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In this paper we calculate the shapes of time-of-flight spectra of nonequilibrium acoustic 
phonons recorded by a wideband detector for initially monochromatic phonons generated with 
various frequencies and polarizations in a crystal of GaAs. The shapes are calculated 
within a quasi-isotropic model, taking into account elastic scattering of the phonons by isotopes 
and three-phonon inelastic spontaneous decay processes. We show that changes in the 
intensity of the latter fundamentally change the shape of the time-of-flight spectra. Our results 
enable us to explain the origin of a number of peculiarities in the shape of nonequilibrium 
phonon pulses observed experimentally when a semiconductor surface is optically 
excited. O 1994 American Institute of Physics. 

1. INTRODUCTION. FORMULATION OF THE PROBLEM 

For many experiments in which phonon pulses are cre- 
ated in semiconductors and insulators at low temperatures, 
the source of nonequilibrium acoustic phonons is the nonra- 
diative relaxation of optical excitations of the electronic 
system.',2 In the course of this excitation, nonequilibrium 
acoustic phonons are created over a wide range of frequen- 
cies with a maximum at a characteristic frequency of the 
same order as the Debye frequency.',3-5 Even in the most 
perfect crystals, these high-frequency phonons have a short 
mean free path, due to scattering both by isotopes and other 
point defects and to inelastic anharmonic processes. Never- 
theless, phonon pulses are usually recorded at macroscopic 
distances from the source; hence, the generation of these 
pulses from an initiat excitation of high-frequency phonons 
must involve processes whereby a phonon excitation that is 
far from equilibrium propagates in the crystal, accompanied 
by relaxation of its energy. The term "far from equilibrium" 
is defined by the presence in the original spectrum of occu- 
pation numbers that are larger than the equilibrium value 
nT(w) corresponding to the temperature T of the surrounding 
heat bath for phonons with frequencies on the order of the 
Debye frequency. At the same time, the occupation numbers 
of nonequilibrium phonons for all frequencies wSwT can 
remain small in the course of their subsequent evolution, 
lee., 

As long as this condition is satisfied, the energy relaxation of 
nonequilibrium phonons in the crystal is determined only by 
their spontaneoiis decay processes. 

Despite this simplification, a systematic analytic descrip- 
tion of the kinetics of nonequilibrium acoustic phonons un- 
der these conditions is very difficult. The distribution func- 
tions NL,,(t, r, k) for the longitudinal and transverse phonon 
branches in the solid satisfy the kinetic equations 

Here wL,,(k) is the group velocity of a phonon belonging to 
the corresponding branch with quasimomentum k, ri(w) is 
the elastic scattering time for a phonon with frequency w due 
to isotopes and other impurities, and ( N ) n  is the distribution 
function for phonons of frequency w averaged over polariza- 
tion and the direction K! of the wave vector k. The operators 
j,,, describe three-phonon anharmonic processes, and have 
a rather complicated form.6 However, it is important that 
these operators, and both of Eqs. (2), can be linearized with 
respect to N when condition (1) is satisfied. 

The most successful attempts at an analytic solution to 
Eq. (2) under conditions similar to real optical excitation of 
nonequilibrium phonons were made by Kazakovtsev and 
~evinson.~.' In these papers, the authors placed two more 
limitations on the region of applicability of the solutions they 
obtain, in addition to the linearization of the kinetic equa- 
tions mentioned above, which is a consequence of condition 
(1). First of all, they assumed that scattering by impurities 
and isotopes is much stronger than inelastic scattering at all 
frequencies. Secondly, they investigated the characteristic 
distances over which these distribution functions vary, and 
found them to be much larger than the mean free path of the 
phonons with respect to inelastic processes. This allowed 
them to reduce the left side of (2), along with the collision 
integral that describes elastic scattering, to a diffusion equa- 
tion, with the inelastic collision operators SL,T treated as a 
small perturbation. However, even with these assumptions 
their solutions can describe only the primary group of 
phonons arriving at the detector, and cannot specify the 
shape of the nonequilibrium phonon pulse in detail. 

