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Within the framework of a weakly nonlinear theory, we investigate the local vortex flow of an 
ideal gravitating fluid with a free surface in a spatially two-dimensional environment. We 
obtain a model nonlinear integrodifferential equation for the complex potential of an infinitely deep 
fluid and find new types of steady-state flows whose velocity fields have a multipole 
structure near the free surface. The corresponding exact solutions to the model equation are 
solitary gravitational waves with vortex lines oriented transverse to the motion, and are 
significantly nonmonotonic in the variation of amplitude with depth. We propose a new 
model to explain the formation of various anomalous states of the ocean surface. O 1994 
American Institute of Physics. 

1. INTRODUCTION 

Starting with the classic work of Stokes, periodic finite- 
amplitude gravitational waves at the surface of an ideal deep 
fluid have been investigated primarily within the framework 
of potential theory.' Fundamentally new nonlinear regimes 
of propagation of surface waves were identified after the dis- 
covery of their modulation instability against long- 
wavelength perturbations.233 In particular, it has been proved 
within the framework of a weakly nonlinear theory that the 
asymptotically stable finite-amplitude states of a fluid are the 
so-called envelope solitons, i.e., modulated trains of waves 
propagating with a velocity close to the group velocity of the 
linear occupation wave. This result has stimulated further 
studies of the nonlinear dynamics beyond the instability 
threshold, along with a search for supercritical steady-state 
regimes4 Studies carried out within the framework of the 
Fourier spectral method, and also the results of Longuet- 
Higgins' numerical solution of the exact nonlinear equations 
of hydrodynamics,5 have revealed the existence of a restabi- 
lization of wave trains, even those with rather high ampli- 
tudes. Bifurcation of Stokes waves in the one-dimensional 
case was first observed in numerical modeling by Chen and 
~ a f f m a n , ~  who showed that a steady-state modulated struc- 
ture can exist with N waves per modulation period. Using the 
exact equations for potential-flow waves on deep water, they 
found solutions for N = 2 and N = 3, which correspond to 
bifurcations with period doubling and tripling. For all these 
cases, the observed behavior is typical of surface potential 
waves, with a characteristic exponential decay of the ampli- 
tude with depth. 

Until very recently, a search has been underway to ob- 
tain solitary gravitational finite-amplitude waves for deep 
water within the framework of potential theory by a limiting 
transition from solutions to the problem of gravitational- 
capillary The existence of gravitational-capillary 
waves, in turn, has been verified both by numerical results 
and by the existence of an exact singular solution, found by 
Crapper for pure capillary waves.9910 Nevertheless, the ques- 
tion of whether stationary solitary gravity waves can exist on 

deep water remains one of the unsolved problems of the 
nordinear theory. 

It is also known that motions can arise in fluids of a 
completely different nature, i.e., motions that involve vortic- 
ity or local vorticity.'~" Historically, the first exact solutions 
to the nonlinear equations of hydrodynamics for an ideal 
gravitating fluid with a free surface were the Gerstner surface 
waves, whose vorticity is continuously distributed and expo- 
nentially decaying into the fluid.' Theorems on the existence 
of a wider class of periodic vortex waves of this kind were 
established later by Dubreuil-Jacotain and ~ u ~ o n , '  and for 
solitary waves on a fluid layer of finite depth by Moiseev and 
~ e r - ~ r i k h o r o v . ' ~ " ~  The simplest example of local vorticity 
waves is the Karman vortex street, which appears as a sta- 
tionary structure behind a body moving in a fluid. This struc- 
ture forms as a result of separation of a boundary layer and 
the evolving instability of a tangential d isc~nt inui t~ .""~ For 
this special case, the processes by which the instability de- 
velops have been investigated experimentally with consider- 
able thoroughness; these processes are found to lead to the 
formation of large-scale isolated regions of nonzero vorticity 
throughout the volume occupied by the fluid. Thus, waves of 
this kind, which arise as a result of the exponential growth of 
the amplitude, develop subsequently into a periodic series of 
compact vortices oriented transverse to the flow. The regions 
with circulation, in which most of the vorticity is concen- 
trated, are usually called Kelvin cat's-eyes. The experimental 
data show that the rolling-up of a vortex comes to a halt 
when the amplitude of the fundamental harmonic is suffi- 
cient for parametric excitation of a subharmonic at half the 
frequency.I5-l8 

Thus, the evolution of an instability in the supercritical 
regime can lead to formation of large-scale localized vortex 
structures over a broad region on both sides of a bounding 
surface. The intensity and spatial scales of these structures 
determine the profile of this surface, while the presence of 
the gravitational force determines its dynamic properties. We 
might expect that under certain conditions it is possible for 
the surface moving in a gravitational field to act back on the 
vortex structure, thereby stabilizing their combined motion 
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and making it asymptotically stable. It is the existence of just 
this type of solitary gravitational wave on deep water with 
trapped vortices that will be discussed in this paper. 

