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Strongly collisional mercury vapor near the liquid-gas critical point is treated as a gaseous 
semiconductor with a weakly overlapping atomic structure. The permittivity is found to be 
anomalously large because in addition to the atomic polarization there is a contribution 
from interatomic bonds. The hole conductance involving superbarrier valence-electron transitions 
between ions and neighboring atoms, manifests itself in the positive sign of the 
thermoelectric power. The energy gap between the electron and hole bands is estimated using the 
dielectric screening model. According to the model there exists a connection between the 
dielectric anomaly, acting to reduce the gap, and the conductivity, which rises by a factor of 10'' 
compared to the ideal weakly ionized gas. O 1994 American Institute of Physics. 

1. INTRODUCTION 

Close to the critical point of the liquid-gas phase transi- 
tion, metals also undergo a continuous metal-nonmetal tran- 
sition involving the appearance of atomic structure. The in- 
terplay between these two types of transition has attracted 
attention for fifty years now.' Interest in this subject is being 
stimulated by the unusual electronic properties of the noble 
metals, not yet fully explained. Most of the information 
about these properties has been obtained for mercury, which 
enjoys a unique position among other metals. Among the 
metallic elements, mercury has the lowest critical tempera- 
ture, Tc=1751 K, and the highest ionization potential, 
1 = 10.44 eV. The combination of these factors results in that 
the metal-nonmetal transition is accompanied by a relatively 
sharp conductivity drop.2 

Since the conductivity remains finite, the metal- 
nonmetal transition point is located by the appearance (dis- 
appearance) of the activation energy. The linearly extrapo- 
lated activation energy vanishes at the density -=8.8 
g/cm3. Thus, the metal-nonmetal transition point in mercury 
is markedly above the critical density, pc=5.8 g/cm3 (Ref. 3). 

Assuming the existence of the atomic structure, the 
metal-nonmetal transition can be identified with the percola- 
tion threshold for the overlapping spheres in which the 
atomic wave functions are mainly ~oncentrated.~ In the qua- 
siclassical case, which is typical of metals, these are classi- 
cally accessible spheres restricting the motion of valence 
electrons in atoms. Above the percolation threshold of the 
classically accessible spheres, the valence electrons can go 
from one atomic core to another above the potential barrier 
and so participate in conduction. Below the metal-nonmetal 
transition the conduction is by weakly excited electrons, for 
which the radius of the classically accessible sphere exceeds 
the percolation radius in the atomic gas. Such excitations 
occur due to the virtual screening of the atomic cores by the 
valence electrons of the neighboring atoms. When screening 
is included correctly, a simple quasiclassical percolation 
model of the metal-nonmetal transition is adequate to de- 
scribe the electronic properties of extended metak5 Note 
that microscopic percolation should be distinguished from 

the macroscopic model of a heterogeneous continuous me- 
dium with metallic and nonmetallic regions as discussed in 
Ref. 6. 

Experimentally (see the review article by Hensel et alS3 
and references therein), even below the critical density (and 
down to 4 g/cm3) mercury displays typical semiconducting 
(rather than metallic) properties. The conductivity falls off 
with decreasing density, to well below its maximum metallic 
value, and at constant density grows exponentially with tem- 
perature. The dielectric permittivity is positive and has a 
value of from a few units to 10, typical of semiconductors. 
The thermoelectric power changes its sign to positive, in- 
dicative of hole conductance. All the signs are that in the 
density interval 4-6 g/cm3 at near-critical temperatures mer- 
cury vapor may be considered a gaseous semiconductor (in 
contrast, for example, to caesium vapor at the critical point, 
which is a gaseous metal). At still lower densities the dielec- 
tric permittivity drops to below 3 and the conduction mecha- 
nism changes again to become pure electronic, as usual in 
ionized gases. 

For a thermally ionized gas of atoms with a high ioniza- 
tion potential, the conductivity of dense mercury vapor is 
anomalously high. In the case of a gaseous semiconductors, a 
possible explanation is the high permittivity, which reduces 
the ionization potential. The permittivity also behaves 
anomalously in departing strongly from the ordinary 
Clausius-Mosotti equation; close to the critical point it shows 
a strong temperature dependence.3 The permittivity anomaly 
is related to polarization of the bonds formed the overlapping 
atoms7 (an alternative suggestion is the increase in atomic 
polarizability due to excitation exchange8). The very sharp 
increase in permittivity with increasing pressure at constant 
temperature has prompted the phase transition idea. Most 
likely, however, the sharp permittivity and thermoelectric 
power changes result from their density dependence and 
from the divergence of the compressibility of the substance 
at the critical point. 

