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A simple model of a ferromagnetic Fermi liquid is employed to investigate the interaction of 
spin and spatial degrees of freedom. The results are applied to discuss the relaxation of 
a current-carrying state due to spin oscillation build-up. O 1994 American Institute of Physics. 

1. INTRODUCTION 

In a ferromagnetic Fermi liquid, in addition to ordinary 
Fermi excitations there are also Bose type quasiparticles, 
magnons (the oscillation quanta of spin degrees of freedom 
with quadratic dispersion; see Ref. 1). An interesting prob- 
lem to be addressed is a description of the interaction be- 
tween these types of elementary excitation. It is the solution 
of this problem which is the subject of the present work. 

The problem was solved previously for a Hubbard fer- 
romagnet both on an elementary level2 and for spin waves of 
finite amplitude.3 As was shown,3 the effect of the spin sub- 
system on the carrier motion resembles that of an electro- 
magnetic field and is described by a scalar and a vector po- 
tential, while the carriers affect the spin subsystem via the 
density and velocity (assuming long-wavelength spin oscil- 
lations). 

It would appear that these features are specific to the 
Hubbard model. Actually, the same can be expected for the 
general case of a free-carrier ferromagnet. In fact, in the 
presence of a current an obvious change must occur in the 
magnetic moment equation of motion, namely, in the 
Landau-Lifshitz equations a contribution of the form (VV)S 
must appear, where V is the average carrier velocity and S is 
the spin momentum. The appearance of the carrier velocity 
in the spin equation of motion is one of manifestations of the 
interaction in question, and the fact that this interaction de- 
pends on the velocity requires that a vector potential be in- 
troduced. The above argument is general, has no relation to 
the Hubbard model as such and thus provides justification for 
the expectation mentioned above. Needless to say, the con- 
crete results to be obtained in the general case are not imme- 
diately obvious, and it is this question which will be exam- 
ined here. 

This is done in the next section, where a simple model 
we propose is first discussed as it stands and then extended. 
Here the basic equations and relations are given. In Sec. 3 we 
explore how a current-carrying state relaxes if deceleration is 
only possible due to the build-up of spin oscillations. This 
question is of interest, in particular, in connection with its 
possible relevance to high-temperature s~~erconductors.~ 

2. EQUATIONS 

There are two points underlying our approach which 
must be emphasized. First, the principle of least action is 
used. Second, the spin and coordinate degrees of freedom are 
separated. 

We start by noting that the Schrodinger equation may be 
obtained from the principle of least action by writing the 
Lagrangian density 23' in the form 

where @ is the wave function and W is the potential energy 
of the particle. Following well-known rules5 and varying the 
action with respect, for example, to @* we obtain the Schro- 
dinger equation for @, which is the justification for this form 
of 9. 

Now to the model. We adopt the simplest version pos- 
sible and consider a one-component Fermi system. This 
means that the spin part of the wave function is the same for 
all particles. The wave function @ is understood to have the 
product form 

with the spinor 

the same for all particles; u and v are functions of position 
and time in the general case. The orthogonality of the states 
is ensured by the spatial part 9. For example, in the ground 
state we have u = l ,  v=O, and T is a set of plane waves, 
with momenta ranging all the way to the Fermi value. 

The meaning of this approach is clear: the exchange in- 
teraction "holds" all the spins parallel at each given point in 
space, and this is modeled in just the manner above. In this 
way one separates the spin and coordinate degrees of free- 
dom. To obtain the equations of motion we vary with respect 
to x and 9 independently. 

We substitute (2) into (1) and drop the term in W as 
unimportant for further discussion. As a result, in place of (1) 
we obtain 
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Here we have introduced the vector potential A defined by 

The "scalar" product of spinors is understood as usual, for 
example, 

In the first two terms in (3) the spinor normalization is in- 
cluded: 

Note that in expression (3), in addition to the vector 
potential A there is also a scalar potential, which appears as 
the coefficient of )T)~.  Both enter the equation for 9 in the 
usual way. 