2. STATEMENT OF THE PROBLEM AND MODEL EQUATIONS 
FOR A WEAKLY NONLINEAR THEORY 

We will investigate local vortex flows in a uniform 
gravitational field on an infinitely deep ideal fluid with a free 
surface, all within the framework of the planar problem of 
hydrodynamics. Let us choose a Cartesian system of coordi- 
nates that such the y axis is directed vertically upward and 
the unperturbed free surface of the fluid coincides with the 
plane y =O. While a free gravitational wave is propagating, 
the surface profile will be defined by the equation y = 7 (x, 
t). The flow is assumed to be potential flow except for a 
finite number of isolated singular points, as a result of which 
the region of potential flow D -  is, in general, multiply con- 
nected. Let us introduce the velocity potential v=V& then 
the equation for the field becomes the Laplace equation 

The time dependence of the potential is parametric. 
Boundary conditions at the unknown free surface are ob- 
tained from the requirement that the hydrodynamic pressure 
of the moving fluid p (x, 7, t) equal the constant atmo- 
spheric pressure p ,  at all points on the surface and all times. 
Neglecting the density of air compared to the density of wa- 
ter, this equation implies that all pressure changes in the 
liquid are tracked instantaneously by the atmosphere. We ob- 
tain the first so-called dynamical boundary condition by ap- 
plying the Cauchy-Lagrange integral at points on the free 
surface 

where p is the density and g is the acceleration in free fall. 
The second boundary condition is kinematic in nature: be- 
cause the flow is assumed to be continuous, it can be derived 
from the requirement that particles of the fluid located on the 
moving surface at a certain time should not leave it at later 
times. Let us write this condition in such a form that it does 
not contain the unknown function 7 (x,t) explicitly. For this 
we will consider the expression p(x, 7,t) -po=O to be an 
implicit equation for the free surface, for which 7 (x,t)-y 
=O is an alternative equation. Then by setting the total de- 
rivatives of the left sides of these equations to zero, taking 
(2) into account and the definition dyldt = $ , we obtain 

+tt+g+y+(v2)t+ +vvv2=0, y = v(x,t). (3) 

From potential theory it is known19 that the dimension- 
ality of the boundary condition (I), (3), which is expressed in 
terms of the independent variables, can be reduced by one by 
introducing the boundary value of the potential. The equation 
for this boundary value, in the present case, is boundary con- 
dition (3). The expression for the normal derivative +y en- 
tering into (3) is easily obtained only for y =O. On the other 

hand, within the framework of the weak-nonlinearity ap- 
proximation, and assuming that the singular points of the 
flow are located in the lower half-space at some distance 
from the free surface, we can reformulate (I), (3) as a bound- 
ary value problem for the half-space by displacing the 
boundary condition (3) to the line y =O. Let us introduce 
dimensionless variables and define a criterion for weak non- 
linearity. Let I be a characteristic parameter with dimensions 
of length. Using the two parameters g and I we can form the 
following characteristic values of the velocity, potential, and 
time: 

we then use these quantities to normalize the corresponding 
dimensional quantities of the problem. We will retain the 
previous notation for the new dimensionless variables. In this 
case, the dimensionless equations we obtained before retain 
their previous form if we set g= 1. The motion of the fluid 
will be weakly nonlinear if the following inequalities hold at 
every point (in dimensionless variables) near the free sur- 
face: 

In this case the boundary conditions (2), (3) may be 
displaced from the unknown surface y = 7 (x, t) to the plane 
y =O by expanding &x,y,t) and its derivatives in a power 
series in the usual way at the point y =0: 

Substituting the expansion (6) into (3) and saving terms 
up to cubic in the amplitude, we obtain a new boundary 
condition at y = O  (Ref. 20): 

The notation cp rather than 4 will be used henceforth for the 
potential and its derivatives at y =O. The Cauchy-Lagrange 
integral (2) can be used to find the profile of the free surface 

(x,t). To the same order of perturbation theory we obtain 
by the method of successive approximations 

Thus, in the weakly nonlinear approximation (5) the 
boundary value problem (I), (3) for the region with an un- 
known boundary is transformed into a problem for the half- 
space. The plane-parallel flow (I), (7) is most simply inves- 
tigated by using functions of a complex variable. 

In the multiply connected region D -  of the complex 
plane z = x  + iy we will introduce the following analytic 
function (the complex potential): 
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where 4 ( x , ~  ,t) is the hydrodynamic potential, + (x,y ,t) is 
the stream function, and the variable t is a parameter. We 
will use the complex potential only for those values of the 
parameter t for which the Cauchy-Riemann conditions hold, 
i.e., I$,= I,$, +y = - +, . Accordingly, we will define the ana- 
lytic functions V(z,t) (complex velocity) and S(z,t) (the 
Keldysh fun~tion)~' in the region D -  by the relations 

Here u and v2 are projections of the hydrodynamic velocity 
vector v onto the x and y axis: ul(x,y)=ReW1, v2(x,y) = 
-ImW1. The bar over the functions signifies complex con- 
jugation, and the dash, differentiation with respect to the 
complex variable z. 

