
Axion synchrotron emission: a new bound on the axion-electron coupling constant 
A. V. Borisov and V. Yu. Grishina 

M. V Lomonosov Moscow State University, 119899 Moscow, Russia 
(Submitted 15 July 1994) 
Zh. Eksp. Teor. Fiz. 106, 1553-1558 (December 1994) 

We have calculated the e - + e + a  synchrotron contribution Q, to the axion luminosity of a 
magnetized, highly degenerate relativistic electron gas. By comparing Q, expected under neutron 
star conditions with the known luminosity accounted for by neutrino synchrotron emission 
(e -+e+ v+ i), we have obtained a new and more stringent bound on the axion electron coupling 
constant, ga , s5 .  10-14. O 1995 American Institute of Physics. 

1. The axion is a pseudo-Goldstone boson invoked to 
address the a priori strong breaking of CP invariance in the 
standard model. It results from the spontaneous breaking of 
the global U(l)m symmetry introduced by Peccei and 
~uinn. '  In the standard axion model: it is assumed that the 
energy scale v, for PQ symmetry breaking is of the same 
order as the electroweak scale v ,= ( f i~~) -~" -250  GeV, 
where GF is the Fermi constant. That model has already been 
invalidated by experiment,3 a fact responsible for the appear- 
ance of various invisible axion models, in which v,S v, 
(these have been surveyed in Ref. 4). 

The interaction of axions a and fermions f [in units with 
fi=c = 1 and a metric with signature (+ - - -)I is given by 
the Lagrangian Eq. (1) 

with dimensionless coupling constant 

and where mf is the fermion mass, cf is a numerical coeffi- 
cient that depends on the specific model,4 and 
$=-if+$? is the usual Dirac matrix. It can be shown 
(see, e.g., Ref. 4) that to first order in alv,, the Lagrangian 
(1) is equivalent to the pseudoscalar interaction Lagrangian 

by a natural analogy with the corresponding electromagnetic 
process (e+e + y)6 we call axion synchrotron emission 
(ASE). We calculate the contribution of ASE to the axion 
luminosity Q, of a highly degenerate magnetized electron 
gas under neutron star  condition^.^ By comparing Q, with 
the neutrino luminosity Qv  stemming from neutrino synchro- 
tron emission (NSE: e+e+  v+ C )  in neutron stars as calcu- 
lated by Kaminker et a ~ . , ~  we place a new bound on g,, . 

2. The amplitude for ASE follows directly from the La- 
grangian (3): 

where kp=(w,k) is the four-momentum of the emitted axion, 
which can be assumed massless (k2=0) under the adopted 
high-energy conditions (see below); $,, and $,,I are the exact 
initial and final electron wave functions in the constant mag- 
netic field Hlli (which can be found in explicit form in Ref. 
6); V is the normalization volume. Making use of (5), we can 
find the ASE probability in exactly the same way as for 
conventional synchrotron emis~ion .~  We then apply the result 
to the present case, with large initial and final transverse 
(relative to H) electron momenta (p, 9 m ,  p i  9 m) and mag- 
netic fields H G H , = ~ ~ / ~  = 4.41. 1013 G, for which the ini- 
tial and final (printed) electron states are semiclassical (quan- 
tization of the transverse motion can be neglected): 

=- 
-a, igaf($f?~f)a.  (3) dw - g,2, m2 u2 1 

-[-Q1(x)]. 
In view of the smallness of gar(-llv,), axion effects d u  8 , ~ ~ ~ ' ~  ( ~ + u ) ~ x  

(6) 

may well be most noticeable under astrophysical This expression yields the spectral probability distribution 
conditions-high matter densities, high temperature, and for the process in terms of the invariant 
strong external magnetic fields (in neutron stars). ~ a f f e l t ~  has 
surveyed various axion production processes and astrophysi- X PI 
cal methods of placing bounds on axion model parameters. u=--l=--l 

X' Thus far, an analysis of the bremsstrahlung emission of ax- p i  ' 

ions in electron scattering [due to the interaction (3)] by nu- where 
clei (e+(Z,A)-+(Z,A)+e+a) in red giants and white 
dwarfs has yielded5 

g,,<2. 10-13 

as a bound on the axion-electron coupling constant. Note Fpv is the external magnetic field tensor, ~ ~ = ( & , p )  is the 
that the bound quoted by Raffelt4 is weaker: ga,s3.  10-13. electron four-momentum (the transverse component of the 

In this paper, we examine the emission of axions by momentum p, , the longitudinal component p,, and the en- 
relativistic electrons in a magnetic field (e+e+a),  which ergy E=J(m2+p:+p,2) are a11 conserved in the magnetic 
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field), x is obtained from (8) via the substitution p--+pr and 
Qr(x)=d@(x)/dx is the derivative of the Airy function (cf. 
Ref. 9, for example): 

with argument 

and OSuCw (to relativistic accuracy: p,lm* 1). The in- 
variant conditions for the semiclassical Eqs. (6) to apply 
arelO.ll  

The longitudinal momentum p, is then arbitrary (see Ref. 11, 
p. 49), a fact that we make use of in Eq. (19). Note that (6) 
can be derived from Eq. (3) of Ref. 12 for the muon decay 
probability (p-+e+ cp)  in a magnetic field, where cp (the 
familon) has mixed scalar-pseudoscalar coupling to fermi- 
ons. All that is necessary in the indicated equation is to retain 
only the pseudoscalar contribution, put m,=me, and aver- 
age (sum) over spin states of the initial (final) lepton. The 
final result is then the same as (6). 