The Lagrangian density (3) has so far been written for a 
single particle with a wave function . in the spinor field X. 
Clearly, in the derivation of the expression for x all particles 
must be accounted for. More on this later; for the moment, 
possible ways of generalizing Eq. (3) will be discussed. 

In the general case, changes may only occur in the 
coefficients3 of, for example, the product 

As will be seen later, this coefficient determines the "rigid- 
ity" of the spin subsystem and need not generally be equal to 
1/2m, as in the simple model. If we denote its generalized 
value by 1/2M, the scalar potential U becomes 

As a result, for the Lagrangian density we have 

1 a. 
-K= - / ( - i V - A ) ~ 1 2 + U / V 1 2 - L  2m 

2 [ V *  dl 

where the vector A and scalar U potentials are given by the 
Eqs. (4) and (7). 

One could make one further modification in Eq. (€9, by 
introducing a "charge" (i.e., a coefficient of A and U) dif- 
ferent from unity. This, however, would render the scheme 
inconsistent because, e.g., the energy of the system would 
change while the spin equations of motion remain intact. 

By varying the action with the Lagrangian density (8) 
for fixed X, we obtain an equation for . in the usual form: 

This equation is for a particle which interacts only with the 
spinor field. 

Now to the derivation of the equation for X. First of all, 
all particles must be accounted for. This can be achieved by 

replacing the bilinear combination **(rr)zIr(r) in Eq. (8) by 
the one-particle density matrix. The same result can be ob- 
tained in a different way, however. 

The point is that all of the above development applies 
only to long-wavelength spin oscillations; though not evident 
formally, this is implied by the meaning of the procedure 
employed. This means that the particles act on x as a con- 
tinuous medium, that is, only through the density and veloc- 
ity. But these characteristics are also captured in the classical 
description, and this we can apply. The Lagrangian L for 
classical particles can (by analogy with electrodynamics) be 
written in the form 

where the summation runs over all particles. In deriving the 
equation for ,y we may change, in Eq. (lo), from a sum to an 
integral (in which the particles behave as a continuum); the 
corresponding Lagrangian density Z(X), as a function of X, 
has the form 

where n and V are respectively the particle density and ve- 
locity (in general, dependent on position and time). 

Varying the action with respect to X* yields 

Note that among the solutions of this equation there are so- 
lutions with the normalization (6), of interest here (see Ref. 
3). 

Making use of this equation one can obtain the equation 
for S, the average value of spin, 

where is the operator of spin 112. The corresponding deri- 
vation is like that in Ref. 3, so we just present the result: 

Here the particle continuity equation has been used; ekl, is 
the completely asymmetric tensor (e lz3=l ) ;  summation 
over repeated indices is assumed. Note that, for constant den- 
sity, we simply recover the Landau-Lifshitz equation for 
momentum oscillations-but including the fluid motion, as it 
must. This may be viewed as an argument in favor of the 
approach we have chosen. 

One goal is thus achieved: we have obtained the equa- 
tions of motion, Eqs. (9), (12), (13), illustrating the interac- 
tion of particles and spins. In the next section, some proper- 
ties of such a ferromagnet are discussed. 
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i 
3. PROPERTIES 

I 
I In this section we are dealing with the deceleration of the 

system, assuming it is only possible via spin oscillation 
build-up. Suppose, for example, that the Cooper effect oc- 
curs in the system, so that there is a gap in the Fermi spec- 
trum and hence no relaxation due to Fermi excitations. In 
this case no other deceleration mechanism is available. 

To proceed further we need expressions for the energy 
and momentum of the system. In the usual way,5 we find for 
the energy 

using the Lagrangian in its classical version (10) (which suf- 
fices for our purposes). Or, for long-wavelength changes, the 
energy density can be expressed as 

where glo is the ground state energy, of no significance here. 
This expression clearly displays different contributions to the 
energy of the system, for example, the one explicitly depen- 
dent on ,y is simply the spin-wave energy density; this con- 
tribution looks as usual, i.e., is proportional to dSildxk 
dSi/dxk. 