In practice it is not possible to obtain an analytic solution 
that describes the space-time evolution of these phonons 
when the characteristic times for their inelastic scattering and 
decay are comparable in order of magnitude, and of the same 
order of magnitude as the time for the phonons to propagate 
to the detector. Nevertheless, it is just this situation that is 
realized in many of the experiments involving the detection 
of phonon pulses generated by optical excitation of an elec- 
tronic system in a crystal. Finally, the simplified models of 
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Kazakovtsev and ~ e v i n s o n ~ , ~  that admit of an analytic solu- 
tion cannot be used to explain certain features in the shape of 
the recorded phonon pulses. In particular, the origin of cer- 
tain commonly observed strong phonon peaks, which judg- 
ing from their time of arrival are purely ballistic, is not com- 
pletely clear. At present, the interpretation of the "slow" 
peak in the recorded shape of the pulse observed by Ulbrich 
et al.9.10 and Danilchenko et a1.' remains uncertain. 

In light of all this, the most promising approach to a 
quantitative treatment of the experimental results is based on 
direct computer simulation of the trajectory of each phonon 
that contributes to the recorded pulse using the Monte Carlo 
method. Naturally, the quantitative computations must be 
carried out for a specific crystal in this case. We chose gal- 
lium arsenide as our simulation crystal. Our choice is prima- 
rily motivated by the widespread use of GaAs-based elec- 
tronic devices at cryogenic temperatures. When the 
geometric dimensions are reduced and the operating tem- 
peratures are lowered to that of liquid helium, the character 
of heat transfer in such structures changes qualitatively as 
they enter the ballistic regime. The GaAs crystal has been 
rather well studied by traditional methods of ultra- and hy- 
personic acoustics." Furthermore, it is likely that of all the 
studies made of the transport of nonequilibrium phonons, 
those carried out in GaAs have produced the most inconsis- 
tent  result^,'^^"^-'^ and thus have generated the most contro- 
versy. Theoretical estimates6 of the decay times of acoustic 
phonons in GaAs suggest that it exhibits the closest match 
between the time for inelastic anharmonic scattering T(W) 
and the time for isotopic elastic scattering T,(w). This fact 
allows us to track how the transport regime for nonequilib- 
rium phonons changes as a function of excitation conditions. 
Incidentally, this match between the acoustic parameters of 
GaAs may in fact be the reason for the contradictory inter- 
pretations of experimental results obtained at various labora- 
tories. It is these facts that explain the great interest in math- 
ematically simulating the kinetics of nonequilibrium 
phonons in GaAs, especially for values of the parameters for 
which analytic results are unavailable. In this paper we de- 
scribe our successful solution to this problem for the simplest 
case riel, taking into account the elastic scattering of 
phonons and their decay. In essence, we have solved Eq. (2) 
numerically for a crystal of GaAs with the simplification (I), 
but without the limitations imposed in Refs. 7, 8. 

Our approach to this problem is similar to that used by 
Lax et a1.12-l4 and Wolfe et al. However, the goal of those 
papers was to treat only the "slow peak" observed experi- 
mentally by Ulbrich et al.1° The authors of that paper asso- 
ciated this peak with propagation of TA phonons at 1.5 THz, 
their highest frequency, over distances of order one centime- 
ter, and never addressed the overall problem of computing 
the shape of the time-of-flight spectra for the nonequilibrium 
phonons generated by the optical excitation. The more accu- 
rate decay times in GaAs computed later by ~ a m u r a ~  were 
not known to Lax et a1.12 and Wolfe et a1.l3 Lax et al. used 
those more accurate decay times in Ref. 14; however, in that 
paper only two time-of-flight spectra were presented for the 
special case of initially TA phonons with a single starting 
frequency v,= 1.5 THz. Neither of those curves contained the 

ballistic peaks that are usually present in the experimental 
curves, even when the isotopic scattering was attenuated by a 
factor of 10, a step that is hard to justify physically; it will be 
clear why this is so in what follows. In particular, the paper 
by ~ a r i s "  shows that interest in simulating the shape of 
nonequilibrium phonon pulses by Monte Carlo methods has 
not abated. Here, however, our task will be not so much to 
solve the problem of simulating the results observed in ex- 
periment as to explain the limits of applicability of the theo- 
retical considerations in Refs. 7, 8. 

Thus, the problem of calculating the shape of nonequi- 
librium phonon pulses by the Monte Carlo method is one of 
no small interest, now that it is possible to include the results 
obtained by ~ a m u r a ~  with a minimum of simplifying as- 
sumptions. 

