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A theory of muon spin relaxation in a (H2,u)+ [(~,,u)+] molecular ion forming in a crystalline 
phase of a hydrogen isotope has been devised. It has been shown that the (H2,u)+ 
molecular ion formed does not manage to thermalize during the lifetime of the muon, but it does 
manage to undergo transitions to lower energy levels of the vibration-rotation spectrum 
during a time f i r , .  The spin relaxation of ,u+ is determined by the interaction of the electric 
dipole moment of the ion with the lattice and the spin-rotation interaction in the ion. In 
this sense the relaxation mechanism resembles the "muonium" mechanism, and the role of the 
hyperfine interaction is performed by VLs. The conclusions of the study completely 
explain the existing experimental data, primarily the absence of a pronounced isotope effect. The 
qualitative results for calculating the thermalization rate of the (H2,u)+ ion are not sensitive 
to the choice of the model of the interaction of the ion with lattice molecules. O 1994 American 
Institute of Physics. 

1. INTRODUCTION 

The study of cryosystems by the muon spin relaxation 
(pSR) method was launched comparatively recently by the 
work of a group from the Leningrad Institute of Nuclear 
Physics and the I. V. Kurchatov Institute of Atomic ~ n e r ~ ~ . ' , ~  
The spin relaxation of ,uf in liquid and crystalline phases of 
hydrogen was investigated. Fairly curious and unexpected 
results were obtained already in the first experiments: a) only 
a diamagnetic component of the polarization was observed, 
apparently attesting to the complete absence of an interaction 
of ,uf with the track; b) the relaxation rates in solid ortho- 
and para-hydrogen differed only slightly and greatly ex- 
ceeded the values obtained under the hypothesis that ,u+ is 
stopped in interstices of the crystal lattice; c) spin relaxation 
was practically absent in the liquid phase. 

These results found reasonable theoretical explanations 
under the assumption that a positive muon forms an (H2,u)+ 
molecular ion in condensed phases of hydrogen.3 The 
(H2,u)+ ion is known to have the form of an equilateral tri- 
angle with a side Ro=0.85 A. According to the theory in Ref. 
3, muon spin relaxation is seen to be the result of "dephas- 
ing" of the precession frequencies in a randomly oriented 
"frozen" (H2,u)+ ion in a crystal. The theory explained the 
spin relaxation mechanism in para-hydrogen, but the calcu- 
lated relaxation rate greatly exceeded the experimentally ob- 
served value. Further experiments showed that the relaxation 
rate is strongly dependent on the temperature: it increased 
with decreasing temperature and exhibited a tendency to 
peak at T-4-5 K . ~ - ~  TO explain these results it was postu- 
lated in Refs. 7 and 8 that the (H2,u)+ ion undergoes rota- 
tional diffusion by a hopping mechanism in a crystal. Then 
the relaxation rate should be weakly dependent on the com- 
position of the mixture of ortho- and para-hydrogen and 
should have the form A=aw2 /A, where X(T) is the rota- 

PP 
tional diffusion rate, w , + = 2 g , u l ~ R & 2 ~  lo6 s-l, g and ,up 
are, respectively, the magnetic moments of a proton (or a 
deuteron in D2), and the constant a -1. As we see, the relax- 

ation rate should depend strongly on both the temperature 
and the isotopic composition of the target. 

A series of new experiments was subsequently carried 
out. In Ref. 9 it was shown that -15% of the muons form an 
Mu atom, which rapidly (A-lo9 s-l) relaxes in ortho- 
hydrogen. Experiments with Hz, D2, and HD targets were 
performed in Refs. 10 and 11. It was found that the behavior 
of the polarization precessing at the muon frequency is 
nearly identical in all the targets and that the relaxation rates 
differ only slightly. For example, at TI-4 K, AHZ=AHD 
.= 1 .2  X l o5  s-', and ADZ .= 0.95 X 10' s-' (Hz and D2 
are statistical mixtures). The relaxation rate of the longitudi- 
nal component decreased as the applied magnetic field was 
increased. The formation of the (H2,u)+ ion in condensed H2, 
HD, and D2 phases is probably not questionable, but the 
theory in Refs. 7 and 8, which predicts a strong isotope ef- 
fect, does not adequately describe the behavior of the (H2,u)+ 
ion in crystalline hydrogen. As was noted in Ref. 12, the 
latter experiments indicate that in a cryocrystal the (H+)+ 
ion does not manage to thermalize during the lifetime of the 
muon ~ , = 2 . 2 ~ 1 0 - ~  s. The more recent experimental 
datalo.'' unequivocally indicate that muon spin relaxation in 
crystalline hydrogen cannot be attributed to a direct magnetic 
dipole-dipole interaction. 

