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It is shown that the reason for the inhibition of electron heat transport in a weakly collisional 
plasma relative to the collisionless Knudsen limit is the long-range Coulomb interaction, 
the effect of which is that there are always slow charged particles for which collisions are 
important. It is shown that heating is due to slow collisional particles and that the energy 
absorbed in the inverse bremsstrahlung effect is transported by collisionless particles. O 1994 
American Institute of Physics. 

1. Experiments on the interaction of high-power laser 
radiation with a plasma, performed within the framework of 
the Controlled Inertial-uclear Fusion Program in various 
countries, have led to the conclusion that electron heat trans- 
port in a weakly collisional plasma does not correspond to 
the usual Knudsen limit but rather is substantially sup- 
pressed.1P3 For the electron heat flux density, the formula 

has come into use, where n, is the electron number density, 
KB the Boltzmann constant, T, the electron temperature, and 
U ~ , = ( K ~ T ~ / ~ , ) ' ~ ~  is the electron thermal velocity. In con- 
ventional collisionless Knudsen transport in a gas, f - 1 (Ref. 
4). This is in contrast with the experimental evidence for a 
much smaller heat transfer inhibition coefficient f ,  for which 
values from 0.1 to 0.03 have been quoted.1P3 

Real physical experiments have been accompanied by 
numerical experiments that have led to a widespread belief 
that the reason for the relatively low value of the heat trans- 
fer inhibition coefficient is to be found in the theory of pair- 
wise Coulomb interactions. It should be noted here that to 
account for heat transport inhibition in a plasma with ion- 
acoustic turbulence is a simple problem. To some extent, for 
a turbulent plasma the problem has been s01ved.~ It is for this 
reason that in the present publication we omit possible tur- 
bulent effects completely and concentrate on the theory of a 
collisional plasma. It must be said that in the absence of 
turbulence, for a weakly collisional plasma with its practi- 
cally collisionless transport the inhibition of the heat trans- 
port as compared to the Knudsen case has thus far appeared 
paradoxical. 

In the present report we elucidate the essence of this 
phenomenon. It should be noted that collisionless heat trans- 
port is, by definition, nonlocal. On the other hand, there are a 
number of recent publications on nonlocal heat transport in a 
fully ionized weakly collisional plasma heated by high- 
frequency electromagnetic The results therein 
are presented in a heat-transport inhibition form that differs 
from (1.1) and appears as a nonlocal integral relation be- 
tween the heat flux density and the temperature gradient. For 
the Fourier transform of the effective electron thermal con- 
ductivity, 

Here a and p are certain numerical quantities, 
KSH= (12813 m)ne K ~ v ~ ~ ~ ~ ~  is the electron thermal conduc- 
tivity of a highly collisional, completely ionized plasma, 
lei = v Te I vei is the mean free path of electrons with respect to 
their collisions with the ions. For the electron-ion collision 
frequency we have 

where e is the electronic charge, ei=Zlel the ion charge, n i  
is the ion number density, and A the Coulomb logarithm. 
Finally, 

In Refs. 7-10, Eq. (1.2j comes from numerical electron 
transport simulation. The values of the exponent P thus ob- 
tained are 413, 1.44, and 1.148. A somewhat weak point of 
the numerical simulation work is the difficulty in interpreting 
the results. 

The analytic approach of Ref. 11 (see also Ref. 12) led to 
Eq. (1.2) with the parameters a=21.1 and P= 1017, not 
much different from the numerical simulation results. On the 
other hand, Ref. 13 shows that the nonlocal thermal conduc- 
tivity (1.2) leads to a heat transport inhibition coefficient of 
the form (1.1). This suggests that the paradoxical situation in 
regard to the heat transport inhibition may be resolved ana- 
lytically. 

