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We show that anisotopic curvature of spacetime leads to an apparent anisotropy in the orientation 
of distant galaxies. We have calculated this effect to first order in the curvature for the most 
general Petrov type I spaces. The probability density distribution for the orientation of galactic 
normals can be described by a triaxial ellipsoid whose axes lie along the unit vectors of the 
canonical tetrad, while the amplitude is proportional to the square of the distance and is given by 
the real parts of the stationary curvatures of the Weyl tensor. We estimate deviations of the 
geometry of the universe from Friedmann models using anisotropy data derived from observations 
at scales of order 100 Mpc. Other testable consequences of the bending of light rays are 
examined. We show that this does not provide an explanation for the so-called Birch effect-a 
systematic deviation of the plane of polarization of radio sources from the direction of 
their major axes. It can therefore not be ascribed to the rotation of the universe. O 1994 American 
Institute of Physics. 

1. INTRODUCTION 

Over the past 30 years, astronomers have produced a 
number of large-scale catalogs of galaxies which, as a group, 
cover almost the entire celestial sphere.'-3 In every one of 
them, the distribution of galactic position angle ( p  in Fig. 1, 
the angle between a galaxy's major axis and the celestial 
meridian) displays a statistically significant anisotropy. This 
is a weak effect, and it shows up only when data from tens of 
thousands of galaxies are processed. A new approach to the 
study of anisotropy4 has made it possible to determine the 
distribution of galactic normals over the celestial sphere in 
the quadrupole approximation, and the result can be de- 
scribed as a triaxial ellipsoid. The axes determined from data 
in three independent catalogs of galaxies are highly consis- 
tent with one another. Subsequently, a similar anisotropy was 
discovered by analyzing the disposition of pairs of galaxies 
(where the line joining the pair was used instead of the major 
axes). In this case as well, the anisotropy ellipsoid exhibited 
approximately the same characteristics.' 

The investigation of anisotropy in the orientation of pairs 
of galaxies has divulged an important fact: this anisotropy 
shows up both in physical gravitationally interacting pairs 
and in optical doubles that appear to be near each other in 
projection on the sky, but that are actually at substantially 
different distances. Anisotropy in the orientation of optical 
pairs of galaxies cannot be accounted for by tidal forces or 
other physical mechanisms that might single out a preferred 
direction. 

In what follows, we show that such anisotropy might 
result from distortion of light rays as they propagate through 
curved spacetime. As a consequence, the apparent orientation 
of galaxies can differ somewhat from the original orienta- 
tion. The relationship (1) between the apparent and original 
position angles is nonlinear, and ensures that preferred direc- 

tions of apparent orientation will exist, even when the "true" 
distribution is perfectly isotropic. 

The resultant type of anisotropy and the direction and 
amplitude of its maximum and minimum are governed by the 
curvature tensor of spacetime, averaged over the region of 
space in which we reside, out to a radius of order 100 Mpc. 
In the present paper, we relate these quantities to the eigen- 
values and eigenvectors of Weyl's conformal curvature ten- 
sor for the most general Petrov type I spaces.5 It should be 
pointed out here that this phenomenon provides us with a 
unique opportunity to determine directly the extent to which 
the actual geometry of the universe deviates from the Fried- 
mann models, for which the Weyl tensor vanishes identically. 
The magnitude of these deviations may well furnish a test of 
cosmological models and scenarios for the evolution of in- 
homogeneities. 

The problem of the isotropy and anisotropy of galactic 
orientations is an important element of the theory of galaxy 
formation. Introducing a global anisotropic component of the 
spacetime curvature, which is most likely due to nonunifor- 
mities in the distribution of matter, makes it possible to com- 
pare the real randomness of galactic orientations with the 
observed anisotropy. Based solely on a single set of data on 
galactic orientations, it would be impossible to elucidate the 
scale of the phenomenon and to draw up a scenario for its 
origin and development. Anisotropy of the non-Friedmann 
component of the curvature might also result from local or 
global rotation, or from some stupendous gravitational wave, 
but the latter alternatives should probably be thrown out on 
account of their inconsistency with the observed isotropy of 
the microwave background. 