In the present work we calculated the thermalization rate 
of the (H2,u)+ ion in crystalline hydrogen and devised a 
theory for the spin relaxation of ,u+ in an unthermalized ion. 
The preliminary results of the calculation were presented in 
Ref. 13. 

2. CALCULATION OF THE THERMALIZATION RATE OF THE 
(H2p)+ ION IN A CRYSTALLINE PHASE OF HYDROGEN 

1. It is well known that in "ordinary" crystals the trans- 
fer of excitation energy E-1 eV is generally mediated by 
multiphonon processes and has characteristic times 
<T) - 10-~~-10-" S. In molecular crystals (all cryocrystals 
are such) the times may be significantly longer, primarily due 
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to the weak binding of the molecules in the crystal. When an 
(H,,u)+ molecular ion forms in the ground state, a consider- 
able amount of energy &--4.5 eV should be released (see, for 
example, Ref. 14). Therefore, the (H,,u)+ ion clearly exists in 
the initial time period in a highly excited vibration-rotation 
state. In the ensuing time period energy is transferred to the 
crystal upon transitions to lower vibration-rotation energy 
levels. Of course, it is not possible to quantitatively consider 
a cascade, but, as we shall see below, the qualitative picture 
is fairly clear. 

To describe a cascade, it is necessary to know the spec- 
trum of vibration-rotation energy levels of the ion. This 
spectrum was calculated for the free ion in Refs. 13 and 15. 
The radiation lifetimes of the excited states of the (H,,u)+ ion 
were also calculated. It was found that the radiation lifetimes 
are one to two orders of magnitude greater than the lifetime 
of the muon r 

The (Hz* ion has a dipole moment in the excited 
state.I3'l5 The transfer of excitation energy from the ion to 
the crystal is mediated mainly by the interaction of the elec- 
tric dipole moment of the ion with polarized molecules of the 
crystal.13 The positively charged ion strongly deforms the 
first coordination sphere; therefore, deformation of the lattice 
can be realistically related to the excitation of phonons only 
from the second coordination sphere. The deformation of the 
first coordination sphere can easily be evaluated on the basis 
of the following arguments. As we know (see, for example, 
Ref. 16), the interaction of the molecules in a hydrogen lat- 
tice is adequately described by the Lennard-Jones potential 

where ~==5.06X 10-l5 erg and a-2.96 A. Accordingly, the 
interaction of an ion with the molecules in the first coordi- 
nation sphere may be described as 

Here the first sum describes the interaction of the ion with 
the molecules, the second sum describes the interaction of 
the molecules in the first coordination sphere, and a--5.4ai 
is the polarizability of an Hz molecule. In this evaluation we 
assume that the Lennard-Jones parameters for the interaction 
V, of an ion with the molecules are the same as those for the 
interaction between molecules. 

The following theoretical situations are possible for an 
(H,,u)+ ion in a crystal: a tetrapod (four molecules in the first 
coordination sphere), an octapod (N=6), and a lattice site 
(N=12). Minimizing the interaction energy (2), we obtain 
the distance to the nearest neighbors R l  and the binding en- 
ergy U= - NeO.  This procedure is elementary, if the second 
sum in Eq. (2) is neglected. For a tetrahedron and octahedron 
we obtain Rl=2.5 A and E,-0.17 eV, and for a lattice site 
we obtain Rl-2.8 A and so=O.ll eV. To be specific, we 
assume that the (H~,U)+ ion formed is located at a lattice site. 

Despite the elementary character of the model, the 
evaluations are in good agreement with the exact quantum- 
chemical calculations of the H;(H,), ~lus ter ; '~- '~  therefore, 
the proposed model may be adopted for the interaction of the 
ion with its nearest neighbors. The constant of the hcp hy- 

drogen lattice RIHl 3 .8  A, and, as we see, the deformation 
of the first coordination sphere (the cluster) amounts to 
-25%. The deformation of the second coordination sphere is 
almost an order of magnitude smaller. 

Thus, the Hamiltonian of the ion-cluster-crystal system 
has the form 

where H i ,  H,, and H, are, respectively, the Hamiltonians of 
the ion, the cluster, and the lattice and qiC and PC',, are the 
operators of the interactions of the dipole moment of the ion 
with the cluster and of the cluster with the lattice. 

2. The Hamiltonian H i ,  its vibration-rotation spectrum, 
and its states were considered in detail in Ref. 15, and we 
shall utilize those results. 

The Hamiltonian H, specifies the vibration-rotation 
states of the molecules in the cluster and the vibrations of the 
molecules in the cluster. The ion at the center of the cluster 
strongly polarizes the molecules, inducing a dipole moment 
directed along the radius of the first coordination sphere 
d=aeRIR3. This interaction naturally alters the rotational 
spectrum of the molecules. However, as we shall see below, 
this does not have a significant influence on the rate of en- 
ergy transfer and has absolutely no influence on the qualita- 
tive results. Therefore, we shall assume that the vibration- 
rotation spectrum and the states of the free molecules and H, 
molecules in the cluster are identical. 

