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The spectrum of coupled spin-elastic waves in a two-sublattice antiferromagnet is treated 
theoretically for the first time with the longitudinal susceptibility and sublattice magnetization 
relaxation taken into account. In the absence of magnetoelastic coupling, it is shown that 
the spin mode spectrum, close to orientational phase transitions and in a weak magnetic field, 
consists of four relaxational branches and one weakly damped precessional branch. The 
soft mode at a transition is one of the relaxational branches, that corresponding to the transverse 
relaxation of the antiferromagnet's magnetizations. In a strong field, one further weakly 
damped precessional branch may appear in the spin wave spectrum. When the magnetoelastic 
coupling is included, the spectrum of the coupled modes consists of two activation 
(precessional and relaxational) and two nonactivation (quasielastic) branches. The relaxational 
mode, which in the absence of coupling was soft, becomes an activation mode, the 
magnitude of its gap being determined by the magnetoelastic interaction. The soft mode close to 
an orientational phase transition is a quasielastic mode, which may become nonpropagating 
when the relaxation parameter of the magnetic subsystem is large. 63 1994 American Institute of 
Physics. 

1. In descriptions of static and time-dependent antiferro- 
magnetic properties, the conditions that the absolute sublat- 
tice magnetizations be constant and equal are frequently 
used.' For a two-sublattice antiferromagnet these condition 
are written as 

or equivalently 

era1 case it is necessary to lift the conditions (1) when de- 
scribing the static and dynamic behavior of the antiferromag- 
net. 

In the present work, the ground state of the antiferro- 
magnet and the spectra of spin and coupled magnetoelastic 
waves in it in are analyzed without imposing the conditions 
(1). 

With no loss of generality, we consider a two-sublattice 
antiferromagnet isotropic in both its elastic and magnetoelas- 
tic properties. The free energy density is written in the form 

where Mi is the magnetization of sublattice i, and 1 1 1 1 
F =  -AL'+ - B L ~ +  - o ~ ' +  D(ML)' 

M=M,+M2 and L=M1-M2 are the ferro- and antiferro- 2 4 2 
magnetism vectors. The first of the conditions (1) is fulfilled 
for all phases of the antiferromagnet in the absence of an + ~ ( M & ~ - M & , )  
external magnetic field H. In a magnetic field, the first of 
conditions (1) may hold only for in which KLL (Ref. 
2). At the same time, in phases in which L is not perpendicu- 
lar to the magnetic field, this condition fails to hold. In prac- 
tically any antiferromagnet placed in an arbitrary magnetic 
field there is at least one phase in which MLZO. In this case 
the condition ML=O is usually satisfied by letting the coef- 
ficient of the invariant (ML)' in the expansion of the free 
energy density in powers of M and L go to infinity. Then the 
ground-state phases with MLZO either disappear or become 
distorted so as to satisfy the first of conditions (1). This ap- 
proximation is equivalent to the vanishing of the longitudinal 
magnetic susceptibility 41. Strictly speaking, the longitudinal 
susceptibility of an antiferromagnet is zero only at absolute 
zero of temperature (T=O) ,  however, there are magnetic 
materials in which xII(T=O) ZO (Ref. 3). Thus, in the gen- 

Here the first six terms represent the exchange interaction 
and the seventh term, the DzyaloshinskiI interaction. The 
next three terms are related to the anisotropy energy. The last 
three terms account for the magnetostrictive and elastic en- 
ergy. The magnetic-field term describes the energy of the 
antiferromagnet in an external field (Zeeman energy). 

