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The dynamics of self-focusing of electromagnetic radiation is studied by simultaneously solving 
the quasioptical equation for a wave beam and the hydrodynamic equations for the density 
and velocity of the plasma. It is shown that the transition process is characterized by the 
appearance of a nonlinear wave propagating along the beam axis from the boundary into 
the interior of the plasma with a velocity much greater than the sound speed. The physical reasons 
for the occurrence of this wave are discussed. O 1994 American Institute of Physics. 

The usual theory of steady or quasisteady self-focusing 
of electromagnetic beams is based on the assumption that the 
nonlinear response develops over a time much shorter than 
the time scale on which the intensity changes (see, e.g., Refs. 
1 and 2). However, many types of nonlinearity in plasmas 
(e.g., thermal, ionization, and ponderomotive) are deter- 
mined by relatively slow processes, so that the time for them 
to develop can be much longer than the time scale on which 
the intensity in the beam changes. In this case the behavior 
of the self-focusing process depends substantially on the dy- 
namics of the nonlinear response. 

For the plasma parameters considered in the present 
work the principal mechanism determining the nonlinear re- 
sponse is redistribution of the plasma density under the ac- 
tion of the average ponderomotive force. Previously we have 
shown3 that in the transition process associated with pon- 
deromotive self-focusing a nonlinear wave of density and 
radiation intensity is excited, which propagates along the 
axis of the beam from the boundary into the interior of the 
plasma with a velocity much greater than the speed of sound. 
Hence Andreev et aL3 assumed that the perturbations in the 
plasma density were small. By virtue of this approximation 
the time-independent self-focusing is described by the non- 
linear Schrodinger equation with a cubic nonlinearity, whose 
axisymmetric solution is well known (see, e.g., Refs. 2 and 
4) to have a singularity (focus). In order to avoid this singu- 
larity in Ref. 3 a nonlinear dissipation in the electromagnetic 
field was introduced, which actually corresponds to multi- 
photon absorption in gases,',5 but has no physical basis in 
connection with a fully ionized plasma. 

In the plasma the physical reason for the absence of a 
singularity in the steady state is the nonlinearity of the den- 
sity perturbations produced by the ponderomotive forces. In 

order to describe the time-dependent process of the interac- 
tion of the radiation with itself it is necessary to use the 
nonlinear hydrodynamic equations both for the plasma den- 
sity and for the velocity with which it moves in the electro- 
magnetic field. These equations are the basis for the study of 
the dynamics of self-focusing of an axisymmetric beam in 
the present work. 

In contrast to the previous work; according to which the 
transitional nonlinear wave propagates only in the part of the 
plasma near the boundary until a time-independent focus is 
established, in the present work it is shown that the transition 
wave passes continuously into the plasma and is a character- 
istic feature of the self-focusing in media without nonlinear 
dissipation, in which the nonlinear response takes a relatively 
long time to become established. Following the nonlinear 
wave a steady state develops, consisting of a sequence of 
maxima in the radiation intensity on the beam a ~ i s . ~ . ~  In- 
creasing the time over which the radiation intensity on the 
plasma boundary reaches its steady value increases the dis- 
tance on the boundary at which the transient nonlinear wave 
begins to be excited. 

We also calculate the transition process using a simpli- 
fied model to describe the dynamics of the nonlinear plasma 
response. In this model the linear acoustic equation is used 
for the natural logarithm of the density contra~t,"~ not for the 
plasma density perturbations. Although this equation cannot 
be justified on the basis of the hydrodynamic equations, it 
yields on the one hand the correct dependence of the plasma 
density on the radiation intensity (with an exponential satu- 
ration of the nonlinearity) in the steady state, and on the 
other hand, the correct dynamic equation for small density 
perturbations. Our calculations reveal that the simplified 
model of the nonlinear focusing dynamics agrees reasonably 
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FIG. 1. Square of the electric field amplitude of 
a Gaussian beam on axis as a function of the 
longitudinal position 7=z/2k,a2 for the param- 
eters used in Ref. 7. 

well with the results based on the full system of hydrody- in which Eo is a complex amplitude, assumed to be a slowly 
namic equations. varying function of time over the interval o i l ,  where o, is 

the radiation frequency. 