In performing the next calculations it will be sufficient 
for us to take into account only the radial vibrations of the 
molecules in the cluster. The remaining vibrations have a far 
smaller frequency. In fact, the transverse vibrations of the 
molecules in the cluster are determined by relatively weak 
interaction (I), and the frequencies of the vibrations of the 
cluster as a whole are small, since M,,SM,. The vibrational 
frequency can easily be evaluated on the basis of the inter- 
action energy (2). We obtain 

For a lattice site we have h w , = 3 ~ 1 0 - ~  eV. 
The Hamiltonian H, describes the lattice vibrations. 
The form of the interaction operator eiC is obtained by 

expanding the energy of the molecules comprising the cluster 
in the field of the ion V= - a ~ , / 2  in a series in powers of the 
radial displacement of the molecules ua and the dipole mo- 
ment of the ion. Retaining only the terms which are linear 
with respect to ua and quadratic with respect to d, we obtain 

The summation is carried out over all the molecules in the 
cluster. The terms of order d2 in operator (5 )  are taken into 
account, if the linear terms do not make a contribution to the 
transition under consideration. 

The operator VcI is isolated when the interaction energy 
V,, as defined in Eq. (I), is expanded in powers of the 
lattice deformation and the radial displacements of the mol- 
ecules in the cluster. Retaining only the linear terms, we 
obtain 
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where the summation is carried out over all the molecules in 
the cluster and the nearest neighbors to each of these mol- 
ecules in the second coordination sphere, uab denotes the 
displacement of the lattice molecules (the deformation), and 
A = ( 2 4 e / ~ ~ ) ( a l ~ ~ ) ~ ( 2 6 ( a / ~ ~ ) ~ - 7 ) .  For the parameters of a 
hydrogen lattice we obtain A=-0.2X 1018 erg/cm2. 

3. Each transition between the states of the ion is asso- 
ciated with a change in the state of the entire "ion-cluster- 
lattice" system. The states of the ion, along with the quantum 
numbers of the vibration-rotation spectrum, are also deter- 
mined by the total spin of the protons and the projection of 
the muon spin of interest to us. Clearly, the interaction of the 
vibrations and rotations of the ion is significant for large 
values of the orbital angular momentum L, so that it is dif- 
ficult to specify "good" quantum numbers. However, as we 
shall show below, the most significant role is played by the 
states with L S2 ,  for which separation of the vibrational and 
rotational states is correct.15 Therefore, we define the states 
of the ion as 

where N is the set of three vibrational numbers, M and k are 
the projections of L onto the laboratory and local coordinate 
systems, respectively, I is the total spin of the protons, and 
m, is the projection of the muon spin. As is well known (see, 
for example, Ref. 20) only states which are antisymmetric 
with respect to the replacement k - +  -k are possible for a 
proton spin 1=1 (the ortho-ion), and only states which are 
symmetric with respect to this replacement are possible for 
1=0 (the para-ion). The energy of the ion is determined only 
by the quantum numbers N and k. 

We define the states of the cluster in the following man- 
ner: 

Here v, is the quantum number of the radial vibrations; va 
and KO are, respectively, the vibrational quantum number 
and the orbital angular momentum of molecule a in the clus- 
ter. We assume that in the initial state vc=O and v = O  and 
that K=O for para-hydrogen and K =  1 for ortho-hydrogen. 

The state of the lattice is specified by the corresponding 
number of phonons Inph). 

The probability of a transition between different states of 
the ion is determined in second-order perturbation theory for 
the continuous spectrum by Fermi's "golden rule" (see, for 
example, 1201): 

Here in the intermediate state In) the state of the ion 
changes, and vibrations of the cluster are excited (in addi- 
tion, rotations and vibrations of the molecules in the cluster 

may be excited). In the final state I f )  a phonon with a defi- 
nite energy is excited (and the vibrational state of the cluster 
may change). Clearly, interactions (5) and (6) do not alter the 
spin states of the ion and the molecules, but they determine 
the mechanism for transferring the excitation energy of the 
vibration-rotation states of the ion to the crystal. 

Let ei and ef be the energies of the initial and final states 
of the ion. The excitation energy of an individual molecule in 
the cluster is 

where the rotational constant for the hydrogen molecule 
B,-7.35 x lop3 eV and h%-0.52 eV. Also, K = 1 for ortho- 
hydrogen, and K=O for para-hydrogen. If vibrations are ex- 
cited, v = 1; otherwise, v =O. 