The limiting values of these functions as we approach 
the real axis from below (y+-0) are denoted by the same 
lower-case letters 

- 
lim W(z,t)+w(x,t), lim V(z,t)+fi(x,t)=w,, 

y + - 0  y - - 0  

lim S(z,t)+s(x,t) = iw,,- w,. 
y p - 0  

In this notation, boundary condition (7) for the limiting value 
of the complex potential w(z,t) leads to the expression 

where 

w ( ~ ) =  R~(w$,,) - Rewt{21m(Gxxwx), + ImG,,. Res, 

+ i ~ e w , .  Ims,,) - wXl2. Res, . 
Here and in what follows we denote the real and imaginary 
part of the complex function w by Rew, Im w. A distinctive 
feature of the boundary condition (12) in the complex- 
potential representation is the fact that it contains not only 
the limiting function w(x,t) but also the complex conjugate 
function w(x,t). In order to obtain an equation for the com- 
plex potential W(z,t) over the entire region z E D  - we use 
methods that involve the linear adjoint boundary value 
problem,22'23 for which D -  means the whole lower half- 
plane except for isolated singular points of the flow. Accord- 
ingly, the region D  + is the mirror reflection of the region D -  
with respect to the real axis. We use the functions W(z,t), 
S(z,t), z E D -  to construct the functions W,(z,t) and 
S, (z,t) in the region D  + of the upper half-plane by invoking 
the reflection symmetry implied by the Schwartz principle: 

W,(z,t)=W(?,t), S,(z,t)=S(Z,t), Z E D + .  

The limiting values of these functions as y++O are 
w (x, t) and s(x, t), respectively. By introducing the function 
G(z,t), which is piecewise analytic over the entire complex 
plane, 

we can write the boundary condition (12) in terms of the 
discontinuity in the function G(z,t) as we pass through the 
real axis: 

In the linear theory there is no discontinuity; conse- 
quently, the function S,(z,t) is the direct analytic continua- 
tion of the function S(z,t) through the real axis, and G(z,t) 
is analytic in the entire finite part of the complex plane. In 
our case it is assumed that the complex potential W(z,t), and 
consequently the function S(z,t) as well, have isolated poles 
in the region occupied by the fluid. Let us write these func- 
tions in the form of a sum of two parts: a part that is regular 
in the lower half-space, and the principal part of a Laurent 
expansion in the vicinity of all the poles. Thus, W(z, t) = WR 
+ W, , S(Z, t) = SR+ SP . Then the discontinuity and poles can 
be used to reconstruct the regular function SR(z,t) via the 
Cauchy integral: 

Here we assume that the flow velocity at infinity can have a 
constant component, i.e., the point at infinity is a simple pole 
of the function W(z,t). Accordingly, the limiting complex 
function w(x,t)=wR+wp for the homogeneous boundary 
value problem (12) must be found by solving a nonlinear 
integrodifferential equation with dimensions (1 + 1): 

With this nonlinear equation as a basis, we can find all 
admissible distributions wR(x,t) and w,(x,t) within the 
weakly nonlinear approximation that describe intrinsic types 
of plane-parallel flow containing isolated singularities for an 
ideal infinitely deep gravitating fluid with a free surface. For 
this homogeneous equation, the Cauchy initial value problem 
can be formulated exactly as it is in the usual linear theory of 
the motion of a body under the surface of a fluid, where the 
sources Wp(z,t) are assumed to be prespecified.' 

3. STEADY-STATE MULTIPOLE SOLUTIONS TO THE 
NONLINEAR EQUATION IN THE QUADRATIC 
APPROXIMATION 

Let us discuss some special steady-state solutions to the 
basic nonlinear Eq. (15) taken from the class of rational 
functions; for this we include only the quadratic nonlinear 
terms in the expression under the integral sign. Let us intro- 
duce a real spectral parameter X, namely the dimensionless 
velocity of a steady-state perturbation propagating in the 
positive direction of the x axis. We then introduce a system 
of coordinates moving with this perturbation 6=x-At, and 
look for a characteristic function of the form we=u(6). This 
procedure leads to the expression 
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Let us further assume that the function w i ( z )  has poles 
in the upper half-plane. Then the general form of the com- 
plete function w l ( z )  can be written as a multipole expansion, 
with poles located in an arbitrary way over the entire finite 
part of the complex plane. In this section we will look for 
rational solutions to Eq. (16) of a more special form, by 
postulating that the function w l ( z )  has M paris of poles 
symmetrically located relative to the real axis. As we will 
show below, this ansatz to (16) is the only one whose param- 
eters are determined uniquely by a closed system of alge- 
braic equations of finite order. The coefficients of the multi- 
polar expansions in the neighborhood of all pairs, and also 
the expansion coefficients for each individual pair, are as- 
sumed to be constant and unequal to each other. For the 
limiting function u(0)  we will seek a solution in the form 

