
Stability of self-induced transparency solitons in a resonant waveguide 
V. V. Kozlov and E. E. Fradkin 

Physics Research Institute, St. Petersburg State University, 198904 St. Petersburg, Russia 
(Submitted 10 June 1994) 
Zh. Eksp. Teor. Fiz. 106, 1572-1581 (December 1994) 

We show that a three-dimensional self-induced transparency pulse is stable under periodic 
perturbations and perturbations localized along the propagation axis. The necessary condition for 
stability is the matching of the transverse distribution of the field and the concentration 
distribution of the absorbing atoms. We study the case of wide beams using perturbation theory 
with a small parameter E ,  the ratio of the rate of transverse variation of the field strength 
to that of longitudinal variation. O 1994 American Institute of Physics. 

1. INTRODUCTION 

Beginning with the classical work of McCall and ~ a h n , '  
experimental observation of the propagation of self-induced 
transparency (SIT) solitons has been complicated by trans- 
verse effects. Comparison between the the~ries"~ based on 
the plane wave approximation and the experimental results 
requires using wide beams with a smooth transverse profile. 
In practice, however, one observes the self-focusing of the 
beam as a whole and/or the breakup of the beam into fila- 
ments when it propagates through a dense ( a o  L>5)  reso- 
nant m e d i ~ m . ~  This new type of resonant self-focusing was 
thoroughly studied in its theoretical aspects in Refs. 4-6. In 
contrast to ordinary resonant self-focusing, the effect occurs 
even when the carrier frequency of the pulse is tuned exactly 
to the resonant transition. The theoretical analysis in Refs. 
4-6 is based on a numerical solution of the wave equation 
that allows for radial field variations together with the system 
of Bloch equations for a two-level atom. An alternative 
method of studying beam decay processes as applied to SIT 
effects has been suggested by Bol'shov, LikhanskiI, and 
~ a ~ a r t o v i c h , ~ . ~  who analyzed the stability of a 2 a  pulse with 
a plane wavefront under transverse field perturbations. They 
found that a one-dimensional 27r pulse is unstable under 
transverse perturbations and decays after traveling several 
absorption lengths in the medium (aoLF..lO). It appears that 
small distortions of the field make the wavefront inhomoge- 
neous. In view of the dependence of the pulse velocity on the 
intensity, the sections of the transverse profile with larger 
amplitude overtake the sections with smaller amplitude. 
Thus, weak perturbations become even stronger, which, in 
the final analysis, leads to decay of the stationary shape of 
the field. 

Recently a new approach to obtaining stable SIT pulses 
with a nonplanar wavefront has been d e v e l ~ ~ e d . ~ " ~  The idea 
originates in the expression for the velocity of a 27r pulse, 

derived on the assumption that the absorption line is homo- 
geneously broadened and that there is exact tuning to reso- 
nance. The length of the 27r pulse is inversely proportional 
to the peak value of the pulse, and in the case of bounded 
beams with cylindrical symmetry (to be specific we assume 

that the beam has a Gaussian profile) ~,(p)  is a monotone 
increasing function of coordinate p. For a homogeneous me- 
dium, no = const, the velocity at different distances from the 
axis is different, and hence steady-state propagation is im- 
possible. We assume that the absorbing particle concentra- 
tion varies over the cross section of the medium, with 
no(p) a monotone decreasing function of p. By selecting the 
distribution so that 

we make the pulse velocity the same for all values of p, or 
Vp=const. The tools developed in Ref. 10 allow matching 
conditions to be obtained for the field and atom- 
concentration distributions similar to Eq. (1) for the case 
when the carrier frequency of the field is detuned from reso- 
nance and for a medium with an inhomogeneously broad- 
ened absorption profile. For our purposes in this paper ana- 
lyzing Eq. (1) is sufficient. The waveguide structure created 
by the variation of the medium is very similar to an optical 
waveguide with a refractive index smoothly varying in the 
direction perpendicular to the propagation axis. The essential 
difference from the linear case is that the intensity profile is 
rigidly matched with the transverse distribution of the atoms, 
with Eq. (1) the condition imposed by the fact that the inter- 
action between the field and the resonant medium is essen- 
tially nonlinear. 

In this paper we study the stability of a three- 
dimensional SIT pulse under localized and periodic pertur- 
bations in conditions where the concentration profile of the 
absorbing atoms is matched to the transverse profile of the 
field. 

2. BASIC EQUATIONS 

We write the system of Maxwell-Bloch equations with- 
out the relaxation terms, proportional to T,' and T, ' ,  as- 
suming that the pulse length rp is much shorter than T2 and 
TI : 
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Here we have introduced the following notation: 

The total field and polarization have the form 

Here in writing the expression (3) for the absorption coeffi- 
cient a(p) ,  instead of the transverse relaxation time T2 we 
have used another characteristic time, the pulse length 
rp(p). The other quantities are designated as follows: 
k= W/C is the wave vector in vacuum for the pulse carrier 
frequency o ,  d is the dipole moment of the transition, ro is 
the characteristic radius of the transverse field distribution, c 
is the velocity of light in vacuum, and t, z, and r are the time 
and the longitudinal and transverse coordinates, respectively. 