2. DESCRIPTION OF THE PHYSICAL PRINCIPLES OF THE 
MODEL 

The experimentally measured parameter that character- 
izes the kinetics of nonequilibrium phonons in semiconduc- 
tors is the time-of-flight spectrum. Therefore, the primary 
goal of our numerical experiment will be to calculate these 
spectra. Instead of doing our simulations in the geometry 
used previously by Lax et a1.,l2 i.e., a plane-parallel film, we 
investigated the motion of phonons outward from the center 
of a sphere of radius R.  By choosing this model geometry we 
greatly reduce the number of calculations required while re- 
taining the generality of the results within the framework of 
an isotropic model phonon spectrum. 

In our model, acoustic phonons propagate in a quasi- 
isotropic elastic medium that most closely matches a GaAs 
crystal while participating in elastic scattering and spontane- 
ous decay.6 In this approximation, the average velocity of the 
LA branch is 1 ~ ~ = 5 . 1 3 . 1 0 ~  cmls, that of the two degenerate 
TA branches is ~ ~ = 3 . 0 2 . 1 0 ~  cmls, and the isotopic scatter- 
ing time is 

ri= 1 . 3 5 . 1 0 ~ ~ ~ - ~ s .  (3) 

The lifetime of a LA phonon against spontaneous decay due 
to three-phonon anharmonic processes is taken to be 
T ~ ( V ) = ~ . ~ ~ . I O ~ ~ V - ~  S, i.e., one of the two values computed 
by ~ a m u r a ~  using the two different sets of experimental pa- 
rameters for a GaAs crystal. We took the relative probability 
for the two possible channels by which LA phonons can 
decay from Tamura's paper: the probability cu of the channel 
LA +TA + TA is set equal to 0.75, whereas the probability 
for the channel LA-+LA +TA is accordingly 1-a=0.25. 
The TA phonons do not decay; however, in elastic scattering 
the mode conversion TA (v )  -+LA ( V) can occur with a prob- 
ability proportional to the density of final phonon states. Us- 
ing the parameters of this model, we find that the probability 
for conversion of TA phonons to the LA mode after elastic 
scattering equals 0.1, while the probability of remaining in 
the TA mode is 0.9. The same ratios for the probabilities are 
also preserved in scattering of LA phonons. 

There is an important difference between our model and 
previous models: we have taken into account the fact that a 
decay event does not necessarily result in daughter phonons 
with frequencies that are strictly half that of their parent. The 
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ratio of the frequencies of the phonons created by the decay 
can be arbitrary; however, they must be within limits set by 
the laws of conservation of energy and momentum for acous- 
tic phonons in an elementary decay event. The decay prob- 
ability distribution that we used, which is a function of the 
ratio of the frequencies of the final phonons, was analogous 
to that used by Kazakovtsev et a1.,16 with the difference that 
those authors used parameters for a certain generalized crys- 
tal, whereas here the form of the distribution is specific to a 
GaAs crystal. 

Although a detailed description of the computational al- 
gorithm our program uses would be of interest in its own 
right, such a description would greatly complicate the expo- 
sition of our material, to the detriment of the physical mean- 
ing of the simulation results. Therefore, we give only a brief 
description here of the fundamental principles that underlie 
our program. 

For each run, we modeled the motion of an individual 
phonon with initial frequency v, belonging to the LA or TA 
modes, which starts from the center of the sphere R = 0 at 
time t=O. Since the number of phonons is not conserved 
during a decay, one of the instantaneous parameters is the 
energy h v of that phonon whose motion is being followed at 
a given time. After a cascade of scatterings with possible 
branchings during the decays, the total energy 2,ANh v of 
phonons that intersect the surface of the sphere of radius 
R = 1 within the time interval from t  to t  + At,  summed over 
all frequencies, is recorded. After all the phonons created in 
the decay process have reached the surface of the sphere, we 
obtain a single histogram for the phonon energy flux. Sum- 
ming a large number of these histograms then gives the result 
of the numerical experiment. Actually, the derivative 

ANh v 
A ( t ) = C v -  

At 

describes the phonon energy flux through the surface of the 
sphere at time t .  If the value of A ( t )  is normalized to the 
initial energy of the starting phonons Noh v,, where No is the 
number of original phonons, then the ratio 
H t )  =A(t)lNoh v ,  is a measure of the temporal flux density 
of phonon energy through the surface R = 1 cm at time t .  It is 
clear that the integral over such a flux density should equal 
unity, 

This invariant is used as a way of monitoring the accuracy of 
the computational program in the course of its operation. By 
defining the quantity dt) in this way, we can obtain simula- 
tion results in units that do not depend on the number of 
initial startup phonons, although, of course, the accuracy of 
the resulting function increases as N ,  increases. Usually the 
number No ranges from lo4-lo5, and is determined by the 
precision required to construct the quantity f i t ) ,  i.e., suffi- 
cient for a quantitative comparison with the experimental 
time-of-flight spectra. 