3. We now calculate the luminosity Qa-the rate of en- 
ergy loss per unit volume of the electron gas due to ASI. 
Using the probability (6), we have 

where over a substantial angular range, the energy of the 
emitted axion is" 

is the Fermi-Dirac function for the initial electron distribu- 
tion at temperature T, and p is the chemical potential; nF(er) 
is the same function for the final electrons, with E' =PO. 

We now consider a highly degenerate relativistic gas, 
with 

where n, is the electron number density. Equation (15) is a 
valid expression for the Fermi momentum when 

whereupon many Landau levels are occupied, and we can 
neglect the magnetic field strength dependence of the Fermi 
energy E, (see, e.g., Ref. 13). We assume that the magnetic 
field is nonquantizing, 

i.e., the electron's "transverse" energy spectrum is essen- 
tially continuous (in general, the transverse momentum is 
quantized:6 pf = 2eHn, n = 0,1,2,. . .). In (12), therefore, we 

can use the semiclassical Eq. (6) for the probability dw, and 
summation over the initial and final electron states can be 
replaced by an integration over phase space. 

Subsequent calculations follow those in Ref. 8 for the 
neutrino luminosity resulting from neutrino synchrotron 
emission (e-evb). When (15)-(17) hold, the Fermi factor 
nF(&)[1 -n,(~')] in (12) has a sharp maximum at p e p F ,  and 
the principal contribution to the integral over p comes from 
the narrow interval lp-pFl s T + p F .  We can therefore put 
p = p ~  everywhere in the integrand of Eq. (12) except 
the argument of nF. The resulting integral can easily 
be evaluated after we make the substitution 
p+z=(&-p)/T-(p-pF)/T: 

Here we take /L-EF-P~, and the limits of integration over z 
can be set to infinity by virtue of the fact that pF /TP  1 [see 
(15)l. In (18), the axion energy (13) can be set to w=upF, 
since I E - E~IST in the most important range, and u+ 1 .  
Gathering all of this together, including (18) and (16), we 
have for the luminosity (12) 

gim:12 y;/)6 sin 6(:duu4[exp F-' 
Q a =  (4?r)2?r 

Here, x is given by (lo), where the parameter x of (8) is 

in which yF=pFlm and 6 is the angle between p and H. 
The case of most interest is 

This inequality (21) is satisfied over a wide range of neutron 
star parameters n, and T . ~  Note that to order of magnitude, 
T, equals (in the adopted system of units) the frequency at 
which the synchrotron spectrum peaks for an individual elec- 
tron with energy E=EF=PF (see Ref. 6). 

Drawing upon (15) and (21), we can simplify the inte- 
gral in (19) considerably. The main contribution to the inte- 
gral comes from u 5 T l p F 4 1  and sin 6-1, and the argument 
of the Airy function is 

Hence, 

Substituting (22) and (20) into (19) and letting u = (T/pF)y, 
we obtain 
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Plugging in the expressions for the remaining tabulated 
integrals,14 we finally have 

4. For real applications, it is convenient to cast (23) in 
"astrophysical" form: 

where T,= T/109 K and H 1 3 = ~ / 1 0 1 3  H. 
We now compare (24) with the neutrino luminosity Q, 

derived from neutrino synchrotron emission that was ob- 
tained in Ref. 8 under the same conditions: 

If we require that Q,< Q , , (24) and (25) yield 

We now apply (26) to the shell of a neutron star? which has 
n,- lo3'- ~ m - ~ ,  T- 1 0 ~ - 1 0 ~ ~  K, and H- 
G. We put n, = ~ m - ~ ,  T= los K, and H = 1012 G. Then 
yF=11.9, pF=7.1.1~10 K, K, and 
T,= doF= 1.9.10'~ K. Under these conditions, (15)-(17) 
and (21) are satisfied. Moreover, we know from astrophysics 
that the axion mass is extremely small:3 eV5ma510 
eV, and since o-T%m, [see (13) and (18)], we are justified 
in adopting a massless axion. As a result, (26) yields an 
upper bound on the coupling constant: 

This is a much more stringent bound [see Eq. (4)] than the 
one found under red giant and white dwarf  condition^.^ 

Taking f = e and ce-1 in (2), (27) places a lower bound 
on the corresponding symmetry-breaking scale: 

v ,>10 '~  GeV, (28) 

which is consistent with recent observations of SN 1 9 8 7 ~ . ~  

Thus, under neutron star conditions with ga,25.10-14, 
axion synchrotron energy losses (e-+ea)  are comparable to 
neutrino synchrotron losses (e -+ e v G), which have been 
showns to be competitive with other neutrino loss mecha- 
nisms. In closing, we note that by multiplying the right-hand 
side of (27) by 1 / 4 5 ,  we can estimate the value of the 
coupling constant at which the axion luminosity is at least an 
order of magnitude less than the neutrino luminosity: 
ga,<1.7. 10-14. 
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