In an intrinsic gaseous semiconductor the electrons ex- 
cited into the conduction band move in the field of neutral 
atoms. Owing to the possibility of superbarrier transitions of 
the valence electrons from neighboring atoms to ions, mobile 
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holes appear at the ion positions. The occurrence of the su- 
perbarrier transitions and the presence of interatomic bonds 
responsible for the dielectric anomaly are a consequence of 
the metal-nonmetal transition (or, the other way around, 
presage a transition to the metallic state). Analysis of the 
various properties of a gaseous semiconductor clearly re- 
quires a general approach that includes the atomic structure 
in a fundamental way. Note that the vanishing of the thermo- 
electric power near the mercury critical point pointed to the 
electron-hole conductance idea even in the early work on the 
s ~ b j e c t . ~  However, the holes were assumed to be due to free- 
electron excitation across the Mott pseudogap (rather than 
atomic ionization). This hole concept neglects the strong 
electron-ion correlation and so has not received any further 
development.10 

In the present paper a model is constructed of a gaseous 
semiconductor explaining (in principle) the change in the 
sign of thermoelectric power, and the conductivity of such a 
semiconductor is calculated. In parallel, a theory of anoma- 
lous dielectric permittivity is developed, with emphasis on a 
careful analysis of the number of interatomic bonds. 

The plan of the paper is as follows. In Sec. 2, the con- 
ditions for the percolative hole mobility are discussed. In 
Sec. 3, a general discussion of electron-hole conduction in a 
gaseous semiconductor is contained. In Sec. 4, a dielectric 
model used to calculate the energy gap is formulated. In Sec. 
5, a theory of anomalous permittivity is presented and used 
to estimate the conductivity. Finally, in Sec. 6 the thermo- 
electric power is discussed. 

2. ELECTRON AND HOLE PERCOLATION 

In mercury atoms the two valence electrons are in 
spherically symmetrical 6s states, whose radial wave func- 
tions have five nodes. The radial motion of the electrons is 
quasiclassical and is primarily restricted by the classically 
accessible sphere in the Coulomb potential of the singly 
charged atomic core. The radius of the sphere is e2/1, where 
e is the electron charge and I the ionization potential of the 
atom. In an atomic gas each electron moves in the field of 
one atomic core, the remaining cores being screened by their 
own electrons. When the classically accessible spheres of 
neighboring atoms overlap, an electron may leave its atomic 
core to move to a virtually free atomic core (ion). Above the 
percolation thresh-old of the classically accessible spheres, 
the electron transitions between atomic cores cause diffusion. 
Moreover, the overlap of atoms leads to a virtual screening 
of the electron-ion interaction. Consequently, electron states 
in the overlapping atoms contain an admixture of free motion 
in a screened (atomic) potential. 

Clearly, the admixture of free-electron states implies for- 
mation of an energy band in the spectrum of the overlapping 
atoms (quasiatoms). In particular, the minimum internal en- 
ergy of a quasiatom, as measured from the energy of a singly 
charged ion, is defined by 

where E, is the excitation energy, p the asymptotic free- 
motion momentum, and m the electronic mass. Taking ac- 

count of excitation, the radius of the classically accessible 
sphere is e2/(-E,), and the volume fraction of the spheres 
is 

where n ,  is the density of the atoms. The percolation thresh- 
old of weakly excited atoms is given by 

where 5, is a parameter (for randomly arranged overlapping 
spheres, 4 ~ 1 1 3 ) .  At the metal-nonmetal transition point the 
condition (3) holds for E, = 0: 

The experimental value of the density, hN=8.8 g/cm3, cor- 
responds to &=0.29. Below the metal-nonmetal transition 
Eq. (3) determines the mobility gap 

Quasiclassical percolation of electrons is possible for excita- 
tion to above the mobility gap, i.e., for &,>At. Furthermore, 
atoms may be treated as virtual ions only relatively close to 
the transition point, for example if 

Thus, electronic percolation is practically possible only for 
mercury densities above the critical value. 