In this paper, we report on a preliminary assessment of 
deviations from Friedmann models. More detailed evalua- 
tions would require allowance for a number of strictly astro- 
nomical factors, such as absorption in the Milky Way, selec- 
tion effects, systematic catalog errors, and so on. Our 
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FIG. 1. A flat galaxy observed edge-on as a line segment CC'. In 
Minkowski space, its apparent position angle would correspond to the origi- 
nal angle p (a). When a light beam propagates through an anisotropically 
curved spacetime, it undergoes shear deformation, which ends up elongating 
the image by a factor K along the A axis and compressing it by a factor of 
K along the B axis. As a result, the galaxy CC' is observed in position angle 
p r =  arctan [ K 2 t g ( ~ +  y ) ] -  y (b). For an isotropic distribution of p, the 
distribution of p' becomes anisotropic, with its maximum along A and its 
minimum along B. For a galaxy that is not quite so flat (dashed ellipse), the 
effect is more pronounced, due to the fact that after shear deformation the 
apparent major axis of the ellipse is DD' rather than CC'. The observed 
galactic axial ratio changes as well. 

principal goal here is to construct a theory of the origin of 
the apparent anisotropy in the orientation of distant extraga- 
lactic objects engendered by the distortion of light rays as 
they propagate through curved space, and to estimate the 
parameters of the curvature on the basis of the observed an- 
isotropy. 

We calculate to first order in the small anisotropy. It 
would be straightforward to proceed to the next approxima- 
tion, but it would also be premature, in view of the low 
accuracy of our data on anisotropy in the orientation of dis- 
tant galaxies. 

where y is the angle between the elongation axis and the 
celestial meridian. The distribution of apparent galactic po- 
sition angles p' becomes anisotropic. The function 

has been used by Parnovskii et ale4 to study anisotropy in 
galactic orientations; here N is the number of galaxies con- 
sidered and pi is the position angle of the ith galaxy relative 
to the direction of the point (ao,$). From here on we use a, 
and 8, for standard astronomical equatorial coordinates, and 
we use a and S for coordinates in some other spherical co- 
ordinate system whose axis points toward 
a,= a, ,a,= 4 (the celestial pole in astronomy). Here 
pi-the position angle of the galaxy in the (a,S) coordinate 
system-also depends on a. and $. 

In the quadrupole approximation, the function F(a ,  ,&) 
is the relative anisotropy of the probability density for the 
orientation of galactic normals, taken with the negative of 
the sign used in Ref. 4. 

From Eq. (I), we find that when the original orientation 
of the individual galaxies is isotropically distributed, the 
mean value 

is nonzero, i.e., the resulting distribution is anisotropic. If 
one observes a galaxy of elliptical cross section (shown 
dashed in Fig. 1) with axes a and b<a ,  then the images of 
the points C and C' after shearing will no longer be on the 
major axis of the ellipse. 

The equation of this ellipse in the (A,B) coordinate sys- 
tem is 

2. THE DISTORTION OF LIGHT RAYS AND ANISOTROPY A(A)=a cos(p+ y)cos A+b sin(p+ y)sin A, 

We know that light rays are deformed in three ways as B(A)=b cos(p+ y)sin X+a sin(p+ y)cos h. 
(4) 

they propagate through the curved space of general 
relativity-they undergo broadening, rotation, and 
The first two affect a circular beam by altering its radius and 
causing it to rotate about its axis, but neither can produce 
anisotropy, since neither distorts the distribution in position 
angle. Shear is a different issue, however: it turns a circular 
beam into an elliptical one as the beam is compressed and 
elongated along two perpendicular axes. 

We direct our attention to a flat galaxy viewed edge-on, 
treating it as a line segment (CC' in Fig. 1). The original 
position angle p is reckoned in the positive direction from 
the celestial meridian. As a result of shear, which elongates a 
beam by a factor K> 1 along the A axis and compresses it by 
a factor K along the B axis (Fig. I), we see the galaxy with 
position angle p' , which is related to p by 

Here h=O corresponds to the point C. After shearing, the 
squared modulus of the radius vector of the apparent ellipse, 
p 2 = ~ 2 ~ 2 + ~ - 2 ~ 2 ,  reaches a maximum at h=ho, where 

The major axis of the apparent ellipse joins the points corre- 
sponding to D and D '  in Fig. 1. The apparent position angle 
can then be obtained from 
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with A,  B, and Xo taken from (4) and (5). The expression for 
(cos(2p1)) obtained from these equations can be reduced to 
elliptic integrals. We are interested, however, in the case 
K- lel, where Eq. (6) acquires the same form as Eq. (1) 
with the replacement of K by K, where 

which effectively describes a A-fold magnification of the 
shear modulus K - 1. 

