ing, and the state of the eight prisms (four per spin projec- 
tion, Fig. 3), surrounding the prism in which a local trajec- 
tory change occurred, is affected (and requires recalculation). 
In addition, information about the sign of a matrix element 
(not necessarily positive because the Fermi operators anti- 
commute) may be required to calculate the physical quanti- 
ties, and for this reason the states of the prisms whose sites 
are connected by the initial set to the sites affected by the 
transition can be affected (and subjected to recalculation). 

Calculations of thermodynamic averages from the physical 
quantities 

We denote the statistical weight of the kth configuration 
as 

Let Q be a diagonal operator in the occupation number rep- 
resentation (for example, Ni,= d:di, is the number operator 
for particles with spin projection a at the ith site). Then, the 
thermodynamic average of Q over M configurations will 
have the form 

where Qk is the value of the operator for the kth realization 
and Pk is the probability of this realization. 

As we have already mentioned, the statistical weight Wk 
is not necessarily positive for two-dimensional fermion mod- 
els. To calculate the matrix elements, we must keep track of 
the sign of the wave functions. This makes it necessary each 
time the trajectory is switched not only the lattice sites which 
are closest to the region of switching (and whose occupation 
affects the absolute values of the matrix elements) but also 
distant sites of the given initial set which are connected with 
the sites affected by the switching. First, this increases the 
computational time somewhat and, second, it leads to large 
statistical errors in Eq. (13) as the temperature decreases. To 
accelerate convergence of the thermodynamic averages at 
low temperatures, in this work we employed a somewhat 
modified expression for the average of an operator, following 
the procedure of Ref. 58, 

TABLE 11. Comparison o f  the data obtained by the Monte Carlo trajectory 
method, the EDM algorithm (12-site cluster), and the standard Monte Carlo 
methods (48-site cluster). 

Trajectory Monte Carlo method EDM algorithm (T=O) 
N,=12 &=I ,  U d = 6 ,  U,=V=O 

( N )  = 2; (S , )  =O 
E(2)= -3.5620.03, T=0.2500 E(2)=-4.545512 
E(2)= -4.0850.04, T =0.0625 

( N )  =3 ,  (S,)  = 112 
E(3)= -5.5820.02, T=0.1250 E (3 )  = - 5.863663 
E(3)= -5.7520.03, T=0.0625 

( N )  =4,  (S , )  = 0  
E(4)= -6.7150.04, T=0.2500 E(4)= -7.198059 
E(4)=-7.1220.06,  T=0.1250 
E(4)= -7.1550.06, T=0.0625 
(Sc~c , )=0 .57850 .007 ,  T=0.250 (ScJcu) = 0.546 
(Sc,Scu)=0.54520.005, T=0.250 
(Nc,)=0.60050.002, T=0.250 (Nc,)=0.569 
(Nc,)=0.57450.002, T=0.125 
(No)=0.20020.001, T=0.250 (N0)=0.216 
(N0)=0.21350.001, T=0.125 

( N )  =5,  (S , )  = 112 
E(5)=-7.0420.05,  T=0.2500 E (5 )=  -7.795229 
E(5)= -7.7050.09, T=0.1250 
(Sc,Scu)=0.60220.002, T=0.250 (S&cu)=0.560 
(Sc,Scu)=0.57750.002, T=0.125 
(Nc,)=0.66420.002, T=0.250 (Ncu)=0.621 
(Nc,)=0.64050.001, T=0.125 
(No)=0.29320.001, T=0.250 (N0)=0.315 
(N0)=0.30520.001, T=0.125 