Note that in writing Eq. (2a) we introduced a depen- 
dence of the pulse and medium parameters on the transverse 
coordinate. From the outset we assumed that the atoms of the 
absorbing medium are distributed unevenly over the cross 
section, i.e., no=no(p), which is the main prerequisite for 
the existence of a steady-state solution, a three-dimensional 
optical soliton.1° The pulse length rp(p). is an increasing 
function of p, which is necessary for limiting the field in the 
transverse direction. This can easily be understood if one 
considers wide beams: in steady-state propagation the pulse 
area must be equal to 2 7 ~  for any value of p. Since the field 
amplitude decreases as p grows, this condition presupposes 
that the pulse length increases appropriately. In reality, at a 
certain distance p=  po from the axis the value of rp(p) be- 
comes close to T2 and the employed model ceases to be 
valid. Bearing in mind this fact, we restrict our discussion to 
processes taking place in the vicinity of the axis. 

For future convenience we have introduced into the 
wave variable u a dependence on the coordinate p. The pa- 
rameter ~ ( p )  used in Eq. (2a) is the ratio of the rate of 
transverse field variations to that of the longitudinal field 
variations. Limiting our discussion to wide beams, we as- 
sume the parameter ~ ( p )  small and use it as the expansion 
parameter in perturbation theory. Below we show that 
~ ( p ) ~ ~ r ~ ( p )  and hence ~ ( p )  increases with p. For 
~ ( 0 )  1 the perturbation theory constructed with ~ ( p )  is 
valid in the region near the axis. 

We now present Eqs. (2) in a new form by separating the 
field strength and polarization into real and imaginary parts: 

E = E l + i E 2 ,  P = P l + i P 2 .  (5)  

The result is 

The system of differential equations (6) serves as a basis for 
studying the stability of the steady-state solution in the form 
of a three-dimensional optical soliton (E , E2, , PIS,, 
Past,  Nst) under small perturbations. 

3. STEADY-STATE SOLUTION 

Steady-state solutions of the system (6) were found in 
Refs. 9 and 10. Here we will examine only the basic topics 
without going into details. 

The steady-state solution for the field is a function of 
two variables, u and p, and we discard the derivatives with 
respect to z in Eqs. (6a) and (6b).') Using the fact that the 
parameter ~ ( p )  is small near the axis, we construct a pertur- 
bation theory by expanding the unknown quantities Elst ,  
EZst, PI,, PZst,  and Nst in power series in ~ ( p ) .  A steady- 
state solution can exist only if all parts of a pulse move with 
the same velocity, i.e., Vp is not a function of p. This occurs 
when the distributions of field and medium are matched: 

v-' - c-' = 
P a (p)  rp(p) = const, i.e., no(p)m rp2(p) . 

(7) 

One can easily check that in the event of exact resonance 
all the phase shifts emerge because the phase front is not 
plane. This statement is a direct corollary of the absence of 
phase modulation in the steady-state solution as a 2 7 ~  pulse 
with a plane wavefront." Bearing all this in mind, we write 
the steady-state solution of the system of equations (6) in the 
form 

E ~ , ~ = ~ ~ ( P ) . ~ ~ ~ ~ ~ , P ) + ~ ' ( P ) . O ,  

~ 2 ~ t = & O ( p ) . 0 + ~ ' ( p ) g 2 ( ~ , p ) ,  

pl , ,=&O(p).~+ E'(P)@'~(u,P), 

P ~ ~ ~ = ~ ~ ( P > . ~ ~ O ( U , P ) + E ' ( P ) . ~ ,  

~ , = & O ( p ) [ l  - 2 ~ ~ ( ~ , ~ ) ] + ~ ' ( p ) .  0. 
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The only terms left here were those which are at most first 
order in ~ ( p ) .  The dot stands for differentiation with respect 
to u, and the following notation has been introduced: 

Knowing the form of the steady-state solution [Eqs. (7) 
and (8)], we can derive the equations for the perturbations. 

4. THE SYSTEM OF EQUATIONS FOR THE 
PERTURBATIONS 

In accordance with the standard method of studying sta- 
bility, we write the solution of Eqs. (6) as the sum of the 
steady-state solution (8) and a perturbation (E lp, E 2p,  
P ? p ,  P2p,  and N,). We linearize the system of equations (6) 
w~th respect to the perturbation terms by employing the fact 
that these terms are small. To avoid burdening the formulas 
by writing the independent variable of the functions explic- 
itly, we only note that the steady-state solution is a function 
of two variables, u and p, while the perturbation is a func- 
tion of three variables, u, p, and z. 