We first restrict ourselves to an antiferromagnet free of 
the Dzyaloshinskii interaction. Then, for example for Hllx, 
the following ground-state magnetic phases may occur: 
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Here X , 1 = a + ~ ' ~ 2 ,  X [ 1 = X y 1 + ~ ~ 2 ,  and 7=1-wI/xL. 
For brevity, Eqs. (3) omit the equations for determining the 
absolute value L of the antiferromagnetism vector in each 
phase. These equations may be obtained by minimizing F 
with respect to the components of L.  Also, fields much 
smaller than the exchange field are considered. The equilib- 
rium strains in phases (3) look like follows: 

The condition ML=O is, we noted earlier, equivalent to the 
vanishing of the longitudinal magnetic susceptibility, w l = O  
(since D-+m). In this case we have 7=1. Thus, the param- 
eter 77 is, in a sense, a measure of departure from the condi- 
tion ML=O. Notice also that the parameter 77 enters the 
phase equilibrium condition in the product with the magnetic 
field H .  Hence for H= 0 the condition ML=O holds for all 
of the phases (3). And finally, from Eq. (3) it follows that in 
the first phase MLZO. The equality signs in the phase sta- 
bility conditions locate the positions of nonhysteretical tran- 
sitions of the first kind between the phases. In the terminol- 
ogy of Ref. 4, interphase transitions are orientational (spin- 
flop) transitions. 

In describing antiferromagnet dynamics we start with a 
coupled system of elastic and Landau-Lifshitz equations, 

where g is the gyromagnetic ratio, H,= - SFISx (x=M, L) 
are the effective magnetic fields and hi are dimensionless 
relaxation parameters. In Eq. (4), the relaxation terms are 
taken in their simplest version without loss of generality. 
Note that including relaxation terms in the Landau-Lifshitz 
equations is equivalent to lifting the conditions (1) in antifer- 
romagnet dynamics as well. 

Let us present the mode spectrum o: the antiferromag- 
net. To this end we express M, L and U in the respective 
forms ~ ( ' ) + m ,  L(')+I, and fi(')+li, where m, 1, and li are 
small departures from the equilibrium values (3). We con- 
sider, again for the sake of simplicity, only the case of waves 
propagating along the z axis (the wave vector k is parallel to 
the z axis). After this linearization, the system (4) is solved 
by the Fourier method. 

2. We first present the spin wave spectrum for no mag- 
netoelastic coupling (b=O). In phases (3) it looks as fol- 
lows: 

1) Phase L((M(lx 

Note that the branches q and wl describe the longitudinal 
relaxational modes of the vectors L and M respectively, and 
w3 and w4 for W,A:S w13 ~ ~ ~ / ( w ~ ~  + 023) describe the 
transverse relaxation of the same vectors. 

2) Phase Lily, MJlx 

Here w1 and ~2 are the branches corresponding to the trans- 
verse relaxation of the components of the vector L. The 
transverse relaxation of M affects the branches w3 and w4, 
and the longitudinal relaxation of M and L influences the w, 
and w6 branches. 

3) Phase Lllz, Mllx 
The spin wave frequencies wi (i = 1,. . . ,6) can be ob- 

tained from Eq. (6) by the replacements 012-+%1 and 
%2-'?31- 

In Eqs. (5) and (6) the following notation has been in- 
troduced: 
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S,, is the Kronecker symbol. The spin wave frequencies (5) 
and (6) are written in the approximation wE%wH, g a k 2 / ~ ,  
0 1 ,  , A1,291 .  

Let us analyze the results. From Eqs. (5) and (6) it fol- 
lows that when conditions (1) do not hold, the spin wave 
spectrum of the antiferromagnet consists of six branches. All 
mode frequencies are complex. The imaginary part of a fre- 
quency gives the damping of the oscillation. Purely imagi- 
nary frequencies describe the relaxational o'scillations of the 
vectors M and L, while frequencies with a nonzero real part 
correspond to damped spin waves (damped precessional 0s- 
cillations of M and L). In the latter case, the damping of the 
spin waves is due to their interaction with the relaxational 
oscillations. The amount of spin wave damping depends on 
the relation between the imaginary part of the relaxational 
mode (Im w,) and the real part of the precessional mode 
(Re w,,). If Re wprSIm w,, the precessional mode is a 
weakly damped spin wave. For Re wpr91m or the preces- 
sional motion transforms into relaxational. Usually in mag- 
netic materials the first condition is met. However, close to 
an orientational phase transition, i.e., as w +0, the second 

p': 
condition may also be fulfilled. The same s~tuation may oc- 
cur for the modes of the paramagnetic subsysterll in the field 
of the magnetized one if the damping of the former is very 
large (as exemplified by the rare-earth subsystem at high 
temperatures in rare-earth orthoferrites). 