where z ,  =x, + i y ,  , y  ,>O; here A ,  is real, and A, ,  , B, ,  
are complex constants. M is the number of pairs of poles, 
{N , }=Nl ,  N 2 ,  ..., N ,  is the multiplicity distribution of the 
paired poles of the function V ( z ) .  For fixed M and {N,} the 
number of arbitrary parameters to be determined equals 
2(M + 1  + z:=, N,) .  It is obvious that if the complex 
function u(6)  is either exclusively real or exclusively imagi- 
nary, the coefficients of the expansion (17) satisfy the rela- 
tions B,, =An,  or B,, = - A n , ,  respectively. The complex 
flow potential W ( Z )  in the region D -  is determined by the 
expressions 

where 

In substituting (17) into the original expression (16), we 
have made important use of the fact that expanding the func- 
tion to be integrated in simple fractions allows us to write it 
in the form of a sum of two functions, one of which is ana- 
lytic in the lower half-plane and the other in the upper half- 
plane. In calculating the products of functions of the form 
(17) we make use of the following expression for decompos- 
ing a product into simple fractions: 

where 

For the expansion coefficients G, Q, we will require in 
what follows that the following symmetry relations hold 

G m f m = ( - l ) n + n '  mm' c:~;'=(- l)n+nr-m'm 
n ' n  p G n n l  7 G n n f  7 

These relations also hold for Q. 
Using the rule for interchanging the order of summation, 

N n N N  

C C ank= C C an,, (23) 
n = l  k = l  k = l  n = k  

we obtain a system of nonlinear algebraic equations for each 
pair of poles m= 1, ..., M that determines the free parameters 
Anm Brim Zm 7 and A: 

M 

A&-iA  2 V:"'=O, n = l ,  (24) 
m l = l  

where we have introduced the notation 
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A,,) recursively. Let us introduce expressions for the last 
three nonzero coefficients (omitting the label m): 

a) A i f 0 ,  A,=O: 

The total number of complex equations in the system 
(24)-(27) equals 2(M + z:=' N,), while the number of 
free parameters of the solution (17) is two more than this. By 
virtue of the translation invariance of the equations, we can 
always put one pair of poles, for example, the first, on the y 
axis, i.e., x, =0, and choose to normalize the ordinates of the 
poles by the length 1, so that y , = 2 1. Once this is done, we 
have enough algebraic equations to unambiguously deter- 
mine the real parameter A, the multiple moments, and the 
coordinates of the remaining pairs of poles, for any M and 
{N,). Numerical analysis of the algebraic system (24)-(27) 
shows that it has nontrivial solutions for any M and N, with 
the exception of several of the simplest cases. In particular, 
we can show by direct substitution that steady-state solutions 
of the form (17) do not exist - for any number of pairs of 
simple poles (N,=l, m =1 ,M) for any set of relative posi- 
tions of these poles. Likewise, the case of a single pair of 
poles (M =1) has nontrivial solutions only for N126.  One 
such solution (N, =6) will be given below. It is obvious that 
this situation is associated exclusively with the quadratic na- 
ture of the weakly nonlinear Eq. (16) if we note that either 
linearization or inclusion of cubic nonlinear terms always 
lead to an infinite system of coupled algebraic equations for 
the coefficients of expansion (17). 

Relative to the coordinate system moving with the wave, 
the flow is steady-state and can be described by a complex 
potential W =  -Az + W(z). In this case, the velocity vector 
at each point does not change with time, and consequently 
the trajectories of fluid particles coincide with the flux lines 
of the flow:" 

* ( x , ~ )  = I ~ W ( Z )  = - hy + ImW(z) = const. (29) 

The zero flux line corresponds to a velocity that equalsAo at 
infinity. 

Note also that within the framework of the quadratic 
approximation, the second half of the algebraic system [Eqs. 
(26) and (27)] describes only the interaction of the multi- 
poles within a pair. In this case the last M equations of (27) 
show that the moments of the highest multipoles in each pair 
must satisfy one of the relations AN,,, = +BNm,,. Physically 
this implies that the velocity fields created by these poles 
have either only horizontal components (AN,,,, = 0 )  or only 

vertical components A;,,, = 0) on the real axis. In both 
cases, Eqs. (26) allow us to compute all the remaining mo- 
ments A; (or A:,) of lower order in terms of A,:, (or 

+ (N+ I ) ( N + ~ ) A ~ ~ ] .  

By doing this we reduce the total number of equations for the 
algebraic system by half. 

An important simplification in finding solutions to the 
complex system (24)-(27) is achieved if we assume that all 
the poles are located on the vertical axis: zm=iym . In this 
case we can show that new unknowns can be introduced, 
defined by the relations 

in terms of which the system becomes real. 

Truncated nonlinear equation 

An important simplification of the basic integral equa- 
tion of the quadratic theory (16) results when we undertake 
to find solutions that are "close" to solutions of the linear- 
ized equation, i.e., 

I A 2 u e + i u l ~ l u l .  (32) 

Direct substitution of any finite expansion of the form (17) 
into the linearized equations does not lead to a closed system 
of algebraic equations. However, if we neglect the second 
term in the numerator of expression (16) under the integral 
sign by virtue of inequality (32), we obtain a truncated model 
equation for the quadratic theory for sufficiently smooth so- 
lutions close to the solution of the linearized equation: 

h2(u,+ Up)e+ ~ ( u R -  Up) - dE= iAo. 