The interaction results in excitation of a phonon with an 
energy 

where vc=2 or 0, if vibrations of the cluster are excited in 
the final state or not, respectively. It is easily seen that the 
energetic denominator in Eq. (9) then equals 

As the results of the calculation of the vibration-rotation 
spectrum of the (H,,u)+ ion show, the energies A. and A do 
not vanish for any two given states. However, for nearly 
every excited state there is a possibility of a transition for 
which the energy transferred to the lattice vibrations A. is 
small compared with the difference e i  - e f ( ~ o -  
ev).13,15 These transitions will clearly be most probable, and 
disposal of the energy will occur specifically along these 
channels. Since a reliable calculation of the vibration- 
rotation spectrum and determination of the states are possible 
only for the lower portion of the spectrum ( e f s l  ev),l3'I5 we 
shall henceforth restrict ourselves to only the most probable 
transitions for the first excited vibrational energy levels of 
the (H,~)'  ion. Clearly, the transition rates in the upper part 
of the spectrum will clearly be of at least the same order of 
magnitude. 

4. The transformation of Eq. (9) is carried on in the 
appendix. The total probability of a transition between two 
vibration-rotation states of the ion per unit time is given by 
Eq. (13): 

Here 

~ , = 1 0 a e / R ? ;  2Mp is the mass of the H2 molecule; 
( ( ~ ~ ) ) " ~ = 2 . 2 ~ 1 0 ~  cm/s is the mean velocity of sound in a 
hydrogen crystal; (vi , ~ ~ l l a l l v ~  ,Kf) is the reduced matrix el- 
ement of the polarizability of the H2 molecule; v: = 1,2 for 
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TABLE I. Transitions with variation of the vibrational quantum number N. 

Transi- 
tion 

v,=0,2, respectively; (Ni ;Li ,Mi ,kildwf ; L ~  , M ~  ,kf) is the 
matrix element of the dipole moment operator between the 
initial and final states of the (H2,u)+ ion; N2 is the coordina- 
tion number for the interaction of the molecules in the first 
and second coordination spheres. Clearly, the transition be- 
tween different vibration-rotation energy levels is specified 
by the first term in (5). 

The matrix elements for the polarizability of the H2 mol- 
ecule were calculated in Ref. 21. For transitions without a 
change in the vibrational quantum number 
(0, KIIaIIO,K+ ~ ) = = C Z = ( ~ ~ + C Y ~ ) / ~ .  When vibrations of a 
molecule are excited, the matrix elements decrease by almost 
an order of magnitude: (0,01(all1 1,0)- 1.15 a;, 
(0,011~~~111,0)=0.54a~, and (0,011411,0)=0.74a;. 

Plugging in the values of the parameters and the con- 
stants, we obtain the numerical estimate ~ , = 7 . 2 ~ 1 0 ' ~  
erg/cm3. s. 

Table I presents the results of the numerical calculations 
of the most probable transitions with variation of the vibra- 
tional quantum numbers. Here we took into account only 
excited states for which it makes sense to separate the vibra- 
tional and rotational  state^.'^,'^ The coordination number N2 

TABLE 11. Transitions without variation of the vibrational quantum number. 

v' 

0 - 0 0  
0-0 

p-p 
p-p 
p-p 
p-p 
00 

p-p 
p-p 
0-0 

p-p 
0-0 

p-p 

for an ion at a lattice site equals 36. As we see, the transition 
rates are of the order of lo7 s-' for symmetric vibrational 
states and lo3 s-' for an antisymmetric vibration. The tran- 
sition rate can increase only as a result of an accidental reso- 
nance, as occurs for the para-transition 11;+;2,(0,2))--10; 
+;3,(0,2)). Transitions to the ground 10,0,0) state are possible 
only from the w;+;1,0) states, but only the transition from 
the level with N = 1 has an appreciable probability. Thus, we 
see that during a cascade with changes in the vibrational 
quantum numbers, the ion undergoes transitions to excited 
rotational states. The transitions from the 12;L,k) levels are 
hindered by two factors: 1) the smallness of the dipole mo- 
ment, 2) the "unfortunate" location of the level in the spec- 
trum of excitations of the crystal. The results in Table I 
graphically illustrate that the thermalization time of the 
(H,~)+  ion in a crystal is comparable to the lifetime of a 
muon ~ , = 2 . 2 ~ 1 0 - ~  s. 