In our case, the positions of orientational phase transi- 
tions are determined by the equality signs in the antiferro- 
magnet phase stability conditions, Eq. (3). Using the notation 
(7), the positions may also be found from the condition for 
the vanishing of the corresponding frequencies o,, at k=  0, 
w,,(k= 0) = 0. We will consider separately the antiferromag- 
netic mode spectrum away from and close to orientational 
~ h a s e  transitions. 

Away from a transition, when + JG for all i 
and j ,  the mode spectrum of each antiferromagnetic phase 
consists of two relaxational (w,,,) and two weakly damped 
precessional and u:,~) branches (only the positive val- 
ues of the frequencies being physically meaningful). 

Close to orientational phase transitions, the mode spec- 
trum depends on the particular transition studied. Near the 
transitions 1 4 2  [o,3(0)-0], 1+3 [w13(0+0], and 2-3 
[w12,21(0)--+O], in the case when A 2- 4- (i j  = 23,13, 
12, 21 for the transitions 1-2, 1+3, and 2-3, respec- 
tively), the mode spectrum of each phase consists of four 
relaxational branches (wl- w4 for phase 1 and wl,,, w5,6 for 
phases 2 and 3; two corresponding to the longitudinal and 
two to transverse relaxation of M and L), and one weakly 
damped precessional branch (w:,, in phase 1 and d,, in 
phases 2 and 3). For the last of these it is assumed that 
A ,2 6 &&, where i j = 13,23,32, 31 for the transitions 
1+2, 1-3, and 2-3, respectively. On the basis of these 
modes, the antiferromagnet is far Away from an orientational 
phase transition. One of the relaxational bianches listed is 
soft near an orientational phase transition, its frequency van- 
ishing at precisely the transition point for k+0!lThis is the 
frequency 03 in phase 1 near the transitions 1+2 and 1+3, 
and the frequency o, in phases 2 and 3 near the transitions 
2+3 and 3+2, respectively: 

The precessional branch at the above phase transitions at 
k-0 is an activation branch. Its activation (to first order in 
A) is determined by the exchange, anisotropy, and magnetic 
field: 

= w ~ W 2 3 , ~ ~ ( 0 ) ,  phase 1, transitions 1+2,  1-3, 

(9) 
Re mi,,= w~w,2,3~(0) ,  phase 2,3, transition 2+3,3--+2. 

A similar spectrum obtains near the orientational phase tran- 
sitions 2 4 1  [q2(0)+0f and 3 4 1  [ ~ ~ ~ ( 0 ) + 0 ]  for 
XI,,+ wH(l - v)/wE 7. However, for wH(l - v)/wE 77 
% Al ,2  2- d G ( i j = 3 2  and31for2+1 and3+1,respec- 
tively) the spectrum, like that far away from a transition, 
consists of two relaxational ( w ~ , ~ )  and two weakly damped 
(mi,, and precessional branches (as before, it is assumed 
that the transition-neutral modes obey Al ,2  9 J x ,  
where i j = 12  and 21 for phases 2 and 3, respectively). The 
relaxational branch w1 near orientational phase transitions we 
consider is soft, its frequency vanishing just at the transition 
points for k+ 0: 

The branch w:,, for Al,22-w,(l - v)/wEv is relaxational, 
while for A,,,+ wH(l - v)/wE v it is precessional, its activa- 
tion being largely determined by the magnetic field strength: 

The activation of the precessional branch w;,, is determined 
by the anisotropy and exchange: 

Note that, for H = 0, one does not find a significant softening 
for ady oscillation branch in phase 1. The explanation is that 
at the point H = 0 the candidate for softening is the mode o, 
corresponding to the longitudinal relaxation of the vector L. 
It can completely soften only at the Niel point, when L+O. 
At the same time, as H-0, it is found that in phases 2 and 
3 the region where the weakly damped precessional mode 
mi,, exists gets narrower (in the damping parameter). 