It should be emphasized that Ref. 11 brought to light the 
previously unexamined role of cold electrons, with velocities 
much lower than the thermal velocity vT,, in the formation 
of an electron density perturbation by an electromagnetic 
field. In fact, one can infer from the quasihydrodynamic ap- 
proach of Ref. 14 that the same cold electrons are respon- 
sible for most of the plasma temperature enhancement. The 
kinetic treatment below shows that this is indeed the case. 
This reveals the arbitrariness of the notion of temperature 
heating in a weakly collisional plasma. On the other hand, it 
is shown that heat transport in such a plasma is governed by 
the thermal collisionless electrons. The distinction we estab- 
lish below between collisionless and collisional electrons 
originates from the feature of the long-range Coulomb inter- 
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action that there always exist slow particles for which colli- 
sions are of importance, even though most of the particle 
distribution may be considered collisionless. This is one of 
the qualitative differences between a gas of charged particles 
and an ordinary gas. This accounts for the difference be- 
tween transport in a weakly collisionless plasma and in a 
conventional Knudsen gas. At the same time, our treatment 
enables one to speak of the relative character (as opposed to 
the notions of the conventional Knudsen kinetics) of the ef- 
fective electron thermal conductivity (1.2) and, according to 
Ref. 13, also of the heat transport inhibition coefficient. 
Namely, the effective thermal conductivity of a weakly col- 
lisional plasma, Eq. (1.2), corresponds to the heating of cold 
(subthermal) collisional electrons and to the transfer of en- 
ergy by thermal collisionless electrons. 

2. To consider processes in a completely ionized plasma 
heated by electromagnetic radiation we shall assume that the 
plasma is in a high-frequency field whose electric strength is 

We will assume that 

Also, we assume that 

where L ,  is the scale of the spatial variation of the field 
amplitude E(r,t) which, by assumption, varies little with 
time over the period 27r/oo. Then, following Ref. 15, we 
divide the electron distribution function into a rapidly vary- 
ing part with period 2 d o o ,  and one slowly varying over 
this period, and then proceed in the standard way to obtain 
an equation for the slow distribution function f ,  which in- 
volves terms quadratic in the strength of the high-frequency 
electric field (cf. Ref. 16). In accordance with the approach 
of Refs. 11 and 16, let 

where f M  is a Maxwellian distribution. Equation (2.4) re- 
stricts us to steady-state processes. We will also use the no- 
tation 

Sp-+exp(ikr) Sp. (2.6) 

This, in accordance with Ref. 11, enables the electron distri- 
bution perturbation f to be represented in the form 

where 

i k v S f , - J e e [ S f c ] - J e i [ S f c ] = Y o + Y a .  (2.10) 

Here 

and J,, and Jei are the electron-electron and electron-ion 
collision integrals. In the electron-ion collision integral we 
neglect small terms of the order of the electron-to-ion mass 
ratio: 

Here 

V ( V ) = ~ ( . ~ ~ / ~ ) ~ ' ~ V , ~ ( V ~ ~ / U ) ~ .  

It is to be noted that when Sf, is neglected, Eq. (2.7) yields 
for the electron density 

This corresponds to a change in the electron density due to 
the electric potential (Boltzmann distribution) and to the 
Miller force potential (ponderomotive force). Now, defining 
the change in the electron kinetic energy according to 

we obtain, neglecting Sf, , 

The last expression is the period-averaged energy of elec- 
tronic oscillations in the electric field, so it can only tenta- 
tively be linked to temperature change. 

From here on, we assume a weakly collisional plasma, 
with 

We will, however, distinguish between electrons with suffi- 
ciently high velocities and slow electrons, the two groups 
being affected in a qualitatively different manner by colli- 
sions. This is due to the fact that there are long-range Cou- 
lomb forces acting between plasma particles and that these 
lead to the effective frequency (2.14), which proves to be 
large for sufficiently slow particles. The same velocity de- 
pendence is characteristic of electron-electron collisions. 

3. In the weakly collisional plasma of interest here, when 
the inequality (2.19) holds, collisions prove to be of no sig- 
nificance over most of the electron-velocity phase space. As 
far as Eq. (2.10) is concerned, this means that for electron 
velocities satisfying 

and the function Sf, obeys or, equivalently for velocities which are not too low, 
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the collision integrals can be omitted. Then for the velocities 
(3.2), Eq. (2.10) becomes simply 

The solution has the form 

where P denotes the Cauchy principal value and the S func- 
tion arises from Landau's rule for avoiding singularities. 
Treating the singularity in this way can be directly justified 
by including electron collisions as a small effect and letting 
vlkv go to zero. 

From Eq. (3.4), the contribution of electrons with mod- 
erate velocities (3.2) to the electron density perturbation and 
to the mean electron kinetic energy due to the high- 
frequency field are of order 

This is klei times less than the corresponding values (2.15) 
and (2.16). Here and in what follows, k denotes the absolute 
value of the vector k. One therefore concludes that the in- 
crease in the energy of thermal electrons is small compared 
to their oscillatory energy due to the permanently acting 
force from the externally applied electromagnetic field. 