In a similar way, one obtains an expression for the mo- 
mentum density, 

It might seem strange that this has no explicit dependence on 
the spin variable, since a momentum may be ascribed to the 
magnon; in fact, spin wave contributions will enter just 
through the velocity V, as will be seen later. If one remem- 
bers that initially we had particles with spin rather than par- 
ticles and spins separately, then Eq. (16) is in fact what one 
should expect. 

From the equations of motion (13) it is not difficult to 
find the oscillation frequency o at a given wave vector k 
(Ref. 6); for oscillations with a constant value of the spin 
projection S3 we have 

For spin 112 we have S=ISI=1/2 and S,= 112 cos 8. The 
azimuthal angle cp of the vector S varies according to the law 

cp= kt-- ot .  (18) 

The energy of the elementary excitations (small oscilla- 
tions, &0) is negative for certain k, which will cause these 
excitations to be created and the moving system to decelerate 
(since the Landau superfluidity criterion breaks down). 

It is unclear whether a complete solution of the problem 
is possible. We therefore restrict ourselves to the single-mode 
regime, i.e., we will consider the oscillation (17)-(18), with 
fixed k, and find out what will occur as the mode builds up 
(the angle 8 increases). It is natural to choose k to be at the 
minimum of the spectrum (17) for 8=0, that is, in what 
follows we take 

(Vo is the velocity at 8=0). 
As the mode is built up, the energy decreases (the spin 

part increases and the kinetic energy decreases) and it is 
found that in some cases it may reach a minimum, after 
which the deceleration ceases. To see all this, it is necessary 
that all of the quantities involved be expressed in terms of 
the angle 8. 

We begin with the spinor X. It can easily be seen using 
Eq. (12) that for the oscillation (17)-(18) the spinor compo- 
nents are of the form 

(n and V are constant for the oscillation considered). The 
vector potential is then 

As the oscillation builds up, the vector potential changes 
in time and hence the velocity does also, in accordance with 
the equation of motion 

where on the right we have an "electric field" (the potential 
gradient and the "magnetic field" are zero for this oscilla- 
tion). Incidentally, Eq. (22) answers the question suggested 
by the momentum expression (16). 

From (22), with (21), we obtain the velocity expression 

From the relations obtained, and making use of the con- 
dition (19), we find the dependence of the energy (15) on the 
spin wave amplitude, 

This expression is easy to analyze. Let us present the results. 
Under the condition 

there is a minimum. At the minimum, 

Mlm - 2 
cos e= 

Mlm-1'  

The oscillation frequency (17) at the minimum goes to zero, 
o=O, that is, in the laboratory system we have a frozen spin 
wave, as it were. 
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For Mlrn > 2, the deceleration reaches the value given in 
Eq. (26),  after which the deceleration stops. At M l m  = 2 the 
deceleration is complete (the velocity vanishes), and in the 
interval 312 < M < 2 the velocity even becomes negative. 

As to the case Mlrn < 312, here the process of relaxation 
is accompanied by a complete remagnetization of the system 
(the angle 6 changes from 0 to T), after which the whole 
story repeats itself from the beginning, with the spin wave 
building up again-though with a different k corresponding 
to a new (slower) velocity-and so until complete decelera- 
tion is achieved. At the end of each cycle, the velocity is 
related to the initial one by 

so that for 1 < M / r n < 3 / 2  the velocity changes not only its 
magnitude but also its sign. 

Such is the picture of what goes on in the single-mode 
regime. The actual situation is difficult to predict and would 
require a complete solution of the problem; or one must at 
least convince oneself that in the steady-state regime as- 
sumed, spin excitations-the new ones obtained even when 

both the motion and the frozen spin wave are already 
present-have positive energy. This remains an open ques- 
tion. 
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Translated by E. Strelchenko 

This article was translated in Russia and is reproduced here the way it was 
submitted by the translator, except for stylistic changes by the Translation 
Editor. 
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