Thus, when the conditions (1) do not hold, the spectrum 
of the magnetic oscillations in the antiferromagnet, when 
close to an orientational phase transition and in the low-field 
region, consists of one precessional and four relaxational 
branches. The precessional branch at the transition has an 
activation, determined by the exchange, anisotropy, and mag- 
netic field. One of the relaxational branches is soft (its fre- 
quency vanishing, for k+O, at precisely the orientational 
transition point). In the large-field region, in the phases with 
ML=O (phases 2 and 3) near their transition to the phase 
with MLZO (phase 1) there are two precessional branches. 
However, even here the soft mode close to the phase transi- 
tion is a relaxational mode. This last case, without the con- 
dition ML= 0 (assuming L~ = const), has been studied theo- 
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retically and experimentally in Refs. 5 and 6 for rare-earth 
orthoferrites. The results correspond to the case wH(l 
- q)lw,?+ A1,2 S d*. 

3. Let us now include the magnetoelastic interaction, 
b + 0. Analysis of the coupled system of equations (4) shows 
that the main features of the magnetoelastic mode spectrum 
are the same for all of the phases (3). We therefore limit our 
consideration to the spectrum in phase 3 close to the orien- 
tational phase transition 3+1. In this case the only branch 
interacting with the magnetic branches wl and w3,4 is the 
transverse elastic branch with polarization along the x axis. 
The other (y-polarized) transverse branch and the longitudi- 
nal sound interact with the magnetic branches w;? and US,,. 

The interaction of these latter near the transition 3--+l may 
be ignored. 

The solution of the dispersion equation for coupled mag- 
netic and elastic oscillations in the long-wavelength approxi- 
mation w i  4 w,wme and for MGL, A i 4 1  is of the form 

where 

From this it is seen that, at the orientational phase transition 
[*1(0)=0] and for k+O, the spectrum of the coupled oscil- 
lations consists of three activation (wl-w3) and two nonacti- 
vation ( q 5 )  branches. The branch wfY2 is a quasispin 
(weakly damped precessional) branch. Its activation at the 
orientational phase transition is determined by the magneto- 
elastic gap and magnetic field (which enter the first term in 
6:) and by the relaxational gap (the second term in wfr2). 
Let us estimate the magnitude of activation of the preces- 
sional branch wl,, for the orthoferrites YFe03 and TmFe03, 
with known experimental values of w1,,(0)/2.rr= 107 GGz 
(Ref. 5) and wl,2(0)/2~=20 GGz (Ref. 6), respectively. The 
constants for Eqs. (13) and (14) will be taken from Refs. 
4-7. For YFeO,, at T=293 K and H=71.5  kOe, 

For TmFe03, at T = 84 K and H = 1 0  kOe, 

By putting these data into Eq. (13) (for A141) we obtain the 
following values for the activation at the orientational phase 
transition: for YFe03, wl,2(0)12.rr=l10 GHz, and for 
TmFe03, 01,2(0)/2a=30 GHz. The theoretical and experi- 
mental results agree well. 

The quasirelaxational branch 03, which in the absence 
of the magnetoelastic interaction was soft, now has become 
an activation branch. At an orientational phase transition its 
activation is determined by the magnetoelastic interaction. 
The last two branches for A ~ ~ ~ L d - l f i ;  S wtk (and in 
the region of small k) are weakly quasielastic branches with 
quadratic dispersion, 

In the case A,  w E ~ i \ I G / f l L  4 wtk 4 JK ("middle" 
k's) the branches 04,s become purely relaxational, with qua- 
dratic k dependence: 

The first of these branches is quasielastic, the second qua- 
sirelaxational. In the region of large values of k ( w i  
S wEwm,), the spectrum of the coupled oscillations will 
again be composed of a quasispin (precessional) and a quasi- 
elastic branch, both weakly damped, and a quasirelaxational 
branch. 