Let us now consider transitions without variation of the 
vibrational quantum numbers. We again take into account 
that it makes sense to consider only the values L S3.  In this 
case vibrations of the molecules are clearly not excited. The 
numerical results for N=O are presented in Table 11. Since 

0 
1 
0 
0 
0 
0 
0 
1 
0 
0 
I 
1 

2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 

Transi- 
tion 

1 - 1 

- 1 - I - 1 forbidden I 

0.11 
0.17 
0.05 
0.04 
0.19 
0.27 

0.31 
0.06 
0.16 
0.13 
0.14 
0.11 

forbidden 

forbidden 

forbidden 
2.8 . lo2 

4, 

14 
19 
1.8 

1.4. lo4 
0.85 
45 

0.402.3.10-3 
7.2. lo-' 

0.14 
19 
23 
1.8 
2.1 
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the rotational energy levels are weakly dependent on N, the 
results presented are valid for any NS4. 

Comparing the results presented in Tables I and 11, we 
see that all the allowed transitions without a change in N 
have rates which are two or three orders of magnitude higher 
than the transitions with a change in N. Thus, during a time 

S, the ion undergoes transitions to vibration-rotation 
states with small values for the orbital angular momentum L. 
Next, from states corresponding to symmetric vibrations the 
ion makes transitions to rotational states with N=O, and from 
antisymmetric vibrational states it makes transitions to rota- 
tional states with N=2. 

Thus, as is seen from the data in the tables, as a result of 
a cascade the ion must reach one of the long-lived excited 
rotational states 

(+;3,M,(1,3)-)=0,21(+;3,M,I)-0,98(+;3,M,3) 

)+;2,~,(0,2)+)=0,511+;2,~,0)+0,861+;2,~,2) 

1 + ; 1 M ,  1)  para-ion, 

(15) 
7 ) - ; l , M l )  ortho-ion. (16) 

The only exception is the channel leading to an 
(+;l,M,O) rotational state of the para-ion, from which the ion 
can rapidly thermalize. However, as is seen from Table I, this 
channel has only a small probability due to its small statisti- 
cal weight. 

Thus, it may be assumed that the main conclusion re- 
garding the impossibility of thermalization of the (H+)+ ion 
during the lifetime of the muon does not depend on the as- 
sumptions which were employed in the numerical calcula- 
tions. 

3. MECHANISM OF MUON SPIN RELAXATION IN AN 
UNTHERMALIZED (H2p)+ ION 

1. Let us now consider the (H2p)+ ion in states with a 
nonzero value of L. In these states the following hyperfine 
interactions of the magnetic moment of the muon are non- 
zero: the dipole-dipole interactions with the magnetic mo- 
menta of the nuclei (Vdd) and with the magnetic field of the 
orbital motion of the charges (spin-rotation, VU). Of course, 
VU=O for both a thermalized ion and a "frozen" ion; there- 
fore, this interaction has not hitherto been taken into account. 
Attention was turned to the importance of V, in Ref. 22 
during an analysis of the behavior of the spin polarization of 
p+ in noble gases. Since the (H~,u)+ ion is an asymmetric 
top, in the general case the spin-rotation interaction has the 
form (see, for example, Ref. 20) 

where La and sa are, respectively, the projections of the or- 
bital angular momentum of the ion and of the spin of plL' in 
the local coordinate system (7775, which is defined in the ap- 
pendix. 

The constants A ,, A2, and A 3  are determined by the 
interaction of the magnetic moment of the muon with the 
magnetic field created at the muon by the orbital motion of 
all the charges of the ion, as is usually done for molecules 

(see, for example, Ref. 20). Clearly, this interaction is sig- 
nificantly stronger for a charged system than for neutral sys- 
tems. As usual, the constants A ,, B2,  and A, in spin Hamil- 
tonian (17) are obtained after averaging of the interaction 
over the orbital state of the system. Averaging the magnetic 
field with respect to the ground orbital state of the electrons 
and the rotational state of the nuclei in the ion, we obtain the 
following numerical estimates for the parameters of V, : 

where A,= 4 p , p o , l f L ~ ~ = l . 4 ~  lo6 s -I. As we see 
\A, I %- IA ,,,I. The value of Vu is nonzero for both ortho- and 
para-ions, while Vddf 0 only for an ortho-ion with L #O. 

Since the projection of the muon spin is determined ex- 
perimentally in the laboratory coordinate system, it is conve- 
nient to rewrite Eq. (17) in the form 

The expression in parentheses in Eq. (19) is similar to 
expression (A3) for the dipole moment operator, but is 
slightly more complicated due to the fact that the projection 
of the field onto the 7 axis appears in (19). 

In long-lived states (15) and (16) with definite L and k, 
interaction (19) may be represented by the effective Hamil- 
tonian 

where the constants Ai(Lk) are obtained as a result of the 
averaging of (19) over states (15) and (16). For example, for 
the I-;l,M,l) states A,=A,=A,=A~=(A,-A,)I2, and 
for the (+;l,M,l) s t a t e s ~ , = ~ , = ~ , = ~ ~ , = ( ~ , + ~ , ) / 2 .  As 
we see, for the states with L =1 the effective Hamiltonian is 
isotropic, but the constants for the ortho- and para-ions have 
different values. For the states with L = 2  we have 
Ax=Az#A, , and the effective Hamiltonian is anisotropic. 

