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Equations are derived describing the propagation of first, second, and fourth sound in relativistic 
superfluidity theory with dissipation, and velocity expressions that allow for damping are 
obtained for each. O 1994 American Institute of Physics. 

The main purpose of this paper is to examine the propa- 
gation of waves of first, second, and fourth sound in relativ- 
istic superfluid systems with dissipation. Lebedev and 
~halatnikov' have given a relativistic generalization of the 
phenomenological approach describing superfluid systems. 
They first obtained the equations of two-velocity relativistic 
hydrodynamics and thermodynamics in the nondissipative 
approximation, and then introduced dissipative terms into the 
equations. Fomin and ~ h a d u r a , ~  in a different approach and 
in terms of different thermodynamic variables, obtained 
equations of relativistic superfluidity theory in the nondissi- 
pative approximation that generalize Landau's phenomeno- 
logical equatiow3 Their results are in full agreement with 
those of Lebedev and ~halatnikov.' The present paper pro- 
ceeds from the results of Refs. 1 and 2 to derive equations 
describing the propagation of possible sound vibrations in 
the system and find the velocities of propagation, allowing 
for damping. The method used was developed for a similar 
problem in nonrelativistic superfluidity theory.4 

Consider a quantum system in a local equilibrium state 
below the critical point, in which the system contains both 
superfluid ("condensate") and normal ("excitation gas") mi- 
croscopic components, each with its own density ps and p, 
and velocity field u" and u", respectively. The basic equa- 
tions of relativistic superfluid two-velocity thermodynamics 
and hydrodynamics describing such a system are'92 a) the 
energy-momentum conservation law 

where Tp" is the energy-momentum tensor, p is the invari- 
ant chemical potential, T is the invariant temperature, P is 
the pressure, S,  is the density of the normal-component en- 
tropy, gp" is the metric tensor, rpv is the part of the energy- 
momentum tensor describing dissipation, and 

is the kinetic coefficient matrix, which is symmetric in p and 
v and in A and v; b) the current conservation law 

where A"= - - [ v [ X [ d A ( p ~ ~ l )  + [ l pdp (uqT- ' )  is 
the dissipation correction to the current vector; and c) the 
law of increasing entropy in dissipative systems 

where S "=S,u "- ~ T - ' A  "+ u p r p "  is the entropy flux vector, 
and 

is the term responsible for the increase in entropy due to 
dissipative processes. The equations describing the motion of 
the superfluid component are 

The relations 

determine two-velocity thermodynamics in Lorentz invariant 
form, with E the invariant energy density ( E  = u ,,uXTAV), 

We will describe the sounds in manifestly covariant form. 
The subscript 0 denotes equilibrium values of quantities, as- 
sumed to be independent of coordinates and time, and the 
subscript 1 denotes small deviations from equilibrium val- 
ues. The equations are linearized with the simplifying as- 
sumption that in an equilibrium state the superfluid and nor- 
mal components move with the same velocity (u,"=v,"). 
Since 

both u," and u 1" are orthogonal to u; in the linear approxima- 
tion: 

Using these orthogonality relations, we have to second order 

We introduce the notation 
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~ S = P P S ,  o n =  TSn + P P ~  

E = os+ on- P, S,= u p =  u(pn+ ps). 

After linearizing Eqs. (I)-(@, eliminating the derivatives of 
ur and v r ,  and choosing a and p as the independent vari- 
ables, we arrive at a system of two equations describing the 
propagation of first and second sound in the system: 

Xv u 
~ : 1 " = ~ , ~ P 0 ( 5 ~ ~ ~ 0 -  5, uo>Xv+ 

Cr 
u uo), 

v A p =  T- 1 A p ~ u v  ~ ; : ~ = ~ ~ ~ ~ g O ~ ( ~ X y : ~ ~ - ~ o 5 ~ ) ,  P 2 2  0 5s 0 - 
Assuming a plane-wave solution 

~ l = a l o e x ~ ( i k $ ~ ) ,  p l=ploexp( ik~")  

(k" is the four-dimensional wave vector), and introducing the 
notation 

kt 
K ' = ~  , k $ = ( k v ~ i ) 2 ,  kt=k:-kl, 

Here 
Xv- Av- A v A0 -g u0u0, dU=uvdv, 

(12) we obtain 
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Setting the determinant of the system of equations (17) and 
(18) to zero, we obtain a dispersion relation with which we 
can determine the velocities of the sounds, which, allowing 
for the thermodynamic inequality 

derived in Ref. 2 with the assumptions 

we write as follows: 

The roots of this equation yield the velocities of the sounds 
with allowance for damping: 

is the square of the velocity of first sound, and 

is the square of the velocity of second sound. As Eqs. (20) 
and (21) show, the velocity of each sound is a complex quan- 
tity, with the imaginary part determining absorption. In the 
nonrelativistic limit (,u-,unonrel+ mc2,  c -+m) ,  the real parts 
of the above expressions reduce to the corresponding formu- 
las for the velocity of first and second sound in superfluid 
h e l i ~ m . ~  Studying the relations between the thermodynamic 
variables in the sound waves makes it possible to determine 
the nature of the vibrations in these waves: first-sound waves 
constitute small oscillations in density and pressure, and in 
second-sound waves both temperature and entropy oscillate, 
but pressure does not. In a first-sound wave, the superfluid 
liquid oscillates as a whole and the normal and superfluid 
components move together, while in a second-sound wave 
the superfluid and normal components move in opposition. 
The oscillations in the sound modes found here behave in the 
same way as the oscillations in the respective sounds in su- 
perfluid h e l i ~ m . ~  

As shown in Ref. 5, the expression for the velocity of 
fourth sound without dissipation is 

where 

is the square of the velocity of first sound, and 

is the square of the second-sound velocity. 
In the nonrelativistic limit Eq. (22) reduces to the ex- 

pression for the velocity of fourth sound in superfluid 
h e l i ~ m . ~ , ~  

Allowance for dissipation yields an expression for the 
velocity of fourth sound that has the same form as (22) but 
with K; and K; given by Eqs. (20) and (21). The dependence 
between the thermodynamic variables suggests that in rela- 
tivistic superfluid systems, fourth-sound waves are oscilla- 
tions in density, pressure, temperature, and entropy in a situ- 
ation in which the normal component is "squeezed." 

I would like to express my gratitude to P.I. Fomin, S.V. 
Peletminskil, and S.V. Mashkevich for useful discussions and 
valuable remarks. 
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Translated by Eugene Yankovsky 

This article was translated in Russia. It is reproduced here the way it was 
submitted by the translator, except for stylistic changes by the Translation 
Editor. 
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