( N )  = 6 ,  (S , )  = 0  
E(6)= -7.5950.08, T=0.2500 E(6)=-8.429312 
E(6)= -8.4050.08, T=0.1250 
trajectory Standard 
Monte Carlo method Monte Carlo algorithm 

from Ref. 35 and 66 
N,=48 &=1.2, Ud=6 ,  U p =  V=O,  ( N ) = 1 6  

(Sc,Sc,)=0.53650.008, T=0.125 (Sc,Sc,)=0.5550.02 & = I  [35] 
(Ncu)=0.56120.003, T=0.125 (Ncu)=0.57+.0.02 E= 1 [35] 
(Nc,)=0.70020.003, T=0.15625 (Nc,)=0.69120.003 &=2 [66] 
E(16)= -20.5850.22, T=0.15635 E(16)=20.5150.32 ~ = 2  [66] 

i.e., we neglected the sign of the statistical weight of a con- 
figuration. This is valid if the average sign 

approaches a constant value as p+m.58 Our calculations 
confirm this, so that (S) approaches a constant value in the 
limit T+O. 

If the operator Q is not diagonal in the occupation- 
number representation (for example, the energy E =  
-4ln Z)ldp), then the expression (13) becomes somewhat 
more complicated, and the matrix elements of the form (see, 
for example, Ref. 13) 
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I 
I TABLE 111. Published calculations (including our data) of some properties of ten square Cu-0 clusters. Here, * marks data obtained in the present work. The 
I symbol **  in the row for N,=12 indicates that this cluster was investigated in detail by the exact diagonalization method (see, for example, Refs. 5, 7, 10, 
I 
I 17, and 18). We are not aware of any applications of Monte Carlo methods for this cluster (besides the data obtained in the present work). The pair correlation 
I functions (last column) are not applicable to the trajectory Monte Carlo algorithm because of nonlocality. 

I 
W C " ~  

N, E = (H) N o )  Aopt (S,S,), S(.rr~) n (k) pair correlations 
I 

12 [**,*I [**,*I [**,*I [**,I [**,*I [**I 
24 [*I [*I [*I [*I [*I 
30 [*I [*I [*I [*I [*I 
48 [46,661 [65,*1 [35,38] [46,48,*] [65,*1 [35,66,*1 [%*I [35,38,46] 
54 [*I [*I [*I [*I [*I 
60 [*I [*I [*I [*I [*I 
78 [*I [*I [*I [*I [*I 
96 [*I [*I 

102 [*I [*I 
108 [38,*1 [66, *I [*I [66, *I [*I [38, 661 

(inlQ ex~(-A7H)Iin+l)lUn,n+l cedure. The efficiency of this algorithm makes it possible to 
perform a single measurement (-2000 Monte Carlo steps) 

must be calculated. within several hours on a personal computer with a 386 pro- 
The above discussion referred to operators which con- cessor. 

serve the particle number locally. If, however, we are inter- The statistical errors in the Monte Carlo calculation were 
ested in, for example, the momentum distribution function estimated by means of the rigorous procedure proposed in 

1 
(nu(k))= - C (aLarnu)exp{ik(r~-rrn)}, 

Im 
(14) 

then such an operator breaks the fermion world lines, i.e., it 
does not conserve particle number. Here we have a&= d& if 
i is a copper node and if i is an oxygen node. For 
example, to calculate the Green's function 
G,(i - j )  = (a&aju) with nodes i and j that do not belong to 
the same 0-Cu-0 cell (nonlocality), additional time slices 
must be introduced,13 which slows down convergence con- 
siderably. In this work, to calculate (n,(k)) according to Eq. 
(14) we employed a local approximation, i.e., the sites i and 
j belong to the same 0-Cu-0 cell. In this case, the expres- 
sion (14) is valid for large momenta (-ria); nonetheless, 
this could be sufficient to study the region near a Fermi 
discontinuity. 

To achieve the required accuracy we performed -2000 
Monte Carlo steps for thermalization of the system and 
-1000-2000 Monte Carlo steps to calculate the averages. 
By a Monte Carlo step we mean a single scan of the entire 
2(2L X f i x  fi) classical lattice in the Monte Carlo pro- 

- . . 