Subsequent discussion relies on the implication of Eq. 
(3.4)  for the nonequilibrium electron heat flux. Thus, for the 
divergence of the energy flux density of thermal electrons we 
obtain 

The error in this expression is due to the low velocities, and 
is governed by the parameter 

Neglecting small terms of this order, the expression above 
for the divergence of the energy density transferred by elec- 
trons is just the energy absorbed by the plasma per unit time 
owing to the inverse bremsstrahlung effect. In fact, Eq. (3.6) 
follows directly from the electron kinetic equation for 
steady-state processes and for the exact electron distribution 
function [see, e.g., Eq. (5)  of Ref. 141. This enables an im- 
portant assertion to be made, that heat transport in a weakly 
collisional plasma occurs via collisionless electrons, whose 
nonequilibrium distribution is described by Eq. (3.4). 

Noting that the temperature increase in the thermal elec- 
trons is given to order of magnitude by Eq. ( 3 . 9 ,  one easily 
obtains from Eq. (3.6) the following electron heat flux ex- 
pression: 

This is a natural result for the collisionless Knudsen-type 
transport process in which thermal electrons transfer the en- 
ergy increase they acquire. We emphasize that this result 
does not involve any significant inhibition of the heat trans- 
port. 

4. We next turn our attention to the role of slow, or cold, 
electrons, whose velocities will be assumed to obey the in- 
equality 

Note that the v,,  of this section equals, to order of magni- 
tude, vmin of the preceding section, which is natural as being 
consistent with the distinction between the collisional and 
collisionless regions of velocity phase space. In fact, for cold 
electrons with velocities (4.2), collisions dictate the form of 
their velocity distribution. 

Equation (2.10), with inequality (2.18) for slow elec- 
trons, was solved in Ref. 11 under the assumption of high 
ionization 

which we also will employ. Then the perturbation of the cold 
electron distribution has the form 

where the symmetric part (in velocities Sfo) of the perturba- 
tion of the electron distribution is determined by the 
equations" 

where ~ = x N ~ / ~ , ,  IlI7 and KIl7 are the Bessel functions of 
imaginary argument, r is the Euler r function, and finally 

The solution (4.6)  is for the asymptotic limit N 9 1 .  It is 
worthwhile to note a useful asymptotic representation 
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which also obtains for small values of X, when 
N%Nx7I2% 1, that is, when 6 9  1. For the variable 5, the 
inequality (4.2) has the form 

5 < ~ ~ / ~ ( k 1 , ~ )  (4.9) 

The right-hand side of Eq. (4.9) is large compared to unity. 
In Ref. 11 it is shown that the distribution (4.4) leads to 

the following electron density perturbation: 

The main contribution to the formation of such a perturba- 
tion is given by that region of velocity phase space in which 
6- 1, or equivalently 

u - u ~ , N - ~ ~ ~ .  (4.11) 

These velocity values lie in the region (4.2), and it is this fact 
which ensures the asymptotic validity of Eqs. (4.4)-(4.6). 

The electron density perturbation (4.10) due to the cold 
electrons exceeds that due to the ponderomotive force (2.15) 
if 

1.73 ~ ~ ~ ~ > ( k l , ~ ) ~ ~ ~ +  1. (4.12) 

It is under these conditions that a correct description of the 
cold electrons leads to qualitative changes in the theory of 
the filamentation of laser radiation in a plasma (as discussed 
in Ref. 11) and in the theory of the stimulated Mandelstam- 
Brillouin scattering (as discussed in Ref. 17). 

On the other hand, it is to be noted that the density 
perturbation (4.10), due to the cold collisional electrons, is 
always large compared to the electron density perturbation 
(3.5) due to the thermal collisionless electrons. We will show 
now that the same conclusion about thermal energy pertur- 
bation follows from the distribution (4.4)-(4.6). To do so, we 
find the perturbation 

where t,,, is defined by Eq. (4.2). It is readily seen that 

Therefore, neglecting small terms of the order of (4.14), it 
can be concluded that 

Such an expression was previously obtained by considering 
hydrodynamic pressure balance.14 Now it has been obtained 
directly from the electron velocity distribution. It is to be 

emphasized here that the expression (4.15) has nothing to do 
with the conventional temperature, but corresponds instead 
to the increase predicted by the kinetic theory of very slow 
(cold) electrons with velocities (4.11). However, the increase 
in this cold electron temperature turns out to be greater than 
the increase in the thermal energy of the thermal electrons, 
Eq. (3.5). Finally, the increase in the cold electron tempera- 
ture, ST, , ,  turns out to exceed the mean energy of electron 
oscillations in an external electromagnetic field when the in- 
equality (4.12) holds. 