The percolation threshold is lowered in the presence of 
bare ions. In fact, the unscreened potential of an ion, when 
added to the atomic core potential, reduces the potential bar- 
rier. Therefore the condition for an superbarrier transition of 
an electron from an atom to an ion is fulfilled at distances 
less than 4e2/1 (rather than 2e2/1 as in the two-atom case). 
Transitions of valence electrons to an ion are equivalent to 
the random walk (or diffusion) of a hole that occurs above 
the percolation threshold for spheres of radius 2e2/1. Thus, 
the hole diffusion threshold with respect to density is eight 
times lower than the metal-nonmetal transition point. 

The extent to which the holes are free is characterized by 
the average number of bonds between an ion and the neigh- 
boring atoms in the absence of correlation: 

The hole percolation threshold corresponds to the B = 2.7. 
At the critical mercury density this parameter reaches 12. In 
the limit of a large number of bonds the holes should be 
treated as free particles with the minimum mean free path 
possible. 

In accord with the Ioffe-Regel criterion," the minimum 
mean free path of the hole is limited by the quantum uncer- 
tainty in position, 

where I is the mean free path, AT is the average thermal 
wavelength, T is the temperature, and m is the hole effective 
mass. The same estimate follows from the energy-lifetime 
uncertainty relation for the hole, 
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T= I / u ~ Z =  h/T, (7) 

where T is the lifetime and U T  = 4- the average ther- 
mal velocity. The minimal conductivity is given by 

3. CONDUCTIVITY 

In an intrinsic gaseous semiconductor holes result from 
the thermal excitation of the valence electrons into the con- 
duction band. The excitation process can be represented as 
an electron-hole pair formation reaction, 

where T= hlT is the minimum free lifetime. From Eq. (17), 
substituting the minimal free-carrier density (16), we have 

the zero on the left corresponding to the ground state. The 
balance equation for this reaction is12 

As usual, the conductivity depends exponentially on the 
width of the gap between the electron and hole bands. The 
preexponential factor in Eq. (18) at the critical temperature 
of mercury is of order 10~fl-'.cm-'. The actual conductivity 
is much lower, since the energy gap width is much larger 
than the temperature. 

pe+phUh=O, (8) 

where pe and ph are the chemical potentials of the electrons 
and holes, respectively. The free-electron and free-hole den- 
sities are related to the chemical potentials by the expres- 
sions 

4. ENERGY GAP 

The energy gap between the electron and hole bands is 
equal to the minimum electron-hole formation energy and 
depends on the free-atom ionization potential, the dielectric 
permittivity, and the structure of the atomic gas under study. 
A weakly excited valence electron moves in the Coulomb 
field of the atomic core 

and 

where A is the energy gap between the electron and hole 
bands. The electron and hole effective masses enter only the 
preexponential factors and may for simplicity be considered 
equal. 

Multiplying Eq. (9) by Eq. (10) and using Eq. (8) we 
obtain 

2 
G= exP(- k). (11) 

where the radius a is on the order of the interatomic separa- 
tion. For a strongly excited electron, the classically acces- 
sible sphere contains many atoms polarized by the core field. 
At distances larger than the interatomic separation, the po- 
tential has the form 

To find the free-carrier density one must consider the possi- 
bility of electrons and holes being trapped in fluctuation clus- 
ters (or bubbles). The electrical neutrality condition is then 

where E,  is the dielectric constant (Fig. 1). The additive con- 
stant in Eq. (20) [insuring a match with Eq. (19)] brings 
about a reduction in the atomic ionization energy. Thus the 
ionization energy is 

~ = I - ( e ~ / a ) ( l - . s i ' ) .  

ne/ae=nh9,, (12) 

where a, is the fraction of the free (untrapped) electrons, and 
a h  is that of the free holes. From Eqs. (11) and (12), 

Taking the limit E,+W (corresponding to screening the 
potential completely for r > a )  would formally extend this 
expression to the region near the metal-nonmetal transition 
point. Physically, in this limit the ionization energy must be 
just the mobility gap. But then comparison with Eq. (4) 
shows that the radius a must be equal to the percolation 
radius for overlapping atomic spheres. Neglecting long-range 
correlations between atoms and setting 5,=1/3, we have 

a=(47~n, ) -"~ .  