We can therefore limit our calculations to flat galaxies 
viewed edge-on, multiplying the resulting function by (A), 
which is the mean value of A for the sample of galaxies. 
Note that this is not the first derivation of such a factor.' A 
diverges as b+a,  but no special consideration is required. 
As a rule, the position angle of a galaxy with an approxi- 
mately circular cross section is simply undefined. Moreover, 
the sample of galaxies used in Ref. 4 to study anisotropy had 
921 .5 .  

We now turn to Eq. (3), in which K and y depend on a 
and 6. Furthermore, the shear modulus K- 1 depends on the 
distance r to the galaxy (quadratically, as will be shown be- 
low). Taking K -  1 e l ,  we find that for galaxies uniformly 
distributed in space, (2) and (3) yield the mean value 

The mean-squared value (r2) can be related to the depth of 
the sample R, i.e., to an estimated maximum distance of 
galaxies in the given catalog: 

Getting down to specifics, we now use Eq. (8) to find the 
direction and magnitude of shear in general relativity. 

3. DETERMINATION OF SHEAR PARAMETERS FROM THE 
EQUATION FOR THE DEVIATION OF ISOTROPIC 
GEODESICS 

We can find the alteration in the form of a beam of light 
as it propagates through curved spacetime by solving the 
equation of geodesic deviation, 

where uk is the tangent vector of the isotropic geodesic cor- 
responding to the center of the beam, r is the affine param- 
eter along the geodesic, and di is the deviation vector. After 
transforming to tetrad components d(')= hf)dk with respect 
to the parallel transported frame hf), the solution takes the 
form:9 

d(i) = d(k)  +s(i) v(k) r .  
(k)  0 (k) 0 (10) 

Here dhk) and vhk) are the initial deviation of the beam and its 
rate of change, and c[;\ and s[;\ are fundamental solution 
matrices. For propagation of a parallel beam at the initial 
point we have vhk)=0, and the second term in (10) vanishes. 
For a beam that diverges at the initial point dhk)=O, and the 
first term vanishes. 

In the present case a light beam converges either to one's 
eye or the objective of the observer's telescope. Time- 
reversing this process, we obtain a beam leaving the ob- 
server. At small r ,  the shape of that beam is dictated by the 
vector d from Eq. (10) with the first term omitted, and it 
corresponds to the apparent shape of the galaxy. The "true" 
shape that would be observed in flat spacetime is given by 
the vector vhk)r. 

We can nail down the choice of moving frame hp) by 
expressing it in terms of the unit vectors e,, e,, es of a 
spherical coordinate system that is parallel-transported from 
the observer along each ray belonging to the beam. We 
choose the tangent vector u=(l,e,)/ fi to be h(,). The sec- 
ond isotropic vector is h(,)=(l,-e,)/ 6 ,  and the two mutu- 
ally conjugate complex vectors in the plane orthogonal to the 
beam are h(2,3)=(~,e,~ies)l&. The initial deviation takes 
place in the plane of the sky (e,,es), i.e., ~(~)=wh( , )+w*h(~) ,  
where the asterisk denotes complex conjugation. The argu- 
ment of w determines the apparent position angle of the gal- 
axy. 