(33) 

By truncating Eqs. (16), we obtain a closed system for the 
expansion coefficients of the form (17), consisting of a finite 
number of algebraic equations, even if the poles that lie in 
the upper half-plane of the function uR(z), which is regular 

*in D - ,  are not the complex conjugates of the poles of the 
function up(z) in the lower half-plane. 
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Let us introduce the complex potential W ( z )  with M 
poles of multiplicity Nm - 1 located arbitrarily in the finite 
part of the complex z plane (and not too close to the real 
axis). For simplicity we will assume that the fluid is at rest at 
infinity (Ao=O). Let M1 terms of the expansion with Im zm 
> 0 form the regular part of the potential W R  in the lower 
half-plane, while the remaining M -MI  terms with Im zm<O 
form the singular part W p .  Because the integers M I  and 
M>Ml are given arbitrarily, no special decomposition of the 
function W ( Z )  into two terms is necessary: 

where An,= -(n - l ) C n -  The upper and lower labels on 
the potential function denote the total number of poles and 
their multiplicity distributions, respectively. Substituting (34) 
into the truncated Eq. (33) leads to the following system of 
nonlinear algebraic equations for the unknowns C a m ,  zm , A 
(Ref. 24): 

As in the case of painvise conjugate poles, we may as- 
sume that x1 = 0, y , = 1, and all the remaining unknown pa- 
rameters are determined from the system x:=, Nm complex 
Eqs. (35) and (36). Among the set of solutions with real A, 
only those that satisfy the criteria (5) and (32) will be physi- 
cally meaningful over the entire real axis. 

A formally nonlinear algebraic system ( 3 9 ,  (36) can be 
obtained from (24)-(27) by setting Ao=Alm=B = F = 0 
there. - 

In the simplest case Nm=2, m =  1,M, i.e., when the 
complex potential consists of a flow created by a system of 
dipoles, the algebraic system (35) becomes linear with re- 
spect to the moments C,,: 

This allows us to reduce the number of equations of the 
nonlinear system (35), (36) to M for the unknowns z 2 ,  ..., 
z,,A . 

Thus, the primary result of this general analysis is that in 
a weakly nonlinear approximation where only quadratic non- 
linear terms are included the basic Eq. (16) and its truncated 
variant (33) admit the existence of the rational solutions (17) 
and (34) respectively which have the form of steady-state 
vorticity-bearing gravitational waves whose flows have a 
complex multipolar structure near the free surface of the 
ideal gravitating fluid. In the next section we will find a 
number of exact solutions to Eqs. (16) and (33) that satisfy 
the criteria (5), (32) of the theory. 

4. EXACT SOLUTIONS OF THE TRUNCATED EQUATION 

4.1. Series of single-pole solutions (M = 1 ) 

Without loss of generality let us place the single pole on 
the imaginary axis and write the expression for the complex 
potential according to (34) in the form 

Here Cn =Cn , N1 =N is the multiplicity of the pole of the 
function W 1 ( z ) ,  and Z = X  -At + iy , as in the previous sec- 
tion. If we introduce a normalization of the amplitudes into 
(35) 

then the real spectral parameter A is given in explicit form: 

It is clear, at any rate, that any real solutions to system (39) 
give a potential W(,')(z) that is a characteristic function of 
the spectral problem (33). In this case the requirement that A 
take on  real values is ensured by an appropriate choice of 
sign for y1 in (40), i.e., locating the pole outside the fluid 
Cyl>O) or inside it (yl<O). The structure of the algebraic 
system (39) itself reveals that the nonlinear terms describe 
only the interaction between multipoles and their "images" 
relative to the plane y =O. There is no direct interaction of 
the multipoles with one another in the truncated equations. In 
nonlinear Fourier analysis, this approximation corresponds to 
taking into account only the effects of detection and discard- 
ing higher harmonics. Let us consider the first few exact 
solutions to the system (39). 

In the simplest dipolar case (N =2) 

a solution exists if the pole is located in the fluid itself 
C y l  <0). Choosing as the characteristic length the distance 
from the pole to the unperturbed surface, i.e., 1 = (y 1 = 1, we 
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obtain the following expressions for the potential ~ ( z )  in 
the system of coordinates moving with the wave 

This potential is a superposition of two flows: a uniform flow 
and a dipole whose axis is oriented along the flow. There are 
two critical points for the flow [w' =0: y. = i(- 1 -t J2)], lo- 
cated symmetrically with respect to the dipole center. Equa- 
tion (29) for the flux lines has the form 

where yo is an arbitrary real constant. The flux lines that 
correspond to the values 1 - 2 d < y 0 < 1 + 2 d  are focused by 
the dipole at its center. Consequently, the zero flux line, 
which is the profile of the free surface, also passes through 
the center of the dipole and has the form of a trough of unit 
depth. The solution (41) does not satisfy the criterion for 
weak nonlinear flow (5) near the crest (x=O), although for bl 
-t the velocity field decays like lxlP2; accordingly, the 
profile of the solitary wave decays in the same way. In a 
certain sense this solution is similar to the singular soliton 
solution of the exact Crapper equation for pure capillary 
waves.931o However, in our case the approximations we have 
used limit the applicability of our solution to regions far 
from the crest. 