Ref. 58: 
1) The entire chain of M realizations is divided into N 

large blocks (-50-100 Monte Carlo steps per block); 
2) the average value Qj  of the given operator over the 

jth block is calculated; 
3) the average and the mean-square deviation are calcu- 

lated as follows: 

so that the expected average and the error have the form 

( Q ) + ( ~ Q ) / f i .  
To check the algorithm, we compared the computational 

results both with the data obtained by exact diagonalization 
of a 12-site Cu,O, cluster and with the data computed by the 
determinant and variational Monte Carlo The 
computational results for the energy, the occupation num- 
bers, and some correlation functions of the system are given 
in Table 11. 

FIG. 4. Average energy per lattice site for 
square clusters (Ud=6): a) half-filling with 
respect to copper (undoped state) 
(N) = (N),,). b) Concentration depen- 
dence: 1-&=1,P=8; 2-&=I, P=4; 3-e 
=2,P=8. 
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FIG. 5. Occupation numbers of copper ( I )  
and oxygen (2) orbitals (&=I, Ud=6, P=4): 
a) clusters with N,=12-108; b) effect of 
doping. 

We note that a Cu,O, cluster is extremely small for a 
Monte Carlo algorithm, which works well when the system 
contains a quite large number of degrees of freedom. None- 
theless, as one can see from Table 11, the results are in good 
agreement with the exact solution and approach asymptoti- 
cally the exact solution as T-tO. The larger the number of 
possible states of the system, the better the convergence (the 
number of states in a Cu408 cluster equals 144 for (N)=2, 
(S,) = O  and 48400 for (N) =6, ( S , )  =O). In comparing to the 
Monte Carlo calculations performed using the standard 
algorithms,3s366 it is necessary to take into account the fact 
that the determinant Monte Carlo method employs a large 
canonical ensemble, i.e., the particle concentration is not 
fixed but rather is determined by varying the chemical po- 
tential. Nonetheless, the results are virtually identical to 
within the error limits (see Table 11); a more detailed com- 
parison to the data obtained by standard Monte Carlo algo- 
rithms will be made in Sec. 4. We note that the results agree 
(to within the indicated errors) with the data of Refs. 46 and 
67. 

We present below the computational results for the en- 
ergy of the system, the optical gap, the occupation numbers, 
the momentum distribution functions, and the spin correla- 
tions in different Cu-0 clusters nearly half filled with cop- 
per. 

4. COMPUTATIONAL RESULTS 

To facilitate comparisons, Table I11 gives information 
about different properties (the energy E, the occupation num- 
bers (Nc,) and (No), the optical gap A,,, , the spin correlation 
function (SiSj) and its Fourier component S(.rr,.rr), the mo- 

mentum distribution function n(k), all of which were calcu- 
lated in the present work as well as previously by other au- 
thors. As one can see from the table, the method proposed in 
the present work makes it possible to obtain a great deal of 
information about ten clusters (with the exception of pair 
correlations because of the limitations of the trajectory algo- 
rithm), while in the literature available to us only clusters 
with Na=48 and (for some properties) clusters with Na= 108 
have been studied in detail. The results obtained in the 
present work agree, to within the limits of error of the meth- 
ods, with the data obtained by other authors for clusters with 
Na=48 and 108. Note that clusters with Na=12, 48, and 108 
are special cases, because the unit vectors of the unit cell of 
these clusters (the basis vectors R, and R2; see Fig. 1) make 
right angles with the axes of the infinite Cu02 lattice. The 
unit vectors of the remaining clusters considered make the 
angles given in Table I (the tangent of the slope angle equals 
n,ln,). These are the so-called tilted clusters. Of these, the 
cluster with Na=78 has the smallest tilt angle (tan 4=1/5). 
According to the calculations presented below, the character- 
istics of the system depend not only on the cluster size but 
also on the values of 4. 