The system of equations (6c) and (6d) has a conservation 
law expressing the fact that the length of the Bloch vector 
does not vary with time: 

N~+P;+P;= I. 

Here we have used the following initial condition for the 
population difference: 

Substituting the perturbed density-matrix elements into the 
conservation law yields 

Npst+PlstPlp+P2stP2p= 0. (10) 

If we combine this with Eq. (6c) and (lo), we arrive at the 
following equation for PZp : 

The steady-state solution has been found as a series ex- 
pansion in ~ ( p )  [see Eqs. (@]; a similar expansion holds for 
the perturbation. Here we do not carry out the expansion 
explicitly, bearing in mind that the accuracy of the solution is 
limited to second order in the expansion (up to el(p) inclu- 
sive). Then Eq. (11) can be written as 

Now we have all we need to reduce the system of equations 
for the perturbation to two equations for the following quan- 
tities: 

The equations are 

i2- a 
(P) P2 - (1 -2~ i ) e2  

= - ~ ~ ( p ) r ~ ( ~ ) A ~  [ ~ p ' i ; ~ ]  . (14b) 

The coefficients in Eqs. (14) do not depend explicitly on z, 
which makes it possible to look for their solution via an 
ansatz: 

el(u,p,z)= @(u,p)exp(yz), e2(u,p,z)= *(u,p)exp(yz), 
(15) 

where y is an eigenvalue that remains to be found. If Rey is 
negative, the steady-state solution is stable; if Rey is posi- 
tive, the steady-state solution is unstable; and if Re y= 0, the 
steady-state solution is neutrally stable under perturbations. 
We introduce the following change of variables: 

Now the right-hand sides of both equations are self-adjoint 
operators: 

and its solution is 
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Following the logic of the above discussion, we look for 
the eigenfunctions and eigenvalues of Eqs. (17) in the' form 
of power series in the parameter ~ ( p ) .  In zeroth order the 
system of equations (17) splits into two identical Schro- 
dinger equations with potentials U = N,,= 1 - 2 ~ h - ~ u .  The 
properties of this equation have been studied extensively.12 
The continuous spectrum of the equation occupies the range 
A2(p)< - 1. Earlier we noted that our approach is meaning- 
ful in the region near the axis; to be specific we write the 
boundary value p, found from the condition e(pl) = 1. Then 
the eigenvalues y corresponding to the solutions of the 
Schrodinger equations that do not decrease at infinity occupy 
the interval 

i.e., the steady-state solution is neutrally stable under longi- 
tudinal perturbations. 

The discrete spectrum consists of a single eigenvalue 
A(p) = 0, i.e., y=  0, and corresponds to the eigenfunction 
chY1u localized near the origin of coordinates. The eigen- 
value y=O is doubly degenerate and corresponds to the 
eigenfunctions 

which means that the pulse is insensitive to a small displace- 
ment of the initial position of the envelope and a small phase 
shift. 

The next step involves finding the correction to the ei- 
genvalue y= 0 caused by diffraction effects. We start by de- 
termining the correction to y= 0 for functions satisfying zero 
boundary conditions as u-+ ? m. The existence of nontrivial 
solutions of the system of inhomogeneous differential equa- 
tions (17) requires the right-hand sides to be orthogonal to 
the solutions of unperturbed equations. By discarding the 
terms in the equations containing the factor e(p)kn 
(rial), which we know to exceed the assumed order of 
accuracy, we can write the expression for the corrected ei- 
genvalue as  follow^:^) 

The first cofactor in (18) vanishes. Hence the steady-state 
solution (8) retains neutral stability to localized perturba- 
tions. 

We now return to the study of periodic perturbations. 
The right-hand sides of Eqs. (17a) and (1%) introduce cor- 
rections caused by diffraction into the eigenfunctions and 
eigenvalues of the homogeneous problem. We write the un- 
known eigenvalues in the form A = A. + A &  , where 
A,4Ao, which makes it possible to leave terms linear in 
A, in the equations. It seems reasonable to search for the 
values of A, in the asymptotic behavior of Eqs. (17a) and 
(1%). By selecting u fairly large, u = L S  1, we can ignore 
terms of the form g;q on the left-hand sides. Furthermore, 
for u large the second term on the right-hand side of Eq. 
(17a) becomes negligible. The equations can be written in a 
simplified form as follows: 

In deriving (19) we have employed the fact that Au is inde- 
pendent of p. 