Analysis of the algebraic system (39) shows that solu- 
tions exist only for yl<O, and for N=2, 3, 4 there are only 
real roots whose number increases rapidly. Thus, for N=3  
there are two of these roots ~(ii,)2, j = 1,2: 

1) j = l ,  

~ ~ = 2 - & ,  ~ $ ' ) = 2 1 ~ ~ ) ~ / ~ ( 2 -  61, 

It is clear that the velocity and amplitude of the crest in the 
first solution G=1) is smaller than for the case N=2; how- 
ever, the flux lines of the flow caused by the system dipole 
plus quadrupole, along with the corresponding free surface, 
are "sucked into" the point y =-yl as before. 

For N=4 the number of real solutions is now four; one 
of them G=1) yields values of the velocity and amplitude 
smaller than for N=2, 3. This tendency persists as N in- 
creases, resulting in an entire branch of solutions W(,')(z). At 
the same time, as N increases, new branches form, corre- 
sponding to the values j=2, 3, ... For N=S the number of 

real roots of the system (39) equals six, for N=6 it equals 
ten, for N=7 it equals 14, etc. We have calculated the branch 
corresponding to label j = 1 numerically up to N=19. We 
were unable to make a complete classification of the solu- 
tions to Eq. (39) for arbitrary N, as can be done, e.g., for the 
states of an electron in the hydrogen atom, although corre- 
sponding changes in notation allow Eq. (15) itself to be writ- 
ten as a one-dimensional Schrodinger equation for a free 
electron with self-interaction. 

Since no general methods exist for solving systems of 
nonlinear algebraic equations, we used the Newton-Raphson 
method to find special solutions for N>4, and also for cases 
where M>1. In connection with this, it is worth noting that 
almost all the solutions were obtained numerically, and yet 
we use the term exact solution. In this way we underline a 
specific feature of this type of problem: when a finite series 
is substituted into an integral equation, the latter reduces to a 
closed system of a finite number of nonlinear algebraic equa- 
tions. In this case, the accuracy of the solution is determined 
only by the precision of the computer used. Usually, how- 
ever, the Galerkin procedure leads to an infinite system of 
algebraic equations and, after replacing it by a finite system 
of N equations, it is necessary to prove convergence of the 
solution as N+w. In our case, this situation obtains whether 
we solve the linearized Eq. (33) using the expansion (34) or 
take into account the cubic nonlinear terms in this equation. 

4.2. Series of two-pole solutions (M=2) 

Let us consider a case where sources z, are located on 
the single vertical line x =0: z, =iy, . According to (31), the 
moments of the complex potential (34) have the form 

c =(-l)(n+l)l2in+l 
nm C n m  9 (44) 

where cmn are real numbers. The complex system of alge- 
braic equations (35), (36) reduces to a system of real equa- 
tions: 

We will assume that poles z1 and z2 are located on dif- 
ferent sides of the unperturbed surface y =O. As N1 and N2 
increase, the number of solutions grows rapidly and we were 
unable to make a complete classification of them. However, 
we were successful in identifying several series of solutions 
which, for different N1 and N2, correspond to a common 
spatial configuration of the characteristic modes, e.g., a sym- 
metric one-humped solitary wave, a two-humped wave, etc. 
Naturally, in this case, the branch of the solutions that is 
most interesting is the one that begins with certain values 
N,,, that satisfy the criteria (S), (32). Here we present results 
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FIG. 1. Flux lines for a flow with complex potential $:i(z). 

for only one such solution branch of the system (43,  (46), 
for which the pole z ,  with multiplicity N1 =N + 1  is located 
above the fluid, while the pole z 2  is located in the fluid and 
has multiplicity N 2 = N .  If we choose the height of the pole 
z, above the unperturbed surface as the characteristic length 
I ,  i.e., y ,  =1, then we should seek the complex potential wcz$, ,N ( z )  in the form 

where a2,= i, a,,+ , = 1; the moments are defined 
in (44). 

In our paper Ref. 24 listed all the parameters used in Eq. 
(47) for a series of seven solutions N=%, all of which 
describe a solitary wave. It turns out that as the number of 
terms in the expansion in (47) increases, all of its parameters, 
i.e., cam, A, d o )  decrease monotonically. The values of the 
moments en,,, c,,, for the same n and N approach each 
other as N  increases, while the amplitudes of the tail in the 
expansion (47) rapidly reduce to zero. A specific feature of 
the Newton-Raphson method is that for a set of solutions 
that lie on the same branch, the radius of convergence of the 
process that iterates toward them decreases as N  increases. 
Therefore, we used a special approximation program based 
on the previous N  - 1  points to choose trial values of the 
unknowns for successive values of N .  

