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This paper examines the propagation of multifrequency wave packets in a dispersive nonlinear 
medium. When three-wave resonance is impossible, a system of coupled nonlinear 
Schrodinger equations is derived to describe the dynamics of the slowly varying amplitudes of 
the frequency components. The same system is shown to follow in the small-amplitude 
limit from the equations of Whitham's multiphase theory. O 1994 American Institute of Physics. 

The evolution of the envelope of a quasimonochromatic 
wave in a nonlinear medium is known to obey a nonlinear 
Schrodinger equation.' The propagation of the envelope of a 
multifrequency wave, however, cannot be described by a 
single nonlinear Schrodinger equation. This problem has 
been discussed by Oikawa and ~ a j i m a , ~ ? ~  who concluded that 
the dynamics of each frequency component is still described 
by a nonlinear Schrodinger equation and that the effects of 
interaction manifest themselves only in small corrections to 
the phase of the carrier wave. In their classic experiments on 
the interaction of hydrodynamic solitons, Yuen and h k e 4  
used wave packets with different carrier frequencies to en- 
sure that their velocities were different, and explained the 
observed pattern by employing Oikawa and Yajima's 
the or^.^'^ 

Note, however, that Oikawa and ~ a j i m a ~ . ~  arrived at 
their result by assuming corrections to the phase of the car- 
rier in a form that ensured the decoupling of the evolution 
equations. From the standpoint of physics, their assumption 
was unjustified. 

At the same time, several papers have lately appeared in 
which specific problems in the propagation of multifre- 
quency wave packets have been solved by employing a sys- 
tem of coupled nonlinear Schrodinger equations (see, e.g., 
Refs. 5-7). Note that the difference between these two ap- 
proaches is significant because the interaction of waves may 
change the nature of modulation instability ~onsiderably.~'~ 
Hence, it is interesting to examine the problem without re- 
sorting to a specific model, thereby arriving at a result that is 
valid over a broad class of systems. To this end, this paper 
uses the Hamiltonian formalism, one of the most universal in 
the theory of nonlinear waves.8 

Consider the simple situation in which only one type of 
wave with a dispersion relation w ( k )  can propagate in the 
system. When no three-wave interaction processes are pos- 
sible, the Hamiltonian of the system is8 

where a k  is a Fourier component of the wave. 
If we assume the wave field to be a single spectrally 

narrow wave packet with mean wave vector ko, or 

the appropriate equation of motion can be shown to be a 
nonlinear Schrodinger equation.8 

Now let us take the wave field to be a two-frequency 
packet: 

where w j =  w(k,) ,  j=  1,2. In terms of the c , ,  the Hamil- 
tonian (1) assumes the form 

The interaction Hamiltonian Hi,, is 

~ i n t = i j  [T11c:(~l)c:(~2)~1(~3)c1(~4) 

+ T 1 2 c T ( K 1 ) c Z * ( K 2 ) c 1 ( K 3 ) c 2 ( K 4 )  

+ T ~ ~ ~ Z * ( K I ) C , * ( K ~ ) C ~ ( K ~ ) C ~ ( K ~ ) ]  

X 8 ( K ~ + K ~ - K ~ - K ~ ) ~ K ~ ~ K ~ ~ K ~ ~ K ~ ,  

where 

T1l=Tklklklkl, T22= Tk2k2k2k2, 

T12= Tklk2klk2+ Tklk2k2kl+ Tk2klklk2+ Tk2klk2kl. 

Taking the inverse Fourier transform 

and expanding the dispersion relation w ( k )  in the neighbor- 
(2) hood of each wave vector kj , 
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w ( k ) = o , + ( k - k , ) w l  + i ( k - k , ) 2 0 1 ,  

where wi = dw(k, ) ldk ,  and W ;  = d2u(kJ) ldk2 ,  we obtain 
from the equations of motion for the Hamiltonian (4) the 
coupled nonlinear Schrodinger equations 

- ( 2 ~ i i l  c~111~+~121#21~)$1=0 ,  

Applying the procedure described above obviously leads to 

This result can easily be generalized to an n-frequency 
wave 

where uj  = $I, 6. 
. . 

An alternative approach in describing multifrequency 
wave packets is Whitham's multiphase theory.'0r11 We now 
show that the system of equations (8 )  follows from this 
theory in the small-amplitude limit, just as the nonlinear 
Schrodinger equations follow from the equations of the 

We assume that the dispersion relation is such that the con- 
ditions for four-wave resonance, 

single-phase theory.' For Eq. (7) ,  the dynamics of the slowly 
varying amplitudes, frequencies, and wave numbers of two 
interacting waves obeys the following system of equations:" are satisfied only in the trivial case kl  = k3 and k2= k ,  or 

kl  = k4 and k2 = k 3 .  Then a similar procedure leads to a sys- 
tem of n coupled nonlinear Schrodinger equations of the 
form 

- ( ~ T ~ , I * , I ' +  j t l  2 T , ; I * ; I ~  f i j=o, i 
where T j j  and T,, are defined in the same way as T I ,  and 

As an example we take the nonlinear Klein-Gordon 
equation discussed by Oikawa and ~ a j i m a : ~ , ~  

where the A ,  are the amplitudes of the wave packets, T  and 
X are the "stretched" time and coordinate, and E is a small 
parameter. In Eqs. (9)  we allowed for terms of order e 2 ,  
which play an important role in the small-amplitude limit.' 

The transition to two almost monochromatic packets 
with small amplitudes is accomplished via the substitutions 

The Hamiltonian of this system is 

Taking Fourier transformations 

d d d  
A , + c A .  - + - + E - ,  

" d T  dT d r  and passing to the variables ak and a: via the formulass 

with oi, - k t j  = 1. Then, isolating terms of order E in Eqs. 
(9)  and of order c 2  in Eqs. ( l o ) ,  we see that A ,  and cp, can 
depend on X  and T  only in the combination t , = X -  wh.T, 

1 where whj=dwoj ldko j=  k o j / w o j  . The terms of order E in 
(9 )  and of order c 3  in (10) yield 

we reduce the Hamiltonian to the form ( I ) ,  with Ho and 
Hi,, taking the same form as (2) and (3) ,  respectively, and 
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and a pair of similar equations for A 2  and (p2, which after 
the substitution 

leads to the system of equations (8). 
Thus, we have shown that for a broad class of systems 

characterized by a Hamiltonian of the form (1)-(3), a mean- 
ingful description of propagation of weakly nonlinear multi- 
frequency waves requires the use of a system of coupled 
nonlinear Schrodinger equations. The proposed approach 
simplifies the derivation of these equations, since although in 
many cases the use of traditional methods based on asymp- 
totic expansions presents no difficulties in principle, it leads 
to extremely cumbersome calculations, especially when the 
number of interacting waves is large. 

"otherwise, if for instance conditions (6) are met for frequencies mi, 
i =  1,2,3,4, the equation for $, acquires terms proportional to $z$3$4, 
etc. (see, e.g., Ref. 9). But we deliberately restrict ourselves to the simplest 
case, which requires no specific resonance conditions. 
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Translated by Eugene Yankovsky 

This article was translated in Russia. It is reproduced here the way it was 
submitted by the translator, except for stylistic changes by the Translation 
Editor. 
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