4: Comparing Eq. (13) with expressions (9) and (10) we obtain 
the electron and hole chemical potentials: 

Finally, the total free-carrier density is 
Thus, the formula for the energy gap becomes 

= n e + n h =  AT ( + e x -  ) (15) 

In a gaseous semiconductor the magnitude of the gap de- 
pends on the density and temperature, including the implicit 
dependence via the permittivity. 

Note that the asymmetric trapping of electrons and holes 
increases the total number of free carriers and that the mini- 
mum number of these corresponds to ae=ah:  
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We next separate the first coordination sphere and divide the 
region of integration in Eq. (25) into two intervals. The in- 
tegral from 0 to 2e2/1 is equal to the difference between the 
coordination number 2C and the average number of atoms 
whose cores are within the sphere of radius 2e2/1: 

Expressing this integral from Eq. (25), we have 

This representation is convenient for estimating the coordi- 
nation number. 

For low atomic densities, the departure of g(R) from 
FIG. 1. Screened ion potential. Hatching indicates the conduction band bot- 
tom. unity may be neglected at distances larger than 2e2/1. Then, 

dropping the integral on the right-hand side of Eq. (27) and 
using Eq. (26), we have 

Close to its critical point mercury exhibits a large in- 
crease in permittivity, this property departing from the ordi- 
nary atomic-polarization formula of Clausius and ~ o s o t t i . ~  
This dielectric anomaly is due to the additional polarization 
of the interatomic bonds.5 In the quasiclassical case, atomic 
polarization reduces to a shift of classically accessible 
s-electron spheres. The polarization of interatomic bonds im- 
plies a partial transition of electrons between overlapping 
classically accessible spheres. The total polarizability per 
atom, including the interatomic bond polarizability, is 

where z is the number of valence s-electrons in the atom and 
C is the number of bonds per atom.7 

%ice the number of bonds per atom is given by the 
integral 

where g(R) is the radial distribution function and the region 
of integration is limited by a sphere of radius 2e2/1 (includ- 
ing tunneling increases the radius by -(h2/2rn1)1'2). This 
region encloses the first coordination sphere of the liquid, the 
average radius of which is about 3 . 1 0 ~ ~  cm. Thus, the num- 
ber of bonds per atom multiplied by two should be identified 
with the coordination number. Assuming the coordination 
sphere to broaden symmetrically, this number is usually de- 
fined as an integral from zero to the average radius. 

To estimate the number of bonds, let us express the in- 
tegral in Eq. (23) in terms of the structure factor S(O), re- 
lated to the compressibility by 

The structure factor S(0) is given by the integral 

This expression represents, in fact, the first terms of the ex- 
pansion of the coordination number in the small difference 
S(0) - 1. 

At the critical point, where S(0) diverges, the coordina- 
tion number is finite, the divergence being cancelled by the 
last term on the right-hand side of Eq. (27). Using the limit- 
ing cases of the problem, we construct a Padd approximation 
for densities below the critical one, to obtain 

where d, is the value of d at the critical point. This parameter 
can be estimated from the experimental data on the coordi- 
nation number of liquid mercury along the saturation line 
(Fig. 2). A linear approximation of the density dependence 
within the error band yields, at the critical density, a coordi- 
nation number of 2.6 and d,= 1. Then Eq. (28) takes the form 

and the number of bonds per atom is 

Substituting Eq. (29) into Eq. (22) we obtain the total 
polarizability per atom as a function of the quantities fb and 
S(0) dependent on thermodynamic parameters: 

Recall that Eq. (30) has been obtained for densities below the 
critical value. The inverse structural factor ~ ~ ' ( 0 )  here de- 
creases with increasing density and grows with temperature. 
In particular, this behavior is described by the asymptotic 
near-critical expansion (for 1 A ~/~,l4lAn,/n,l"P) as12 
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FIG. 2. Coordination number of extended liquid mercury along the satura- 0 
tion line (Ref. 13). 3 4 5 3 6 

P, g/cm 

where Ana=n - n ,  and AT= T -  T ,  are thermodynamic pa- 
rameters measured from the critical point, S=4.8 and 
P=0.34 are the critical exponents, and D and F are positive 
amplitudes. In contrast, the polarizability increases with den- 
sity and decreases with increasing temperature. 