Each eigenvalue of the unperturbed continuous spectrum 
- 1 is fourfold degenerate: 

Developing the perturbation theory, we arrive at equations 
for finding the corrections A, by employing the fact that the 
right-hand sides of Eqs. (19) are orthogonal to the solutions 
qhom and of the homogeneous equation: 

To estimate the values that A, takes on there is no need to 
solve Eqs. (20a) and (20b). Note that the right-hand side of 
Eq. (20a) contains only real quantities, so that the left-hand 
side of Eq. (20a) must also be real. This necessarily leads to 
ReA, = 0. Thus, a three-dimensional SIT pulse retains its 
neutral stability under periodic perturbations as well. 
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that Eqs. (21) differ from the similar expression (7) obtained 
on the assumption that rP4T,*. According to our theory, 
steady-state propagation of a pulse is possible if the trans- 
verse profile of the pulse satisfies the following equation: 

-- - 4 

1 
- P  

A rough sketch of the distribution of r i l ( p )  for the case 
where a (p)  = const and g(p) = exp(-p2) is given in Fig. 1. 
To construct the distribution we used the following numeri- 

FIG. 1. The field amplitude as a function of the distance from the beam axis, cal values taken from Ref. 13: 
A(p) (for a 2 ~ r  pulse the amplitude is proportional to 7,'). Here p is the 
dimensionless coordinate normalized to the radius of the refractive-index ?lo = 1.72, rP1,=, = 294 ps, distribution function g(p), i.e., to r ,  = 385pm. 

a = 27.5m- l, r o  = 43.8 pm. 

5. CONCLUSION 

We have shown that the propagation of a three- 
dimensional SIT soliton in a system with a transverse profile 
of resonant atoms is stable. Experimentally such a stable 
propagation mode can be achieved by using fiber-optic 
waveguides with implanted resonant impurities with a speci- 
fied concentration profile. Experiments in coherent propaga- 
tion of pulses in a waveguide with erbium atoms as resonant 
impurities have been carried out by Nakazawa et a1.l3 The 
use of radiation trapped in the waveguide made it possible to 
observe the SIT effect in "pure form" without the beam 
structure being damaged by diffraction. Nakazawa et a1.l3 
observed the processes in which the shape of the envelope 
became stationary, also the threshold nature of transmission, 
considerable delay times, and pulse splitting. One of the 
most astounding aspects of the experiment was the propaga- 
tion of a pulse though an optical depth aoL> 160 with no 
apparent change in the beam structure. 

Nakazawa et a1.13 give no data on the transverse distri- 
butions of resonant and nonresonant atoms in the waveguide, 
nor did they record the transverse field profile at the exit 
from the waveguide. Also, in the experiments the condition 
when 8941 which is the base of the theory under study is not 
met. However, the convincing proof of the possibility of sta- 
bilizing diffraction instability in the self-induced transpar- 
ency effect prompt a search for points of contact between the 
theory developed here and in Ref. 10 and the experimental 
data of Ref. 13 Allowing for the inhomogeneous distribution 
of the index of refraction of the nonresonant atoms in the 

We find that r i1(p)--+w as p--+w, which contradicts the 
requirement that the field decrease at infinity. However, the 
waveguide size rw=5pm is smaller than ro by a factor of 
one; hence the pulse interacts effectively with the waveguide 
material only near the axis. We can therefore assume that the 
periphery of the beam has only a slight effect on the nature 
of pulse propagation and in practice the field distribution for 
r > r, can be arbitrary (including distributions with decreas- 
ing wings.) The analysis given here makes one to believe 
that in the exeriment13 a not-fixed regime of propagation, 
which leads to the impulse stabilization, has been realized. 

A quick comparison of the results of theory and experi- 
ment reveals the general nature of suppression of diffraction 
instability: the matching of the transverse distributions of the 
resonant and/or nonresonant atoms to the transverse field dis- 
tribution. Because of the nonlinear nature of the interaction 
between the medium and a SIT pulse, the waveguide formed 
by the atoms is capable of supporting only one distribution, 
in contrast to ordinary "linear" optical waveguides, which 
have a set of transverse modes. In this sense a resonant non- 
linear waveguide can be characterized as single-mode. 

We believe that it is worthwhile to develop applications 
of the theory to optical waveguides. The natural problem 
arising here is how to estimate the extent to which nonreso- 
nant atoms influence the formation of SIT solitons and, 
among other things, to account for the nonlinearity of the 
refractive index and the dispersion of the group velocity. 

plane perpendicular to the propagation axis, ~ ( p )  = vog(p) 
[here r),= vl,=o is the refractive index at the center of the 'This is true only if the field is exactly in resonance with the period, 

o = o, ; otherwise the phase of the field in Eq. (4) may be a linear function 
waveguide, and p = r / ro,  with ro the curvature radius of the of distance =, 
distribution function g(p)], we can write the following ex- ' ~ o t e  that when developing the erturbation theory, we must expand the 
pression for the SIT soliton velocity valid for rp+T; : eigenvalue h(p) in powen of & rather than e ( p )  In the present case 

this detail is unim~ortant. 
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