With this choice of moving frame, the affine parameter r 
is the distance to the galaxy, and the required component d(2) 
of the solution (10) for the divergent beam becomes 

~ leksandrov~ has obtained a power series in the curva- 
ture tensor and its derivatives for the components s{$ in the 
parallel-transport frame. In the region of space under consid- 
eration here, z S  0.05, and the anisotropy can be considered 
small. The deviation of S from the unit matrix is then small, 
and we can retain just the two leading terms of the expan- 
sion: 

where 

Here ~ o = ~ i k l m h f o ) h ~ 2 ) h , [ o ) h ~ )  is a component of the Weyl 
spinor, and @m=~ik lmh;o )h f2 )h~O)h~)  is the spinor compo- 
nent of the traceless part of the Ricci tensor (see Ref. 10) 
Similar expressions can also easily be obtained from the Sa- 
chs equations.6" 

Subsequent terms in the expansion of the matrix S con- 
tain two types of corrections. The first type consists of non- 
linear terms in r2% and r 2 a a b ,  which we can always ne- 
glect, and the second type consists of terms that are multiple 
covariant derivatives of the curvature tensor multiplied by 
corresponding powers of r .  The latter describe the variation 
of the curvature tensor in the region in question. A term of 
this kind from the covariant derivative is at least of order r3. 
It is possible to discard it if the extent to which spacetime 
deviates from the Friedmann models, which is characterized 
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by qo, varies little over the scales considered here (-100 
Mpc). We assume that this is the case, and that q0 and am 
do not vary along the path of the ray. 

Noting that am is real, the relationship between the 
original and apparent position angles that follows from (11) 
can be brought to the form (1) via the parameters 

We also have K- 141 by virtue of (13). The expression 
in the integrand of (8) is then 

r2 
(K- 1)cos 2 y- - Re(Vo). 

3 (15) 

This effect is clearly independent of am-i.e., of the pres- 
ence of matter-and it vanishes in Friedman models, for 
which q 0 = O .  With (15), Eq. (8) then takes the form 

XRe(To(a,S,ao,So))da cos SdS. (16) 

The next step is to determine the function lPo for a 
petrov type I space. 

4. RELATIONSHIP OF ANISOTROPY TO INVARIANTS OF 
THE WEYL TENSOR 

We now express qo in terms of the eigenvalues and 
eigenvectors of the Weyl tensor, noting that the latter belong 
to the more general type I in Petrov's classification scheme.' 
It is worthwhile to carry out the calculations in the spinor 
formalism, making use of the spinor equivalent of the con- 

formal curvature tensor, namely the Weyl spinor 'PABCD. 
The fact that there exists a spin vector basis (oA, L ~ )  in which 
it takes the formlo 

means that it is Petrov-Penrose type I spinor. Here p and p 
are complex functions of the coordinates that are related to 
the stationary Petrov curvatures. 

In view of the fact that we are integrating over a speci- 
fied region of space in Eqs. (8) and (16), we can replace the 
field of the spin tensor 'PABcD with its effective value, i.e., 
we can assume that p and p are complex constants, and that 
(oA, L ~ )  is a parallel spin basis. 

The spinor basis (oA, L ~ )  is related to the Petrov canoni- 
cal tetrad qi) as follows: 

gio)=(oAoA'+ LALA')/ JZ; g(l)=(oALA'+oA'LA)/ JZ; 

We can assume the timelike vector g ( ~ )  is tangent to the 
observer's time axis in the present approximation, since in 
the region of space under consideration, with R -  100 Mpc, 
the relative velocities are gravitating bodies and the observer 
are much less than the speed of light, and special relativistic 
effects can be neglected. 

Let w ( ~ )  denote the unit vectors of the Cartesian coordi- 
nate system corresponding to the spherical coordinate 
( r ,  a ,  8). We specify the relative orientation of the triads qk) 
and w ( ~ )  (i,k=1,2,3) via the Euler angles $, 6, cp, with 
w ( ~ )  = M{:]~(~) , where 

cos cjlcoscp- sin $sin cpcos 6 - cos $sin cp- sin $cos cpcos 6 sin $sin 6 

sin $cos cp+ cos $ s incpcos6  - sin $sincp+ cos $cos cp w s  6 - cos +sin 6 (19) 

sin cp sin 6 cos cp sin 6 cos 6 

To calculate q 0 ,  it is now sufficient to note that relative u = e - i p /2 [ cos (~ /2 ) cos (8 /2 ) e - '~2 )  
to the Cartesian axes w ( ~ ) ,  the unit vectors e(i) are given by 
e( i )=~{: ]~(k)  , with - sin( 0/2)sin( 8/2)eiU2] 

j c o s n  c o s S  s i n a  c o s s  s i n s \  

- sin a w s  a 

O I* v = - ie '~'~[sin( 0/2)cos( 8 / 2 ) e G 2 )  
- ws a sin S - sin a sin S cos S 

(20) + COS( 8/2)sin( B/2)eG2)]. 