1. BASIC EQUATIONS The hydrodynamics equations describing a quasineutral 
plasma in a high-frequency field take the formlo 

With a view to averaging over the fast time dependence, 
we use for the beam electric field the expression AN 

1.0 0 
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FIG. 2. Stationary profile of the square of the electric field ampli- 
tude as a function of p and 7 for crA,= 12 and A, = 500. 
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where N is the electron density, e and m are the electron 
charge and mass, V is the plasma flow velocity, Zi and Mi 
are the ion charge number and mass respectively, v, 
= is the sound speed expressed in terms of the tem- 
perature T= Ti=ZiT,, and Ti and T, are the ion and electron 
temperatures. To determine the amplitude Eo from the Max- 
well equations we have 

oo d~~ W: 4.rre2 
curl curl Eo-2i -z-+TEo+- NEo=O. 

c at c mc2 

In Eq. (4) we have discarded a small term proportional 
to the second derivative with respect to time of the slowly 
varying amplitude Eo. We will assume that the axisymmetric 
beam propagates in the z direction and the electric field 
strength takes the form Eo = e,Eb(t,z,r)eikoZ, where ex is the 
polarization vector, ko is the longitudinal wave number, and 
Eb changes slowly over the radiation wavelength. We further 
assumed that the characteristic transverse dimension of the 
beam is much greater than the wavelength. The characteristic 
scale on which the field varies in the direction of the beam 
axis, which is comparable with the diffraction scale, is much 
larger than the transverse dimension, and the ponderomotive 
forces, which act mainly radially, cause the plasma to move 
in this direction. As a result we find from Eqs. (2)-(4) our 
fundamental set of equations: 

where V = V ,  is the radial plasma velocity and oPo 
= \I- is the plasma frequency expressed in terms 
of the unperturbed electron density No outside the beam. It is 
assumed that the quantities o0 and ko are related by the 
dispersion relation W: = k:c2 + u 0 .  We introduce the dimen- 
sionless dependent variables 

where E M  and a respectively are the maximum value of the 
amplitude Eb and the characteristic beam width at the plasma 
boundary at the point z=  0. We use the dimensionless inde- 
pendent variables 

As a result, Eqs. (5)-(7) are transformed to 

FIG. 3. Contours of constant IEl in the P T  plane (aA0=8.4, A0=500 ,  
p=1, ~ 0 . 0 5 ) .  

where the constant a = ~ ~ e ~ E ~ 1 4 r n o ~ ~  characterizes the 
ratio of the so-called high-frequency potential to the tem- 
perature, the constant p= 2a wov$c2 determines the magni- 
tude of effects resulting from the finite propagation speed of 
the electromagnetic radiation, and the quantity A. 
= a 2 ~ ; ~ c 2  is the dimensionless plasma density outside the 

beam. 1n Eq. (11) an additional term has been introduced to 
take into account dissipation. The quantity y= valv, is re- 
lated to the effective collision frequency v. For the amplitude 
of the electric field on the plasma boundary (1;1=0) we have 
used the expression 

where the function f(?-) characterizes the increase in the field 
at the boundary and varies from 0 to 1 as r goes from 0 to m. 

The function ~ ( p )  determines the shape of the beam phase 
front at the boundary. The condition f (0) = 0 enables us to 
use as initial conditions for the plasma 

The boundary conditions are given on the beam axis: 
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FIG. 4. Contours of constant [El in the 1)-r plane 
(ruAo=12,Ao=500, p=1, y=0.05) when the beam is 
switched on instantaneously V ( T )  = 1 for T>O]. 

and also at a large distance pm,Sl from the beam axis: 

E(prn,)=O, A(prn,,)=Ao, W(prn,,)=O, (16) 

or 

The system of equations (10)-(12) with the initial and 
boundary conditions (13)-(17) has been solved numerically. 
The mathematical details of the calculations are presented in 
Ref. 11. 

2. STEADY SELF-FOCUSING 

Before investigating the transition process, we study the 
steady state to which it leads. We set W=O in Eqs. (10) and 
(11) and, dropping the derivative with respect to T and Eq. 
(12) we write it in the form 

The solutions of this equation have been studied both 
analytically6~12-15 and numerically.' In order to check our 
numerical treatment we have performed a calculation with 
the same parameters as were used in Ref. 7: 

= 0.1, koa =700, No/Nc=O.l, where 
Nc= m w i / 4  r e 2  is the critical electron density. In our nota- 
tion these parameters correspond to a=2.5.10-~ and 
Ao=4.9.  lo4 .  