FIG. 1. Computed shapes of time-of-flight spectra for nonequilibrium 
phonons with initial frequencies vo=0.8 and 1.0 THz when only elastic 
scattering by isotopes is taken into account. 

3. MODELING WITH PURE PHONON DIFFUSION 

In Fig. 1 we show the results of modeling the phonon 
flux for initial phonon frequencies v,=0.8 and 1.0 THz, tak- 
ing into account only phonon elastic scattering. It is clear 
that the character of the propagation is essentially indepen- 
dent of the polarization of the original phonon. This should 
come as no surprise, since elastic scattering with mode con- 
version effectively mixes phonons of different polarizations 
at distances large compared to the phonon mean free path 
when the propagation regime is close to diffusive. The mean 
free paths of phonons with vo=0.8 THz equal 0.17 and 0.1 
cm for the LA and TA modes, respectively, while at frequen- 
cies v,=l THz they are 0.07 and 0.04 cm; thus, all these 
mean free paths are much smaller than the radius of the 
sphere R = 1 cm. In accordance with these estimates, within 
the limits of noise the curves for initially LA and TA 
phonons with vo=l THz coincide completely. However, for 
phonons belonging to the LA mode there exists a finite prob- 
ability of order exp ( -1 /0 .17)=3 .10-~  for ballistic drift over 
this distance. For a phonon belonging to the TA mode this 
probability is roughly two orders of magnitude smaller, and 
equals 5 .  This situation is reflected in the results of Fig. 
1 by the presence of a sharp ballistic peak with just this 
probability 3 . 1 0 - ~  against a background of a broad diffuse 
pulse for the case where the starting phonon is LA. 

We can compare the results of our simulations with the 
analytic expression for the diffusion current, which contains 
the elastic scattering time ~ ~ ( 0 )  given by (3) and a diffusion 
coefficient averaged over the branches: 

For this case we write the diffusion equation in its usual form 
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Since the phonons that reach the boundary R =  1 cm are 
immediately absorbed by it and drop out of the calculation, 
our formulation of the numerical experiment corresponds to 
a Green's function for this equation in a sphere of radius 
R = 1 cm with the boundary condition 

N(r)IR=O. (5) 

Let us make use of the solution to Eq. (4) in a sphere of 
finite radius [see Ref. 17, Ch. 9, Sec. 3, Eq. (3.3)]. The 
boundary condition (5) corresponds to cp(t)=O. Rewriting 
the solution with this condition in our notation and using the 
abbreviation D = D ( w), we have 

2 
m ( N(r , t )=G Z exp - 

n = l  

n rrr ' 
dr ' r l f ( r ' ) s in  - 

R -  (6) 

Here f ( r r )  is an initial condition, i.e., the distribution of 
particles at time t = 0 .  In order to obtain the Green's function 
of interest to us from this, we need to reduce the size of the 
region r ' where f ( r  ') is nonzero to zero, while the value of 
f ( r r )  in this region goes to infinity in such a way that the 
normalization condition for the total number of particles is 
satisfied: 

Then from (6) we obtain 

1 
m 

r r 2 n 2 ~ t  nrrr  
G ( r , t ) = s Z  n = l  nexp[---jp-]siny. (8) 

The derivative dc(r , t ) ldr  multiplied by D gives the local 
phonon flux at the point r at time t. Setting r = R =  1 and 
multiplying the flux by the area of the sphere 477 we obtain 
the total phonon flux at frequency w through a unit sphere at 
time t :  

m 

j ( t ) = 2 r r 2 o C  ( -  l)"n2 exp(- ' r r 2 n 2 ~ t ) .  (9) 
n = l  

The value of the flux (9) computed for a number of values of 
the time t is shown in Fig. 2 by the large black dots against 
the background of smaller dots, which are the results of the 
simulation. It is clear that the agreement between the analytic 
values and the results of computer modeling in the range 
t B  ri(w) is very good. This indicates that our program for 
simulating the kinetics of nonequilibrium phonons is operat- 
ing correctly. 