We now introduce the spin basis (@ , #) corresponding 
to the unit vectors e(,). The compound rotation e=NMg in- 
duces a unitary spin transformation of the form Here, d= S- ~ 1 2 ,  &a- d 2 .  

Finally, we obtain an expression for the desired compo- 

(21) nents of the Weyl spinor: 

where 
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+ sin2 S) cos 2 cp + i sin S cos 8 sin 2 cp] 

+ $ sin(2@-2a)[(l+ sin2 S)cos 8 sin 2 p  

+ i sin S( 1 + cos2 B)COS 2 p] 

- sin 8 cos qsin( $- a )  ( i sin 2 p 

- cos 8 sin S cos 2 cp) - cos( $- a )  

- (i  cos 8 cos 2 cp + sin S sin 2 cp)] 

+ f sin2 8 cos2 8 cos 2 cp} + f p{sin2 8[(1 

+ sin2 S)cos(2$- 2 a )  -2i sin S sin(2@-2a)I 

+ sin 2 8[2i cos 6 cos( I)- a )  + sin 2 S sin( @ 

This expression depends on the coordinates a and S, the 
Euler angles @, 8, and cp, which specify the orientation of the 
Petrov tetrad, and the two complex invariants p = p l + i p 2  
and p=pl+ip2, which characterize the deviation from Fried- 
mann models in the present development. 

Substituting (23) into (16) and integrating over the ce- 
lestial sphere yields 

Q(8 ,p )=p l  cos 2 9  sin2 8+p1(1-3 cos2 8). (24) 

The dependence on o!,, and 4 enters into this expression 
implicitly. It is straightforward to find the explicit depen- 
dence of cp and 8 on a. and &, and on the Euler angles Ge, 
8,, and cp, with respect to the standard Cartesian coordinate 
system: 

cos so cos( I,be - a,,) 
tg(q- ") = sin 8, sin So- cos e3 COS So sin(@, - ao)  

cos 8= cos 8, sin So + sin 8, cos So sin(@, - ao) .  (25) 

Substituting these equations into (24) yields the desired de- 
pendence, which, however, will not be needed further. 

It is immediately clear from (24) that the maxima and 
minima of the function F occur in the directions of the unit 
vectors of the Petrov moving frame. Calculating Q for these 
directions, we obtain 

These expressions are the same as the real parts of the time- 
independent Petrov curvatures for the Weyl tensor. We de- 
note these curvatures by PI ,  fi, and p3, and assume that 
pla&>/?3. Noting that & +fi+&=O, we have P,>O and 
p3<0. From (24) and (26), 

The distribution density of galactic normals can be ob- 
tained in the quadruple approximation by subtracting the 
function F(o!,,,4)/4.rr from the mean density 1 / 4 ~ . ~  We see 
from (24) that the probability density of the normals can be 
described by a triaxial ellipsoid whose axes are parallel to the 
Petrov unit vectors. If p l = O  or 9p?=&, it becomes an el- 
lipsoid of revolution. Note that this is inevitable if a type I 
space degenerates into a Petrov type D space. 

5. ESTIMATED PARAMETERS OF THE CURVATURE 
TENSOR AVERAGED OVER ANISOTROPY DATA 

We now return to the data on the extrema of F obtained 
in Ref. 4. If we construct for all of the galaxies listed in 
catalogs 1-3, we find that in all three catalogs it peaks es- 
sentially at the celestial pole, and it has a minimum in the 
neighborhood of a=30-110°, with S=-20-30'. For the 
more accurate catal0~s,2'~ F,, is 16-18% and 
Fmh--8-11%. Similar results are obtained when one in- 
vestigates anisotropy in the orientation of galaxy pairs. 