It can be shown that only Vu(20) should henceforth be 
taken into account. In fact, in states (16) the magnitude of the 
dipole-dipole interaction decreases significantly as a result of 
the averaging over the rotational states, and it turns out that 
for the ortho-ion qf < V$. The operator Vdd cpples the 
spin of the muon i, the tota! spin of the protons I, and the 
orbital angular momentum L. The interaction Vdd is effec- 
tively averaged over the equally probable states with differ- 
ent projections of the total spin of the protons I, and then it 
may be neglected in the total spin Hamiltonian. 

2. As was shown in the first section, second-order per- 
turbation theory gives definite long-lived excited states of the 
(H2p)+ ion, in which the new interaction VLS now turns out 
to be significant. Consideration of this interaction leads to 
the appearance of muon spin relaxation as a result of an 
interaction with the lattice in third-order perturbation theory. 
We note that the spin relaxation effect is simply absent in 
lower orders. In complete analogy to the calculation of the 
thermalization rate, we use Fermi's "golden rule" in third- 
order perturbation theory for the continuous spectrum (see, 
for example, Ref. 20): 

815 JETP 79 (5), November 1994 Yu. M. Belousov and V. P. Srnilga 815 



where the vibration-rotation state of the ion is now fixed and 
is specified by one of Eqs. (15) or (16). The largest probabil- 
ity is assigned to the processes under which vibrations of the 
cluster are virtually excited, but other states are not excited. 
In the final state only the spin state of the muon is different, 
and the energy surplus (or deficit) is transferred to phonons: 
AO-ALk . Since ALkGT over the entire permissible tempera- 
ture range, it may be supposed that the phonons have a Bose 
distribution function n,,(Ao)-TIAo*l, which results in a 
linear temperature dependence. Accordingly, a contribution 
to the mean value with respect to the vibration-rotation state 
of the ion is made only by the second term in Vic(5), which 
is quadratic with respect to the dipole moment of the ion d. 

Inasmuch as VU(20) couples the orbital angular moment 
of the ion and the muon spin and maintains their total mo- 
mentum J=L+s, the muon spin can change its projection 
only if there is a simultaneous change in the projection of the 
orbital angular momentum M. This greatly complicates the 
formal writing of the expressions. However, since all the 
states with different M are equally probable, the muon spin 
"flip7' rate v=wif can be expressed by a fairly general for- 
mula. After some very cumbersome mathematical opera- 
tions, for the states of an ion with a definite value of L we 
obtain 

Here 

where c2= 3 ~ x 1 ~ :  and cf is the difference between 
the energy levels of the ion in the initial and final states. The 
mathematical operations omitted here are similar to the op- 
erations performed in the appendix during the derivation of 
Eq. (13). 

Of course, the muon spin "flip" rates are dependent on 
the rotational state of the ion and on the strength of the 
external magnetic field. If VU is large compared with the 
energy of the magnetic moment of the muon in the external 
field fiALk+2po,B, it may be assumed that AM-fiALk and 
that the constants VL do not depend on the field B and are 
identical for the ortho- and para-ions. Also, as can easily be 
seen, for example, v21vl=3. In a strong field V ~ K B - ~ ,  and 
the spin "flip" rates for the para- and ortho-ions have differ- 
ent values. Plugging in the values of the parameters, we ob- 
tain an estimate for the flip rate vl in a weak field 

where T is measured in degrees Kelvin. Accordingly, at T>5 
K we have v,- lo7 s-'. Thus, in the temperature range T> 1 
K we obtain v-ALk, and determination of the spin relaxation 
rate of a muon in hydrogen requires solving the relaxation 
equation for the spin density matrix of the (H2p)+ sub- 
system. 

3. Under the conditions considered the relaxation pro- 
cesses are described well by the Wangsness-Bloch equation 
for a spin density matrix (see, for example, Refs. 12, 23, and 
24): 

where p is the spin density matrix of the ( ~ , p ) +  ion, v is the 
muon spin "flip" rate (frequency), am denotes the muon spin 
operators, and Ho, is the spin Hamiltonian of the ion. 
Clearly, H,, depends both on the spin variables and on the 
orbital state of the ion. We need to consider only the long- 
lived excited states. Since system of equations (24) for the 
components of the density matrix is very cumbersome, we 
take into account only the principal interactions, discarding 
the interactions which do not directly "affect" the muon 
spin. Then in the states with L = 1 we have 

where ho=2&$. Accordingly, in Eq. (24) the flip rate vL is 
specified by Eq. (22). In states with L a 2  the anisotropic 
interaction should be written down. 