4. INCLUSION OF INELASTIC PROCESSES 

The inclusion of decay processes considerably changes 
the phonon kinetics. Figure 3 shows computed time-of-flight 
spectra for various decay times T when the initial phonons 

FIG. 2. Magnitude of the diffusion flux of nonequilibrium LA and TA 
phonons with frequency vo=l.O THz computed analytically using Eq. (9) 
for a series of values of the time t (large black dots), plotted against a 
background consisting of the results of numerical simulation of the phonon 
diffusion at the same frequency (small black dots). 

start off as LA and TA with frequency 0.8 THz. As we al- 
ready pointed out in Sec. 2, the value of the standard decay 
time TO we used is one of the two values computed by 
~ a m u r a ~  for two different experimental sets of parameters of 
the GaAs crystal: ~ ~ ( u ) = 0 . 7 4 . 1 0 ~ ~ v - ~  S. Because we cannot 
assume that this parameter has been accurately determined, 
and also because it may depend on the direction of the pho- 
non quasimomentum vector, we carried out calculations for a 
number of different values of T, expressed as multiples of TO. 

A characteristic feature of the kinetics for initially LA 
phonons is the presence of clearly evident ballistic fluxes of 
both LA and TA phonons (Fig. 3a). The values of these 
fluxes increase as the decay time decreases: reducing T by a 
factor of 16 leads to an increase in the ballistic flux of TA 
phonons by roughly a factor of 9. For decay times FTO, 270, 
4r0 we observe broad but clearly discernible diffuse peaks; 
the positions of the maxima of these peaks approach that of 
the ballistic peak as we go from 47, to TO. 

It is interesting to trace how the shape of the spectrum 
changes as the decay times take on the values r = r d 2  and 
rd4. For these decay times there is no sign of a diffusive 
peak, and we clearly see a transition to the quasiballistic 
propagation regime for the phonons of the kind qualitatively 
discussed by Kazakovtsev and ~ e v i n s o n . ~  

Figure 3b shows the time-of-flight spectrum for starting 
phonons that are initially TA at the same frequency uo=0.8 
THz. It is clear that these initial conditions do not lead to the 
formation of the sharp ballistic peaks that are characteristic 
of simulations of the kinetics with initially LA phonons. On 
the contrary, a typical feature in this case is the presence of a 
"ballistic wall," i.e., an abrupt leading edge that smoothly 
transforms with increasing T into a flux with a quasiballistic 
peak. This feature of nonequilibrium phonon pulses gener- 
ated by initially TA phonons was first demonstrated by Lax 
et a1.l4 using the Monte Carlo method; hence, the special 
case investigated in Ref. 14 is included within the general 
scheme of our results. The height of the wall and position of 
the pulse maximum depend on the anharmonic time T. For 
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FIG. 3. Computed time-of-flight spectra of nonequilibrium phonons for 
various decay times T for an initially starting LA (a) and TA (b) phonons 
with frequency v0=0.8 THz. In (a), the curves for T= 70, 2 ~ ~ ,  4r0 are shown 
on a scale that is doubled along the ordinate; in (b) the curves are shifted FIG. 4. Time-of-flight spectra of nonequilibrium phonons for initially TA (a) 
along the ordinate for convenience of comparison. and LA (b) phonons with frequency v0=1.5 THz. 

large decay times r=2r0, 4r0 the position of t,,, is close to 
that of the purely diffusive case. For the shorter decay times 
r= rO, rd2, rd4 a characteristic transition is observed to a 
quasidiffusive propagation regime, with the position of the 
flux maximum a function of r. However, for initially TA 
phonons with vo=0.8 THz, reducing the decay time even to 
rd4 does not drive the kinetics toward any clearcut quasibal- 
listic regime. 

Simulation results for phonon fluxes with the initial fre- 
quency 1.5 THz are shown in Fig. 4. First of all, we should 
note that for phonons with this frequency the maximum dif- 
fusive flux determined from Eq. (9) should be observed at 
times on the order of 100 p. It was too expensive in com- 

puter time to simulate the diffusive regime of phonon propa- 
gation at this frequency, and we did not do it. 