We calculated the characteristics of the Cu-0 clusters in 
the Emory model for the following values of the parameters: 
&=I-3, Ud=6, Up= V=O (in units of t) .  This choice is 
determined, first, by the fact that these are typical values of 
the Emory Hamiltonian, which are calculated on the basis of 
the experimental data on high-T, s ~ ~ e r c o n d u c t o r s . ~ ~ ' ~ ~  Sec- 
ond, in this range of values of the parameters the main re- 
sults for the binding energy of the carriers in a Cu408 cluster 
were ~b ta ined '~ , ' ~ "~  by the exact diagonalization method. 

FIG. 6. Optical gap (Ud=6, P=8): a) For 
N,=12, 48, and 108 for different values of 
E: &=2 ( I ) ,  2.5 (4, and 3 (3); b) for clusters 
with N,= 12-108. 
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We used the determinant Monte Carlo method35 to obtain 
data on the symmetry of the superconducting state in a 48- 
site Cu-0 cluster for close values of the parameters. 

Energy and occupation numbers of copper and oxygen 
orbiials 

Figure 4a displays the computational results for the av- 
erage energy E = (H) of the system per lattice site with half 
filling ((N)=Ncu) for clusters with Na=12, 24, 30, 48, 54, 
60,78,96, 102, and 108 sites. One can see that at Na=24 the 
energy is virtually independent of the cluster size, i.e., it 
becomes a constant, equal to E in an infinite CuO, plane. 

Figure 4b displays the energy E as a function of the hole 
concentration (N) in a cluster (the calculations were per- 
formed for (N)=Ncu, Ncu?l, and Ncu+2). It is obvious 
that these functions are universal ((N)>Nc, for hole doping 
and (N) < N,, for electron doping). 

Figure 5a displays the occupation numbers (Ncu) and 
(No) in the undoped state versus the size of the system. They 
are identical for all clusters, including the cluster with 
Na=12. The universality of (N) as a function of the carrier 
concentration is obvious from Fig. 5b. We emphasize that in 
the case of hole doping the excess holes occupy predomi- 
nantly oxygen orbitals, and for electron doping the excess 
electrons occupy predominantly copper orbitals (in agree- 
ment with experiment). 

Therefore, characteristics such as E, (Nc,), and (No) do 
not depend on the cluster size and the tilt angles of the clus- 
ters. 

Optical gap 

The optical gap Aopt was calculated by the standard 
formula65 

Aopt=E(Ncu+ 1 )  +E(Ncu- 1)-2E(Nc,) (16) 

for half-filling with respect to copper; E(N) is the energy of 
the system with (N) holes. The dependence of A,,, on the 
cluster (untilted) size for ~ = 2 ,  2.5, and 3 is shown in Fig. 6a. 
One can see that the values of Aopr approach some asymp- 
totic values. However, as illustrated In Fig. 6b, the results for 
tilted clusters do not fall on these curves. 

We note that our values of A,,, for N,=48 are identical 
to the Monte Carlo data obtained by other authors.65 

FIG. 7. Spin correlation function on the copper 
sublattice (&=I, Ud=6, P=4): a) Dependence 
on the number of the coordination sphere with 
respect to copper with half-filling: N,=24 (I), 
30 (2), 54 (3), 78 (4) ,  and 108 (5). b) Effect of 
doping on the Fourier component with 
k = ( ~ , n ) :  N,=12 (I), 24 (2), 30 (3), 48 (4), 78 
(5), and 108 (6). 

Spin correlation functions 

The correlation functions 

defined in the standard manner (S&(i) = (niT - nil), where 
i and j are copper sites), were calculated for different de- 
grees of doping and the model parameters E= 1, Ud=6, and 
P=4. Figure 7a displays S i j  as a function of the number of 
the coordination sphere on the copper sublattice for the un- 
doped state. Note that the number of coordination spheres 
increases with the cluster size. For this reason, for small 
clusters the values of 1 i - j 1 are bounded by the maximum 
possible coordination sphere (for Na=24 there are three such 
spheres, while for Na= 108 the number of spheres increases 
to 12). 