If we assume that the observed anisotropy is entirely due 
to the mechanism discussed above, we can estimate the real 
parts of the time-independent Petrov curvatures. Taking the 
depth of the sample in Ref. 3 to be R -  100 Mpc, we have 

Since all three curvatures are much greater than the back- 
ground curvature for the Friedmann models, the curvature 
tensor will be essentially identical with the Weyl tensor. This 
comes as no surprise. If for clarity we represent the Fried- 
mann model as a sphere, and deviations as ripples on its 
surface, then at small scales the curvature of the resulting 
wrinkled globe will be dictated precisely by the "bumps" 
and "ruts." Small deviations will be those with 

which holds for the present case. We then find that the exist- 
ence of an anisotropic component of the curvature is not at 
variance with the observed quasi-isotropy of the Hubble ex- 
pansion. 

One questionable aspect of the anisotropy ellipsoid con- 
sidered here is the coincidence of the maximum of F with 
the celestial pole-a preferred direction for spurious anisot- 
ropy that can result from measurement errors or unrecog- 
nized selection effects in the data of Ref. 4. Galaxies with the 
smallest angular size are the most susceptible to such errors. 
If we resample catalogs 1-3 so as to select only galaxies 
larger than some angular size, the maximum of F moves 
away from the pole to a=180-260°, S=30-70°, and the 
minimum is relocated to a=30-110°, S=10-50".~ F,, 
ranges accordingly from about 20 to 25%, and I;,,--20- 
-25%. The depth of the sample becomes R -  50 Mpc Equa- 
tion (27) then yields 
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We also find that (29) is satisfied at R=50 Mpc, but not at 
R = 100 Mpc. - 

As we noted above, our present goal is to construct a 
theory of the onset of apparent anisotropy. The estimates (28) 
and (30) are at best tentative-improvements will come not 
so much from further development of the theory as from 
more accurate determinations of the parameters of the anisot- 
ropy ellipsoid. We have recently undertaken to separate out 
of the observed anisotropy in galactic orientations that part 
due to measurement errors and selection effects. The residual 
anisotropy F,,, and  IF^^,^ is at most 10% [unpublished re- 
sults of S. L. Parnovskii, I. D. Karachentsev, and V. E. 
Karachentseva], yielding 

6. TESTING THE HYPOTHESIS 

We now suggest a number of implications that are ame- 
nable to test. The present phenomenon does not lead to a 
difference in the galactic angular momentum probability dis- 
tribution for opposite directions on the celestial sphere (di- 
pole anisotropy). Unfortunately, the direction of rotation is 
known for just a few galaxies in the Local Supercluster, and 
we thus have no solid statistical basis for accepting or reject- 
ing the existence of dipole anisotropy. 

A second implication relates to changes in the apparent 
axial ratio of a galaxy under shear. Instead of the true ratio q ,  
we would observe an ellipse with ratio q r ,  where 

2 + - r 2 ( ~ e  q0 cos 2p-  Im 'Po sin 2p). (32) 
3 

Here we have made use of Eqs. (4), (5), (12), and (13). For a 
sample consisting of isotropically oriented galaxies distrib- 
uted uniformly in space, we obtain the expectation values 

R 
( In q '  cos 2p)- - Re qo, 5 

R 
( In q r  sin 2p)-- - Im qo. 

5 

To first order in K- 1 ,  these quantities do not change 
when p is replaced by the apparent position angle p ' .  Equa- 
tions (23) and (33) make it possible to check the estimated 
parameters ,ul and pl , as well as the eigenvector orientations 
of the Weyl tensor. On the other hand, with (23), (34) enables 
one to estimate rrq! and pz and check the determination of the 
eigenvector directions. It should be noted, however, that as- 
tronomical measurements of the galactic axial ratio are of 
much lower precision than those of position angles, which 
are used in Eq. (2). 

A third effect crops up in the clustering of galaxies in 
deep samples of selected regions of the sky. The direction of 
cluster axes should in this case be preferentially orthogonal 
to the shear axes. 

A number of other effects also exist, such as a weak 
variation in apparent galactic magnitudes, but these are too 
small to be detectable in the near future. 

Finally, we mention the rotation of the polarization angle 
of radio waves emitted by distant sources, an effect that we 
discuss in the next section. 