We note that at an orientational phase transition the con- 
dition ~ ~ 6 J ~ w i d = / f l : ~  < wtk transforms from a condi- 
tion on the absolute value of the wave vector k into an in- 
equality restricting the antiferromagnet parameters. In fact, 
making use of Eqs. (7) and (14), at the transition point 
W~~(O)=O and for k-0 we obtain instead of that condition a 

- 

new inequality, d G  4 s t  where 
i l=A1[1+(1-  q)2(wH/hl~E)2] .  This is, in fact, a condi- 
tion on the damping parameter i l .  For typical antiferromag- 
netic properties (g- 2 .  l o 7  oe-ls-', a-10-l2 cm2, L = 10' 
Oe, wme=107 erg/cm3, st-3.10~ cm/s) it is found that the 
nonactivation branches will be purely relaxational for a 
damping parameter i1 + 10 -4. This condition is quite easy to 
fulfill, particularly if one takes into account that close to an 
orientational phase transition there is a marked increase in 
the damping rate of coupled magnetoelastic waves8 Presum- 
ably, it is the fulfillment of this condition-and hence the 
transformation of the quasielastic wave into a purely relax- 
ational one-which explains the lack, thus far, of experimen- 
tal evidence for the 100% reduction in the velocity of trans- 
verse quasielastic waves at the orientational phase transition. 

When the Dzyaloshinskii interaction is included, then 
for an antiferromagnet in equilibrium in a field HIIx, three 
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i magnetic phases will also occur: 1) M,, M,, L,, L,  ; 2) M,, 
I 
; L,, L,, and 3) M,, L,. The first two of these are angular 
i phases. The condition ML=O holds only for phases 2 and 3. 
' Analysis of the equations of motion (4) shows that the spec- 
1 ' trum of the coupled oscillations in phase 3 will be given by 

formulas analogous to Eqs. (6) and (13), but with different 
expressions for the characteristic frequencies (7) and (14). 
The behavior of the coupling branches near the second-order 
phase transitions 3+1 and 3+2 remains in this phase just as 
in the absence of the Dzyaloshinskii interaction. The spec- 
trum in the angular phases 1 and 2 is given by more compli- 
cated formulas. However, even in those phases the behavior 
of the spectrum near the orientational transitions of the sec- 
ond kind, 1+3, 2-3, and of the first kind, 1+2, will be 
similar to that discussed above for phases 1 and 2 with no 
DzyaloshinskiI interaction. 

4. The following conclusions can be drawn from the 
above analysis of the antiferromagnetic mode spectrum with- 
out imposing the constancy and equality conditions on abso- 
lute sublattice magnetizations in either static or dynamical 
problems. 

Lifting the condition ML=O in statics leads to the ap- 
pearance of a phase with MIIL, and hence also MLZO, in an 
antiferromagnet in a magnetic field. 

Also lifting the conditions ML=O and  const con st in 
dynamics has a consequence that, in addition to the preces- 
sional motion of the vectors M and L, also their (transverse 
and longitudinal) relaxational motions become possible. In 
the absence of magnetoelastic coupling, the soft mode in 
orientational phase transition region is represented by a re- 
laxational mode corresponding to the transverse relaxation of 
the antiferromagnetism vector. Near the orientational phase 

transition there exists only one branch, corresponding to 
weakly damped precessional oscillations. 

When the magnetoelastic coupling is included, the soft 
relaxational mode at the orientational phase transition be- 
comes activated, the activation being determined by the mag- 
netoelastic interaction. In this case the soft mode is a quasi- 
elastic mode. Its dispersion at the transition point is 
quadratic. When the damping parameter is sufficiently large, 
the quasielastic branch may become purely relaxational. 

The authors are grateful to Y. M. Gufan, E. G. Ruda- 
shevskii, and N. K. Dan'shin for helpful and stimulating dis- 
cussions. 
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