Note first the antiferromagnetic character of the correla- 
tion functions (the sign of S i j  assumes different values as 
1 i - j 1 increases). Obviously, as the cluster size increases, the 
amplitude of the antiferromagnetic correlations in the first 
coordination sphere decreases and saturates at Na=78. The 
antiferromagnetic correlation length is determined uniquely 
from Fig. 7a. For clusters with Na=78 and 108 it equals 

FIG. 8. Fourier component of the spin correlation function on the copper 
sublattice as a function of doping for strongly tilted clusters with N,=54 (I) 
and 60 (2); &=I ,  Ud=6, and P=4. 
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FIG. 9. Momentum distribution function 
n(k) ( ~ = l ,  Ud=6, P=4): a) half filling 
(N)=Ncu near the Fermi jump: N,=48 (I), 
60 (2), 78 (3), and 108 (4). b) Effect of dop- 
ing with N,=78: I*c,,); 2*,-,)+2; 
3-4N,,)- 2. 

approximately three lattice periods a (six coordination 
spheres); this is less than the linear size of a cluster (5.la and 
6a, respectively). 

Figure 7b displays the Fourier component 

as a function of the number of holes for different clusters. It 
is well known that for k=( r , r )  the correlation function (18) 
is proportional to the degree of antiferromagnetic ordering 
on the copper sublattice. It is obvious that the correlation 
function S ( q r )  decreases with electron and hole doping for 
practically all clusters (for Na=48 S(.rr,r) as a function of 
(N)INcu is identical to that calculated in Ref. 35). We note 
that for strongly tilted clusters with Na=54 and 60 the cor- 
relation function behaves differently: doping enhances the 
initially weak antiferromagnetic correlations (see Fig. 8). 

Momentum distribution function of the carriers 

The distribution function n (k) was calculated for clusters 
with Na=12-108 in the local approximation [see Eq. (14)], 
which is valid for large momenta. The results are displayed 
in Figs. 9a and 9b for undoped and doped states, respec- 
tively. Note that the results for N,=48 are identical to the 
data given in Ref. 35, where the calculation was performed 
by the determinant Monte Carlo method without using the 
local approximation. 

Lamentably, the number of allowed values of the mo- 
mentum for untilted clusters is small (only six per projection 
for Na=108). For this reason, the results for a cluster with 
N,=78 are more detailed (14 allowed values of the momenta 

per projection). Figure 9a demonstrates quite clearly the dis- 
placement of n(k) in the direction of higher energies with 
hole doping and in the direction of lower energies with elec- 
tron doping. 

Figure 10a displays the functions n(k) for different val- 
ues of the parameter Uhthe Coulomb repulsion energy at 
the copper sites. It is obvious that as the interaction becomes 
stronger, the momentum distribution is displaced downwards 
and becomes identical to the data of Ref. 35; n(k) practically 
saturates for Ud>4. We also calculated the effect of tempera- 
ture on n(k). The data (Fig. lob) show that as the tempera- 
ture decreases, the spread of n(k) near the Fermi jump de- 
creases. Note also that Figs. 9 and 10 do not show the entire 
momentum interval. When all momenta are included, the 
normalization of n(k) (S,,p,(k)= (N)) is preserved as Ud 
and p change. 

5. CONCLUSIONS AND RESULTS 

The introductory analysis of the existing Monte Carlo 
algorithms performed together with experience in using the 
trajectory algorithm proposed in the present work enables us 
to assess the strengths and weaknesses of these methods: 

1. The variational Monte Carlo method depends strongly 
on the correctness of the initial approximation and is tied to 
specific models. 

2. The determinant Monte Carlo method is free of this 
drawback, but it is inefficient for multiple-band models. 

3. The well-known trajectory algorithms are less sensi- 
tive to the multiband nature of the model and they converge 
more rapidly, but they are employed exclusively for one- 
dimensional fermion systems. 