The dielectric permittivity of an atomic gas is expressed 
in terms of the total atomic polarizability by using the 
Clausius-Mosotti equation or its regularized version 

where m -  1 is the order of the successive approximation 
scheme in which the local field effect is described (the first- 
order effect being absent). The indeterminacy of the param- 
eter m is important only near the pole of the Clausius- 
Mosotti equation, which formally corresponds to the limit 
m + m .  Actually, the approximation used need not be of too 
high order (say, not higher than third, which corresponds to 
m = 4; see Fig. 3). From the knowledge of the permittivity, it 
is easy to find the magnitude of the energy gap and to esti- 
mate the conductivity (Fig. 4). Note the qualitative agree- 
ment with experiment even though, due to the reduced ion- 
ization potential, the conductivity increases by more than a 
factor of 10'' compared to an ideal weakly ionized gas. 
However, below 4 g,/cm3 the nature of the density depen- 
dence is altered, presumably because of hole localization. 

6. THERMOELECTRIC POWER 

The sign of the majority charge carriers determines that 
of the Hall coefficient and thermoelectric power. Near the 
metal-nonmetal transition both are negative in accordance 
with the electronic character of conductan~e.~ However, at 
the liquid-gas critical point in mercury, the thermoelectric 
power vanishes and changes sign. In a certain density inter- 
val below the critical point, the positive sign of the thermo- 
electric power corresponds to hole conductance (Fig. 5). In 

FIG. 3. Permittivity of mercury vapor versus density for T = 1 7 7 3  K. 
I+xperiment (Ref. 3) .  2-regularized third-order Clausius-Mosotti equa- 
tion. 

fact, the observed change in the sign of the thermoelectric 
power is the only direct evidence to suggest electron-hole 
conductance. 

The thermoelectric power can also be determined from 
the phenomenological expression for the energy flux associ- 
ated with the electrical current in the system15 

FIG. 4. Mercury vapor conductivity versus density for various temperatures. 
Dashed lines: experiment (Ref. 3);  solid lines: theoretical estimate. 
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7. CONCLUSION 

FIG. 5. Thermoelectric power of mercury for T =  1773 K. The curve: ex- 
periment (Ref. 14) Hatching indicates the upper estimate corresponding to 
the hole conduction. 

where q is the energy flux, j is the electrical current, a,  the 
thermoelectric power (in VIK), and kB the Boltzmann con- 
stant. By definition, the energy flux due to the drift of elec- 
trons and holes is 

where be and bh are the fractions of the electron and hole 
currents and E e  and E h  are the weighted average carrier en- 
ergies as measured relative to the band bottom (the weight 
being proportional to the contribution to the current). By 
comparing Eqs. (32) and (33) and making use of the chemi- 
cal potential formula, we obtain 

From this it follows that whatever the electron-to-hole cur- 
rent ratio, the magnitude of the thermoelectric power is in the 
range from - kBA/2eT to kBA/2eT (Fig. 5). For equal elec- 
tron and hole contributions the thermoelectric power (34) 
tends to zero. The relative contribution of the carriers de- 
pends, in particular, on their possible trapping by fluctuation 
clusters and bubbles. These questions necessitate a much 
more detailed analysis. 

The study of the physical properties of mercury vapor 
near the liquid-gas critical point shows them to have typical 
semiconductor features. In particular, over a limited density 
interval electron-hole conduction may reasonably be sug- 
gested. In this interval the magnitude of the conductivity is 
primarily determined by the presence of a (density- and 
temperature-dependent) energy gap between the electron and 
conduction bands. Analysis also indicates a relation between 
the electron-hole conductance and the dielectric anomaly ob- 
served in the same parameter range. By determining the gap 
from a simple dielectric screening model it is possible to 
explain the extremely high conductivity of a dense mercury 
vapor compared with that for an ideal gas. 

The most important factor limiting the applicability of 
the "uniform" dielectric screening model is the formation, 
and possibly even dominance, of cluster ions (cluster 
plasma). This alters plasma properties significantly; in par- 
ticular, holes localize on the clusters. This being so, the 
marked semiconducting properties in a certain range of mer- 
cury parameters appear to be an exception rather than the 
rule for metal vapors. In conclusion, we emphasize the 
unique nature of highly nonideal ionized gaseous phases in 
metals: close to their liquid-gas transition points they may be 
either gaseous metals, or gaseous semiconductors, or a clus- 
ter plasma. 
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Translated by E. Strelchenko 

This article was translated in Russia and is reproduced here the way it was 
submitted by the translator, except for stylistic changes by the Translation 
Editor. 
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