Figure 1 shows a portrait of the flux lines for the flow 
with potential ~ : i ( z )  in accordance with the definition (29). 
The numerical parameters of the flow are given in Table I. 
The zero flux line corresponds to the profile of the free sur- 
face. It is clear that in the immediate vicinity of this surface, 
where only the nonlinear boundary condition (3) need be 
fulfilled, the velocity field is quite smooth and the criterion 
for the approximate theory can be satisfied with arbitrary 
accuracy for sufficiently large N. 

TABLE I. 

In order to reproduce the profile of the free surface gq5 
using Eq. (8 )  based on the potential given by the quadratic 
approximation, it is sufficient to use only the linear relation 
between and 4, since we used only this linear relation in 
calculating the quadratic terms in (7). Because the free sur- 
face is by definition a flux line, an alternative method can be 
used to calculate the profile dB)  as the zero flux line (29); 
this method entirely confirms the conclusion arrived at 
above. In addition, this also implies that the approximate 
small-amplitude solutions are themselves correct with re- 
spect to the exact Eq. (3). In Fig. 2 we show the results of 
computing the function dB)  for even values of N =2, 4, 6, 8 .  
The first two solutions N = 2 , 3  exhibit rather small troughs at 
the top of the hump, which disappear for subsequent N .  For 
N = 8 ,  in dimensional variables with 1 =I00  m we obtain for 
the height of the solitary wave crest a value h(')= lg@) - 1  
m, along with the rather high velocity c(') =~(')@-7.4 
mls. 

4.3. Series of multipole solutions 

Assume we have 2 M + 1  sources (poles) located on a 
single vertical line and creating a flow in the region occupied 
by a fluid with a potential of the form (34). The flow struc- 
ture, i.e., the relative position and labeling of these poles, is 
in this case determined by the form of the specific expansion 

FIG. 2. Free-surface profiles of solitary waves corresponding to the solution 
dfi,.,(z) forN=2,  4, 6, 8. 
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TABLE 11. 

-0.15 -0.05 0.05 0.15 -0.30 -0.20 -0.10 0.01 0.11 0.21 
X X 

FIG. 3. Flux lines of a flow with complex potential ~ ~ ) 1 , 1 , 1 ; 2 ) ( z ) .  

Here the labeling is such that the larger the label of the 
pole, the higher on the y axis it is located. Furthermore, for 
all values of M, the poles with negative labels m = - M,O are - 
located in the fluid, while those with positive m = 1 ,M are 
located outside it. The source with label m =M (above the 
fluid) has a dipole+quadrupole structure, while the remain- 
ing poles are dipoles. As the characteristic length 1 we 
choose the height of the pole M above the unperturbed sur- 
face: y,=l. In this configuration, we studied one branch of 
the solutions to (48) up to M=17 inclusive. This branch 
corresponded to symmetric solitary waves with a single 
crest. The main sources that give the largest contribution to 
the flow are the edge solutions with labels m = M and m = 
- M. Each new solution was obtained by adding a pair of 
poles between the main ones. As in the previous case, during 

the iterations, trial values for each new solution were found 
based on the previous one, using a special approximation 
program. Computations were carried out using Newton's 
method with double precision. For a given value of M, the 
corresponding system of nonlinear algebraic equations was 
of order 4M+3. The parameters of the exact solutions (48) - 
for M = 1,6 and M = 17 are given in our Ref. 24. It turns out 
that as M increases the lowest pole y - ,  approaches the 
value y = - 1 from outside. The remaining ooles ISmCM 
- 1 and -M + l s m  S O  approach the values y = 1 and y = 

-1, respectively, from inside, continuously and in a practi- 
cally linear fashion. The maximum amplitude of the crest 
decreases monotonically and probably goes to zero as M --+ 

=='. 
In Fig. 3a we show the flux lines (29) of the flow (48) for 

M=2. Its numerical parameters are given in Table 11. The 
zero flux line corresponds to the profile of the free surface in 
the wave system of coordinates. Three less intense dipoles 
are localized in the regions surrounded by rectangles in the 
figure. These regions are scaled up in the detailed plots of 
Figs. 3b and 3c. 

In Fig. 4 we show curves for the profile of the free 
surface 7,1(6) for the values M=2, 7, 12, and 17. Reintroduc- 
ing dimensional quantities, we find that for M=17 and 
1 =I00 m we have for the crest height h(34)= 1r1(34)(0)=1.64 
m, and a velocity ~ ( ~ ~ ) = h ( ~ ~ )  @ = 13.4 m/s. The width of 
the crest at the level y =O is of order 200 m, i.e., the criteria 
for smoothness (32) and weak nonlinearity (5) are easily ful- 
filled for all values of M. 