As is clear from Fig. 4a, initially TA phonons with 
vo=1.5 THz give rise to fluxes that are quite different from 
those with vo=0.8 THz shown in Fig. 3b. The distinctive 
feature is the transition of the time-of-flight spectra to qua- 
siballistic behavior at decay times r=r,d2 and rd4, as is 
clear from Fig. 4a. In addition, a comparison of the data of 
Fig. 3b and Fig. 4a shows that the ballistic component of the 
TA phonon flux is considerably larger for phonons with the 
initial frequency vo=1.5 THz than it is for phonons with 
vo=0.8 THz. Thus, e. g., for the standard decay time rO, the 
probability of ballistic flux comes to =3.10-~ for vo=0.8 
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FIG. 5. Frequency dependence of the time-of-flight spectrum of nonequilib- 
rium phonons for initially LA (a) and TA (b) phonons, using the standard 
decay time T= T,,. 

THz, whereas for vo=1.5 THz this value of the probability is 
= 8  

The plots shown in Figs. 4a and 4b exhibit some com- 
mon features, notably a "ballistic wall" for the TA phonon 
flux and a weak "precursor" ballistic flux of LA phonons. 
This latter feature is almost absent for F ~ T ,  but is easy to 
see for ~ = ~ d 4 .  Quasidiffusion peaks are clearly evident for 
the decay times FTO, 2 ~ , ,  47,; the position t,,, of these 
peaks is a much stronger function of T than it is for the case 
of initially TA phonons with vo=0.8 THz. 

The results of simulating fluxes generated by initially 
LA phonons with vo=1.5 THz are shown in Fig. 4b. For 

FIG. 6. Results of simulation of time-of-flight spectra of initially LA and TA 
phonons at frequency vn=0.5 THz for the standard decay time 7 7 , .  

phonons at these frequencies, the presence of a broad qua- 
sidiffusion peak whose position t,,, depends on T is also 
characteristic. In the figure it is evident how the transition 
occurs from the quasidiffusive form of the time-of-flight 
spectrum to one that is quasiballistic as the decay time de- 
creases from 4T0 to ~ d 4 .  Obvious ballistic fluxes of TA 
phonons are typical of initially LA phonons with both 
vo=0.8 THz and vo=1.5 THz. However, in contrast to the 
case vo=0.8 THz, for v0=1.5 THz there is essentially no 
ballistic LA peak. 

As we have already noted, in a real experiment the initial 
acoustic phonons are created over a wide range of frequen- 
cies with a maximum at a characteristic frequency on the 
order of the Debye frequency. At this time, more detailed 
information about the initial spectral distribution of phonons 
is not available. Therefore, we present the individual time- 
of-flight spectra that correspond to sets of initial frequencies 
for LA and TA phonons and the standard decay time TO, 
keeping in mind that both these spectra enter into the real 
pulse shape with certain as yet unknown weights. 

Figure 5 shows the results of simulating the phonon ki- 
netics for various initial frequencies and the standard decay 
time FTO. It is clear that the decay of high-frequency LA 
phonons leads to a complex structure in the time-of-flight 
spectra. The latter are characterized by the presence of sharp 
ballistic LA phonon peaks associated with the decay of the 
original phonons at frequencies 0.8 and 1.0 THz, and also a 
sharp peak made up of ballistic TA phonons generated at all 
initial frequencies from 0.8-1.5 THz. These ballistic peaks 
are observed against a broad quasidiffusive background 
peak, whose position t,,, shifts towards the ballistic TA 
peak with increasing frequency of the original LA phonon. 

The quasidiffusive regime of phonon propagation is 
most evident in simulations of the propagation and relaxation 
of initially TA phonons. In this case ballistic peaks of LA 
and TA phonons do not form; however, the ballistic nature of 
the TA phonons is clearly identified by the presence of a 
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"wall." In this case, as follows from Fig. 5b, the amplitude 
of the latter increases as the original frequency v, increases; 
however, this flux does not appear as an individual ballistic 
peak. Rather, the "ballistic wall" of TA phonon flux merges 
continuously into the wide quasidiffusion peak. The position 
of the quasidiffusion peak was observed to depend on the 
frequency of the original phonon. Thus, as the initial fre- 
quency varies from 0.8 to 1.5 THz, the position t,,, shifts 
from 8 . 1 0 - ~  s to 4 . 1 0 - ~  s, i.e., it approaches that of the 
ballistic phonon flux, whose time-of-flight is 3.3.10-~ s for 
phonons of the TA mode. This dependence of t,,, on the 
frequency of the initial phonons is typical both of initially 
LA and initially TA phonons. 