Figure 1 shows the intensity [El2 as a function of the 
longitudinal position on the beam axis (p=O) when there is a 
plane wave front on the boundary [cp(p)=O]. In Ref. 7 the 
calculation was carried out in the interval 0 s  63 .57 .10 -~ .  
Our results are in complete agreement on this interval with 
those of Ref. 7. For 7723.57-10-~, as can be seen, the inten- 
sity on the beam axis becomes modulated and the oscillation 
period decreases as a function of 77. This implies that the 
results of the numerical calculations differ from those of the 
analytical studies carried out in the aberrationless 
approximation6 not only qualitatively but also quantitatively. 
This was noted previously in Ref. 7. 

Figure 2 shows the variation of the radiation intensity 
[El2 as a function of p and 77 for do= 1 2  and Ao=500, 
corresponding to the parameters of the time-dependent cal- 
culations whose results were presented above. As can be 
seen, for those intensities the steady state consists of an es- 
sentially periodic sequence of maxima on the beam axis. In 
the aberrationless approximation6 these oscillations appear 
when a condition related to the values of the parameters A, 
and (Y holds: 

It is easy to see that in our calculations the inequality (19) 
was satisfied. 

In the limit a<1, which corresponds to a cubic nonlin- 
earity, Eq. (19) yields an expression for the critical beam 
power (do ) ,=2 .  Analysis of the exact Schrodinger 
equation17' shows that (d0),,=7.54. 
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FIG. 5. Contours of constant ( E I  in the 11-7 plane (do= 1 2 ,  A,= 500,  
/3=1, y=O.O5) when the beam is turned on smoothly at the boundary 
( f ( r ) = l  for T>O). 

3. THE TRANSITION PROCESS 

In order to make a comparison with the results of Ref. 3, 
we begin by doing calculations with the same beam power as 
was used there ( d o  = 8.4). In addition, we used the values 
Ao=500, P = l ,  and y=0.05 and assumed that the beam was 
turned on instantaneously at the boundary [f (r >0) = 11. 
Figure 3 shows contours of constant IEl as a function of r 

and for p=O. As can be seen, the nonlinear transition wave 
excited near the boundary propagates into the interior of the 
plasma. A steady state is established behind the wave. In 
contrast with Ref. 3, when this process ended in the forma- 
tion of a single time-independent maximum where a substan- 
tial portion of the beam energy was absorbed, in the present 
case the process continues beyond the first maximum. With 
increasing time the nonlinear wave passes deeper and deeper 
into the plasma, leaving behind it new stationary intensity 
maxima on the beam axis. 

In order to further elucidate this process we have also 
carried out calculations with the parameters y=0.05, 
do= 12, Ao=500, and P=l (Fig. 4). The steady state 
shown in Fig. 2 was obtained for precisely these parameters. 

It is natural to assume that for the transition process an 
important role is played by the form of the function f(r),  
which determines the rise in the beam amplitude at the 
boundary. In Fig. 5 results are displayed from calculations 
carried out with the same parameters as in Fig. 4, but for a 
function f (7) of the form 

where r0=2.5. The function (20) reaches the value 1 for 
~ 1 0 .  As can be seen, the nonlinear wave begins to be ex- 
cited later and at a larger distance from the plasma boundary. 
The first intensity maximum approaches its limiting value 
monotonically as a function of time. A wavelike process de- 
velops at greater depths, associated with the establishment of 
subsequent maxima. 

A number of used a simplified model to de- 
scribe the nonlinear plasma dynamics: 

In the limit of small density perturbations, when we have 
A =Ao+ SAY I SA I GAo, Eq. (21) yields the acoustic equation 
used in Ref. 3. In the steady state ( d l S ~ 0 )  Eq. (18) follows 

FIG. 6. The same as in Fig. 3a and Fig. 4b, 
but using the simplified model to describe 
the plasma dynamics. 
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FIG. 7. Relative perturbation in the plasma density (A -Ao)IAo (broken 
trace) and the amplitude I E ~  on the beam axis at three times ~ 2 . 5  (a), 4.0 
(b), and 6.5 (c) [ d O = 8 . 4 , A o = 7 5 0 ,  P = l ,  y=0.05, f (r>O)=l] .  