5. EXACT SOLUTIONS OF THE FULL EQUATION IN THE 
QUADRATIC APPROXIMATION 

Let us consider steady-state flow, whose velocity field 
(17) contains only one pair (M=l)  of complex conjugate 
poles with multiplicity N. We will choose as a characteristic 
length I for the perturbation the distance of the poles from 
the unperturbed surface and place the pair on the vertical 
axis: x ,  =0, y ,  =l. As noted above, in this case the system of 
nonlinear algebraic Eqs. (24)-(27) for the variables a,,, bnl 
reduces to real form. In addition, from the symmetry condi- 

tion (22) for the coefficients G?' it follows that the diago- 

nal elements of the matrix v:"' , defined in (28), reduce to 
zero for n = 1, i.e., A ,, =B,,. Then Eq. (18) for the complex 
potential of the flow can be written in the form (with the 
label m omitted) 
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FIG. 4. Free-surface profiles of solitary waves corresponding to the solu- 
tions q;:{''(z) for M=2,  7, 12, 17. 

where co=Ao, d o =  - iAl , c, , d, are real numbers. The 
total number of algebraic equations in the system (24)-(26) 
for both cases (a) and (b) indicated in (30) equals 2 N .  Nu- 
merical solutions were obtained only starting with N>6 for 
case (a). As we noted, in this case the velocity field created 
by the poles of highest order has only a horizontal compo- 
nent at y =O. 

The parameters of the first solution for N = 6 are given in 
Table 111. The distinctive feature of this solution compared 
with solutions of the truncated equations is the presence of a 
logarithmic potential (i.e., a pair of vortices located sym- 
metrically with respect to y =0) and a constant flow at infin- 
ity. Figure 5 shows the dependence of the horizontal compo- 
nent of the flow velocity v ,  (8) at y = O  in the wave system of 
coordinates; in linear approximation, according to (8), this is 
proportional to the elevation 77(')(8). The dotted line indicates 
the level of this flow component to which the perturbation 
reduces as ( 4  + w. There are three maxima. The amplitude 
of the central maximum compared to the level at infinity is 
v1(0)=0.33, so that the criterion for weak nonlinearity is 
easily satisfied only at large distances from it. 

6. CONCLUSION 

The new class of steady-state spatially two-dimensional 
multipole solitary waves described in this paper, which 
propagate near the free surface of a deep fluid, bear a certain 

TABLE 111. 

n c, d" 

0 0.167829 -0.004680 
1 -0.096956 -0.021142 
2 0.015177 -0.063090 
3 -0.007178 -0.070687 
4 -0.012056 0.041017 
5 -0.011781 0.011781 

h=0.539058 

FIG. 5. Profile of the horizontal component of the velocity for the steady- 
state flow W(61)(z) in the wave system of coordinates. 

resemblance to the exact solutions of the canonical two- 
dimensional Kadomtsev-Petviashvili equation found re- 
cently by Gorshkov et which are referred to by these 
authors as multisolitons. However, the principal difference 
between their results and ours is the fact that in our case, the 
two-dimensional nature is due to the dependence of the field 
on the vertical coordinate, as a result of which our solutions 
are locally rotational. We have not investigated the stability 
of these compound structures. 

There are many large-scalelo long-lived states of the 
ocean surface that are well known, e.g., zones of rip tides, 
crowding, and Langmuir circulation, that exist during rela- 
tively peaceful weather. There are detailed descriptions of 
especially dangerous types of waves, e.g., storm waves of the 
"ninth-roller" type and tsunamis, that are smooth and of 
modest height in the open ocean but possess destructive 
force on the shores.26227 Although many different models 
have been proposed in the past, a unified theory that explains 
the nature of these phenomena does not yet exist. 

Existing theoretical models for the excitation of waves 
by wind, e.g., the well-known mechanism of ~ i l e s , "  can 
describe only the initial stages of development of the un- 
stable tangential discontinuity. In this case, periodic gravita- 
tional waves grow because of a transfer of energy from the 
air current. Investigation of later stages of this process within 
the framework of the Fourier spectral method becomes inef- 
fective, and the conclusion that the flow reduces rapidly to 
turbulence is unpersuasive. A variety of experimental inves- 
tigations of flows with vertical velocity shifts have 
s h o ~ n ' ~ - ' ~  that an intermediate stage of strongly nonlinear 
regular motion exists with the formation of large-scale vortex 
structures. The singular steady-state flows described in this 
paper probably reflect just these intermediate stages for the 
coupled atmosphere-ocean system. Their exceptional variety 
and weak stability due to atmospheric variability lead us to 
believe that such large-scale structures can indeed appear 
under certain conditions, and can function as a primary en- 
ergy source and reason for the formation of storms, tsunamis, 
and other anomalous states of the surface of the open ocean. 
The solutions we have obtained follow from the dynamics of 
an ideal uniform gravitating fluid with a free surface; factors 
connected with stratification of the near-surface layer, the 
presence of a thermocline, the rotation of the Earth, etc. are 
of secondary importance and can only catalyze such flows. 
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