Thus, we obtain an equation which is similar in structure 
to the equation for the spin density matrix of muonium (see, 
for example, Ref. 12). The role of the hyperfine interaction is 
played by the spin-rotation interaction, and the electron spin 
operators are replaced by the orbital angular momentum op- 
erator of the ion. In our system L 2 1 ,  but even for L =1 we 
now have a system of 23=8 coupled equations for different 
components of the density matrix. Of course, these systems 
of equations cannot be solved analytically; nevertheless, the 
qualitative picture of muon spin relaxation should be similar 
to that observed in an Mu atom for the longitudinal (parallel 
to B) and transverse (perpendicular to B) components of the 
polarization. 

To be specific, we consider the states with L = 1:  1 
+_ ; 1 ,  M, 1 ) .  Just as for Mu, we analyze the regions of large 
(vlBA ,,) and small (via 11) "flip" rates. 

At large v, the transverse polarization P , ( t )  precesses 
with the muon frequency and slowly decays with a rate 
A,Kv-'. At small v, P, ( t )  precesses with the muonium fre- 
quencies and decays slowly with a rate A,mv. In both cases 
the precession frequency is fast compared with the decay 
rate. 

In our case for L =1 the roles of the triplet and the sin- 
glet in the Mu atom are played by the quartet (J=3/2) and 
the doublet ( J=  112) in the ion. Accordingly, at small v pre- 
cession should be observed with frequencies corresponding 
to transitions between states with different J and M j .  Since 
states of (H2p)+ ions with different L are possible for an 
ensemble of muons, the presence of different frequencies 
should be manifested as effective spin relaxation with a rate 
A-ALk. 

To find the relaxation rates of the transverse polarization 
we isolate the large frequencies in the corresponding compo- 
nents of the density matrix. Averaging the system obtained 
with respect to the period of fast oscillations, we can reduce 
the system of eight equations to a simple system of four 
equations, whose characteristic equation has the form 
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where Q = ~ : , / d o  when "%-A ,, and f l = f l o  when w e  ,,. 
As is easily seen, when vs3Q (at large v) there is a single 
solution, which decreases with increasing v: 

When v<3Q, the character of the solution changes, and we 
obtain the same real part Re X=- v (at small v) for all four 
roots. Just as in the case of Mu, the spin relaxation rate 
should have a maximum. In our case it peaks when v-3Q. 
When T S 1  K, we have the case of large v, and, accordingly, 
A,~T-'. For a strong field AM=ho [see Eq. (27)], and we 
find that in this case A, is virtually independent of the field 
B. 

At large v the longitudinal polarization Pll(t) decays 
with a rate Allav-', and at small v it oscillates with the 
hyperfine splitting frequencies and decays with a rate Allmv. 
Thus, at small v effective spin relaxation should again be 
observed owing to the multifrequency oscillations of the po- 
larization in the ensemble of muons. Carrying out the proce- 
dure of isolating the large oscillation frequencies precisely as 
for the components determining P,(t), we obtain a system 
of three coupled equations for the corresponding components 
of the density matrix. For the system obtained we find the 
small root corresponding to slow decay: 

We again see that as the field increases, All decreases, and at 
"%A, we find that ~ ~ ~ a w - ~ .  

Unfortunately, the most interesting region of values of 
the parameters is not subject to analytical description. How- 
ever, the results qualitatively correspond to the observed pic- 
ture. In fact, a relatively broad maximum is observed in the 
relaxation rate of P, ( t )  at T-4 K. According to the numeri- 
cal evaluations, ALk-lo6 S-l. In a field 8-100 G the pre- 
cession frequency o - 0 . 8 ~  lo7 s-', and we have the case of 
a strong field, in which ~cco-' [see Eq. (22)]. From Eq. (27) 
we find that the relaxation rate of the transverse component 
of the polarization h 1 ~ n ~ i k l N 2 r ~  does not depend on the 
field and is determined by the interaction of the ion with the 
crystal. At T-4 K we obtain the estimate A1-2x10~ s-'. 

For the longitudinal polarization we obtain All- v/2"B -' 
from Eq. (28). Since the spin-rotation interaction constants 
correspond to a field B-10-30 G, the longitudinal compo- 
nent scarcely relaxes in a field B-100 G.  

Of course, the evaluations performed can claim only 
qualitative correspondence, but they provide the correct or- 
der of magnitude for the decay rate and are in complete 
agreement with the experimental results in Refs. 10 and 11. 
It should, however, be recalled that in ortho-hydrogen the 
dipole-dipole interaction of the magnetic moments of a muon 
and the nuclei of the molecules in the crystal makes an ad- 
ditional contribution to the relaxation rate. 