7. THE BIRCH EFFECT 

Birch reported" in 1982 that had detected a systematic 
deviation of radio polarization of distant sources from their 
apparent position angles p ' . If pl denotes the position angle 
corresponding to the polarization, then the quantity 
A=pl-pr is, as a rule, positive for sources in the celestial 
hemisphere centered at a-45", +35", and negative for 
sources in the opposite hemisphere. The means of A for the 
two hemispheres, (A), = -31.628" and (A),= 12.3+7.3", are 
nonzero at a high confidence level. Birch maintained that this 
provides evidence for the rotation at an angular velocity 
w-10-l3 radfyr of the universe or a large part of it, about the 
axis joining the centers of these two hemispheres. No sub- 
stantiation was provided for this hypothesis, nor was any 
given for the estimated angular velocity. 

Subsequently, a number of attempts were made to ex- 
plain the Birch effect in terms of Faraday rotation in the 
Galactic magnetic field, but the original supposition of rota- 
tion of the universe was retained. Panov and sbytov8 calcu- 
lated the angle A for a specific spacetime model with rota- 
tion. 

What could lead to a difference between p and p' ? 
Since there is no rotation in a convergent light beam, the 
effect must be related to shear. Also, since the polarization 
vector is parallel-transported along the beam axis, we have 
p, =p when the polarization direction of the beam is initially 
along the source's major axis, i.e., the direction of polariza- 
tion corresponds to the true orientation of the radio source. In 
the weak-anisotropy approximation, we obtain from (I), (7), 
and (12) 

which taken together with (23) yields A as a function of all 
of the parameters. The model considered in Ref. 8 pertains to 
Petrov type D, for which (in the notation of Ref. 8) 

Furthermore, the rotation axis points along the polar axis of 
the spherical coordinate system, and the Euler angles $, 8, 
and cp vanish. Substituting these quantities into (23) and (35), 
we obtain the equation for A in this special case. 

In general, we see that the reason for noncoincidence of 
the radio source orientation and the polarization may be 
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more than just rotation. It may also be any other deviation 
from a conformally flat Friedmann spacetime-in particular, 
irregularities in the distribution of matter. 

Nevertheless, we can suggest two reasons why the ob- 
servations described in Ref. 11 may not result from general 
relativistic effects in the propagation of radio waves. First, 
the magnitude and sign of A are sensitive functions of the 
source position angle. If they are randomly distributed, we 
will no longer observe two celestial hemispheres with differ- 
ent signs of A. Second, as can be seen from (35), the effect is 
quadratic in the distance. Birch claims, however, that the 
effect is the same for samples spanning redshifts from z=0.3 
to 2-1.5. Nevertheless, an investigation of A as a function 
of position angle and location on the celestial sphere may 
confirm the theory proposed here, which predicts the behav- 
ior implied by (23) and (35) 

Note that other factors can influence A, including the 
previously mentioned Galactic magnetic field. Observable 
radio source, however, can be located much farther away 
than galaxies, and observational data on those sources make 
it possible to ascertain the actual large-scale geometry of the 
universe. We cannot rule out the possibility that the present 
approximation (14) may not hold in that situation. 

8. CONCLUSION 

We have shown that the deviation of the curvature of 
spacetime from that given by Friedmann models results in an 
observable anisotropy (possibly optical) in the orientation of 
galaxies and galaxy pairs. For weak anisotropy, the probabil- 
ity density function for the orientation of normals on the 
celestial sphere is given by a triaxial ellipsoid whose axes are 

aligned with the canonical Petrov tetrad, and whose param- 
eters are related to the real parts of the characteristic curva- 
tures of the Weyl tensor. This endows us for the first time 
with the ability to determine the geometry of the universe on 
scales of 50-100 Mpc. At larger distances one can observe 
the deviation of the plane of polarization of radio waves 
from the major axis of distant radio sources. To test this 
hypothesis, we can take advantage of the correlation between 
the axial ratio q of a galaxy and its position angle p, as given 
by (33), plus other deductions listed in Sec. 6.  

In closing, we thank V. I. Zhdanov for fruitful discus- 
sions. 
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