As the phonon frequency decreases, the probability of 
ballistic drift increases rapidly; this is reflected in the simu- 
lation results for phonons with vo=0.5 THz, as shown in Fig. 
6. 

5. ANALYSIS OF RESULTS AND COMPARISON WITH 
EXPERIMENT 

by Danilchenko et ~ 1 . ~  near the (110) direction in GaAs, and 
was referred to there the "X-peak." Starting with the solu- 
tion to the time-dependent kinetic equations obtained in Ref. 
2 for the phonon occupation numbers, it follows that the 
appearance of the "X-peak" is connected with spontaneous 
decay of high-frequency phonons. The results of the analysis 
given here imply that the time t,,, at which the "X-peak" is 
a maximum should be less than the time for the appearance 
of a purely diffusive peak, and should depend on the fre- 
quency of the initial high-frequency phonon. Qualitatively, 
this dependence leads to a decrease in t,,, with increasing 
frequency of the initial phonon. It follows from the results of 
this paper (Fig. 5b) that the position t,,, of the quasidiffu- 
sion peak actually shifts toward small values with increasing 
frequency of the initial phonon, both for LA and TA modes. 
Thus, we have further evidence that the "X-peak" observed 
in GaAs is actually associated with the quasidiffusive regime 
of phonon propagation. 

However, the authors of Ref. 2 did not observe quasid- 
iffusive fluxes along the direction (100) in the same sample. 

Let us trace how the time-of-flight spectra obtained The results of the simulation allow us to understand this fact 

above reflect the experimentally observed features of the ki- qualitatively, if we assume that along this direction the decay 

netics of high-frequency phonons in GaAs, in particular time T is 2 to 4 times smaller than the standard T, obtained in 
the quasi-isotropic approximation. It follows from the time- those already mentioned in Sec. 1. In our comparison we 

must take into account that the results of the simulation are of-flight spectra shown in Sec. 4 that reducing the decay time 

semiquantitative in character, since we have not included an- by a factor of 2 to 4 can change the phonon kinetics from 

isotropic processes in our model of the phonon kinetics, quasidiffusive to quasiballistic. It is likely that this does hap- 

which must depend on the specific crystal under study. Thus, 
pen in GaAs as we go from the direction (110) to the direc- 

for example, we have not taken into account that in certain tion (100). A number of theoretical papers'9-21 have argued 

crystallographic directions it is possible for phonons of the that the decay time should depend on the crystallographic 
direction. transverse branches to decay with the participation of a slow 

transverse STA mode of vibration as one of the final states. 
This work was partially financed by grant NU5P000 of 

As was shown by Tamura et a1.l8 and Berke et a1.,l9 the the International Science Foundation (the G. Soros fund). 

probability of such a decay can be of the same order of 
magnitude as that of a decay into an LA phonon. It is also 
possible for the decay time r to depend on the crystallo- 
graphic direction. A dependence of this kind was calculated, 
e.g., by Tamura et for crystals of germanium. Finally, 
focusing must necessarily influence the distribution of the 
ballistic phonon flux; we have also neglected this effect in 
formulating our model. 

Nevertheless, the results of the simulation not only cor- 
respond qualitatively to the experimentally observed time-of- 
flight spectra in GaAs, but also exhibit the same features and 
details as the experimental curves. First of all, note that when 
the surface of GaAs is photoexcited, in almost every experi- 
ment we observe ballistic phonon peaks for all modes of 
vibration. Since the frequencies of the initially photoexcited 
acoustic phonons are -1.0-1.5 THz, these ballistic peaks 
can appear only as a result of processes whereby LA 
phonons present in the original spectrum decay spontane- 
ously into two phonons with appreciably different frequen- 
cies. This follows directly from the results of Sec. 4 of this 
paper, as well as from a comparison with the simulation re- 
sults of Refs. 12-14. 

Furthermore, the simulation results clearly reveal the 
presence of a broad quasidiffusion peak whose maximum is 
located close to the frequency of the undecayed transverse 
mode of oscillation. An analogous phonon flux was observed 
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