4. The model considered is supported, first or all, by the 
weak isotopic dependence of the relaxation rate.lO'" In fact, 
the principal constant A in VW has nearly identical values in 
the (H~,u)+, (D~,u)+, and (HDP)+ ions, since it is determined 

by the orbital motion of the muon relative to the 6 axis. The 
isotope effect is manifested in the flip rate v through both the 
density of the crystal n and the dimensional factor r. Since 
the frequencies of the radial vibrations of the molecules in a 
cluster OJ,=M-''~ (where M is the mass of the isotope), 
TKM-I .  However, the constant ~ ~ ~ ( a l ~ , ) ' ~  also varies. The 
polarizability of the molecules and the parameters (T are 
nearly identical for H2 and D2 (Ref. 16). However, for Hz 
RIHz = 3.79 A, and for D2 RlD2 = 3.6 A; therefore, 
C2(H2)lC2(H2) - ( R ~ ~ ~ / R ~ ~ ~ ) ~ ~  - 1.85. Since nH2/nD2 
2 1.15, we find that under the same conditions V D ~  IvH2 - 1.1. For the relaxation rate we have hD21hH2 - V H ~ / V ~ ~  = 0.9, which is in complete agreement with 
e ~ ~ e r i m e n t . ' ~ ~ ~ '  

4. CONCLUSIONS 

In conclusion we stress the main results of this work. 
1. The results of the experiments in Ref. 10 and 11 have 

been attributed to spin relaxation of the unthermalized 
(~,p,)+ ion in a crystalline phase of hydrogen isotopes. The 
spin relaxation is determined mainly by the spin-orbit cou- 
pling of the magnetic moment of the muon in the unthermal- 
ized ion. 

2. The (~,p,)+ molecular ion formed does not manage to 
thermalize during the lifetime of the muon, but it does man- 
age to undergo transitions to lower energy levels of the 
vibration-rotation spectrum during a time &T,. 

3. The spin-rotation interaction in the ion scarcely de- 
pends on the isotopic composition of the target, but it is 
nonzero only for an unthermalized ion. 

4. The spin relaxation of p,+ is determined by the inter- 
action of the electric dipole moment of the ion with the lat- 
tice and the spin-rotation interaction in the ion. In this sense 
the relaxation mechanism resembles the "muonium" mecha- 
nism, and the role of the hyperfine interaction is performed 
by VW. A rigorous analytical calculation of the relaxation 
rate is not possible, but the qualitative conclusions com- 
pletely account for the existing experimental data. 

5. The qualitative results for calculating the thermaliza- 
tion rate of the (~,p,)+ ion are not sensitive to the choice of 
the model of the interaction of the ion with lattice molecules. 

We thank A. K. Belov for assistance in performing the 
numerical calculations and E. P. Krasnoperov and L. P. 
Sukhanov for some useful conversations. 

APPENDIX 

To transform Eq. (9) we assume that a linear isotropic 
spectrum is valid for the phonons (acoustic phonons are ex- 
cited). Since AoST, we always have n,,(A0)=l, and there is 
no temperature dependence in this stage. Performing the in- 
tegration over the states, the summation over the phonon 
polarizations, and the summation over the orientations of the 
unit vectors n, , we obtain 
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The dipole moment operator of (H,~)' has nonzero pro- 
jections only in the plane of the ion. We direct the 5 axis of 
the local coordinate system along the second-order axis and 
the 6 axis in the plane of the ion, and we place the origin of 
coordinates at the center of mass of the ion. The nonzero 
components of the dipole moment operator, expressed in 
terms of the normal coordinates q l ,  q2, and q3, then have the 
form15 

where ao=0.243, al=-0.471, a2=0.019, and a3=1574. The 
corresponding vibrations have the frequencies hwl=0.375 
eV, hw2=0.648 eV, and hul=0.972 eV. The normal coordi- 
nates 9 ,  and q3 correspond to symmetric vibrations of the 
ion, and q2 corresponds to antisymmetric vibrations. We di- 
rect the unit vectors nt and ne along the corresponding axis 
of the local coordinate system, and we then have 

Here the DL are Wigner functions. Thus, the calculation of 
the dipole moment matrix elements reduces to the known 
formula (see, for example, Ref. 20): 

where the c : : ~ , ~ ,  are the Clebsch-Gordan coefficients. As 
we see, either transitions which alter the vibrational quantum 
number corresponding to the particular normal coordinate by 
unity or do not alter the vibrational state of the ion are pos- 
sible. 

The first excited vibrational level corresponds to the nor- 
mal coordinate q l .  

Now it would be convenient for us to measure all the 
matrix elements in (A4) in units of the matrix element15 

Performing the summation over all the equally probable 
projections of the momentum in the initial state M i ,  we ob- 
tain Eq. (13). 
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