4. CONCLUSION 

Let us briefly discuss the physical processes that deter- 
mine the origin of the nonlinear transition waves for pon- 
deromotive self-focusing. In the time during which the beam 
penetrates into the plasma, which occurs with a velocity 
close to that of light, the plasma density is unable to vary and 
the plasma remains essentially uniform. The excess high- 
frequency pressure begins to expel the plasma from the re- 
gion occupied by the beam. The ponderomotive forces (due 
to the high-frequency pressure) are greatest where the beam 
is narrowest. Since a beam with a planar phase front spreads 
out in a uniform plasma due to refraction,, its width is ini- 
tially smallest near the plasma boundary. It is there that the 
expulsion of the plasma occurs fastest and a region forms 
with reduced density.16 This region, which acts as a focusing 
lens, transports the region of maximum intensity deep into 
the plasma. There the expulsion of the plasma occurs faster 
and a region of reduced density forms all over again, as a 
result of which the radiation is focused still deeper into the 
plasma. This process goes on continuously. The intensity 
maxima of the radiation and the region with reduced plasma 
density begin to move from the boundary along the beam 
axis, reconstituting and maintaining one another (Fig. 7a). 

After an intensity maximum leaves the region, the 
plasma expelled by the high-frequency pressure forces, being 
an elastic medium, begins to oscillate with a frequency of 
order v$a. Consequently, after a time of order a/2v, a den- 
sity maximum develops in place of the minimum on the 
beam axis (Fig. 7%). In contrast to a density minimum, it acts 
as a defocusing lens and reduces the fraction of the radiation 
that reaches the first intensity maximum. As a result, the 
latter begins to decrease. However, the next density mini- 
mum, beyond which there is still no maximum, acts as a 
focusing lens and begins to create a new intensity maximum 
(Fig. 7c). This process by which the first maximum is 
quenched and another one grows behind it, separated from 
the first minimum, is repeated over and over. 

In the time the nonlinear wave propagates along the 
beam axis the expelled plasma spreads out in the form of 
sound waves propagating from the beam axis. As a result, 
equilibrium is established behind it, in which the high- 
frequency pressure is balanced by the thermal pressure of the 
plasma. 

A moving intensity maximum can develop only if the 
diffractive divergence of the beam is dominated by the re- 
fraction that develops due to plasma nonuniformity. Hence 
the focal length 1 of the lens that develops as a result of the 
expulsion of the plasma by the beam can be taken equal in 
order of magnitude to the diffraction length koa2. Multiply- 
ing this length by the period alv, of the density oscillations, 

from Eqs. (12) and (21). In order to clarify when it is valid to we find that the velocity with which the maxima (or minima) 
use Eq. (21) '0 calculate the time de~endence of highly '0'- in intensity propagate is on the order of vrn= u t o o .  Since it 
linear processes, we carried out calculations with the same is assumed that the beam width a is much greater than the 
parameters as used Figures 6a and 6b radiation wavelength, the velocity V,,, is much greater than 
the same function as in Figs. 3 and 4, derived using Eqs. (12) the sound speed v,. In the range of beam powers in question 
and (21). Comparison of the figures shows that the calcula- it does not depend on the radiation intensity (i.e., the param- 
tions using the simplified model (21) and those with the full eter a) which is confirmed by comparison of Figs. 3 and 4. 
hydrodynamic model (lo), (11) agree not only qualitatively Each maximum that develops on the trailing edge of the 
but also quantitatively. nonlinear wave moves forward in time to the leading edge 
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and disappears. Consequently, its velocity is greater than that 
of the boundary of the steady state, and the latter is some- 
what less than V,,, . This effect is clearly displayed in Figs. 
3-6. 

As an example illustrating the physical conditions under 
which the basic calculations apply, we consider a laser beam 
with frequency s-' (the second harmonic of a 
neodymium laser) with a characteristic width a = 20 pm 
propagating in a hydrogen plasma with density No = 5 .10  l9 

cmP3 and electron temperature T,=100 eV. If the maximum 
beam intensity on the plasma boundary is 3.  1014 w/cm2, the 
transition waves have a characteristic length -0.3 cm and 
propagation speed -lo9 c d s .  In a plasma with dimensions 
of order 1 cm such waves can arise for pulses whose rise 
time is less than 1 ns. 

Thus, the results of this investigation show that in media 
in which the nonlinear response takes a relatively long time 
to become established the development of a regime in which 
the radiation propagates in a steady fashion is accompanied 
by excitation of a nonlinear transition wave, which propa- 
gates from the boundary. This transient process is a conse- 
quence of the hydrodynamic mechanism for saturation of the 
ponderomotive nonlinearity of the plasma described by Eqs. 
(5) and (6), together with the conservation of electromag- 
netic energy flux, which follows from Eq. (7). 
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