FIG. 10. Momentum distribution n(k) for 
N,=78 near k = ( ~ , ? r )  (&=I,  Ud=6, P=4) as a 
function of (a) the Coulomb repulsion energy at 
copper sites U,=O (I), 4 (2), and 8 (3) and (b) 
the temperature P=4 (I), 8 (2), and 16 (3). 
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4. The algorithm proposed in the present paper (as far as 
we know, the first trajectory algorithm for a two-dimensional 
ferrnion system) also converges rapidly, works well in the 
case of a multiple-band model, and has no special difficulties 
with the minus sign problem. 

We call attention to several new promising approaches to 
the numerical modeling of strongly correlated systems. In 
Ref. 68 a novel method is used to reduce the Hilbert space 
for the exact diagonalization method in the Lanczos proce- 
dure by means of a unique iteration process that selects (ac- 
cording to the parameter tlU) the required site states making 
the maximum contribution to the ground state. This algo- 
rithm can be used to calculate, to good accuracy, the energy 
of the ground state for a 50-site two-dimensional cluster in 
the t-J model. In Ref. 69 the variational Monte Carlo 
method is used in combination with the Lanczos algorithm 
(EDM). This increases the computational accuracy for the 
properties of the ground state and avoids the sign problem. 
Finally, in Ref. 67 the infinite Cu02 plane is partitioned in 
the Emory model into clusters with 12 sites, after which each 
cluster is calculated using the EDM and the results are used 
to construct a variational function for the ground state of an 
infinite CuO, plane as a superposition of cluster wave func- 
tions (an analogous cluster approach is employed in Ref. 70). 

In the present paper we have shown for the first time that 
the energy per lattice site and the occupation numbers be- 
come independent of the cluster size at Na=24, and the am- 
plitudes of the antiferromagnetic (AF) correlations become 
independent of the cluster size at Na=54 (for P=4). The 
characteristic attenuation length of AF correlations was de- 
termined numerically for the first time, and it was found to 
be three lattice periods a (i.e., about 1 nm) with a linear 
cluster size of 5 . l a  (N,=78) or 6a  (Na=108). We note that 
for high-T, superconductors, the experimental value of the 
coherence length in the a -b  plane is 1-2 nm." We empha- 
size that the amplitude of the AF correlations becomes con- 
stant (for Na=54) when the characteristic length of the cor- 
relations is approximately equal to the cluster size. 

The situation is somewhat more complicated in the case 
of the optical gap, since bop, is sensitive to the tilt angle of 
the unit cell. In untilted clusters (see Fig. 6a), in contrast to 
tilted clusters (Fig. 6b), A,,, approaches a constant value 
(apparently equal to Aopt in the infinite CuOz plane) as N, 
increases. 

The results on the effect of doping on S(T,T), which 
characterizes the degree of AF ordering (18), are very inter- 
esting. According to Fig. 7b, the dependence of S(T,T) on 
the degree of doping becomes virtually insensitive to the 
cluster size at N,=48 and approaches a universal curve. The 
rate of suppression of the amplitude of AF correlations de- 
creases with doping. This is an argument in favor of the 
"magnetic" mechanism for attracting excess carriers (a more 
detailed discussion is given in Refs. 7-11 and 18). 

We call attention to the anomalous behavior of S(T,T) in 
strongly tilted clusters with Na=54 and 60 (see Fig. 8). First, 
for the undoped state, S(T,T) is much smaller in strongly 
tilted clusters than in untilted clusters; this could be associ- 
ated with the suppression of AF correlations accompanying 
the tilting of the unit cell. Second, doping increases S(T,T). 

The reasons for these anomalies have not been determined. 
Finally, we wish to call attention to the fact that the 

behavior of the momentum distribution function n(k) in a 
cluster with Na=78 (see Figs. 9 and 10) agrees qualitatively 
with the experimental data obtained by studying positron an- 
nihilation in high-T, bismuth superconductors.72 
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