It remains to consider the energy flux density of the cold 
electron component, 

As with the thermal electrons, we consider the flux density 
divergence, for which we obtain 

where 

J =  [ x w d x d X ~ 4 @  ( X )  . 

The two terms in Eq. (4.6) yield for J the simple upper 
bounds ( ~ k ' l ; ~ )  and (k le i )  - ' , respective1 y. Either is 
small compared to unity. This confirms the earlier conclusion 
that the energy of the absorbed radiation is transported by 
collisionless thermal electrons, and that cold electrons are of 
no significance for this transport. 

The above analysis facilitates the separate treatment of 
the effects due to collisionless thermal electrons and those 
due to collisional cold electrons. The qualitative difference in 
their behavior appears to be an important feature of a weakly 
collisional plasma as a system of particles with the Coulomb 
interaction. 

5. The analysis above shows that the main contribution 
to the heating of a weakly collisional plasma, due to the 
inverse bremsstrahlung absorption of electromagnetic radia- 
tion, comes from the increase in the thermal energy of the 
cold electrons with velocities of the order of (4.11), for 
which electron Coulomb collisions are the major determinant 
of the distribution. At the same time, heat transport is mainly 
due to collisionless thermal electrons. We have shown that if 
one associates such transport with the relatively small heat- 
ing of the thermal electrons themselves, no heat transport 
inhibition occurs and, according to Eq. (3.8), the conven- 
tional Knudsen picture of collisionless electron heat transport 
arises. This simple kinetic picture of electron heat transport 
is valid only for the thermal electron component. However, 
the picture looks entirely different when using the notion of 
an electron gas as a whole, without dividing it into a hot and 
a cold part. The heat transport description using the flux 
divergence (3.6), but with the temperature increase (4.15), 
enables Eq. (3.6) to be rewritten in the form 

(kl,i)4i7 
div q= 2 veineKBST, 

1.73 z5I7 ' 
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Here we make no distinction between q(o) and q,  nor be- 
tween ST,,, and ST,, as this distinction was shown to be of 
no consequence in the discussion above. Expression (5.1) 
has been written earlier in Ref. 14 in the development of a 
phenomenological description of nonlocal heat transport. 
Equation (5.1) allows a representation of the form 

div q= - k 2 ~ , & k )  ST,, (5.2) 

where the effective thermal conductivity K , ~  has a form cor- 
responding to Eq. (1.2) without the 1 in the denominator, the 
latter being included with a view to passing to the strongly 
collisional limit. 

It is thus apparent that electron heat transport inhibition 
in a weakly collisional plasma is due to the fact that the 
energy absorbed in a plasma is transported by hot collision- 
less electrons and that the heating process occurs for the cold 
low-velocity electrons. The fact that a hydrodynamically av- 
eraged description involves only one electron component 
makes heat transfer by this single component paradoxical, at 
first glance. However, in contrast to a simple Knudsen gas of 
atoms with a short-range potential, in a gas of interacting 
charged particles, one finds that even in the usual collision- 
less limit (2.18) there are always slow collisional particles 
obeying Eq. (4.2). 

In conclusion, recall that in certain other cases as well, 
the application of the concept of a gas with short-range 
forces to plasma problems has caused difficulties in under- 
standing the properties of a system of particles with long- 
range Coulomb forces. 

Finally, note that the above properties of the electron 
component of a weakly collisional plasma are undoubtedly 
shared to some extent by the ion component, whose proper- 
ties have yet to be explored theoretically. 

The present work was performed under the auspices of 
the Russian Fundamental Research Foundation (Project No. 
94-02-0363 1). 

APPENDIX. ROLE OF THERMAL AND COLD ELECTRONS IN 
THE COMPENSATION OF THE DRAG CURRENT 

Consider the divergence of the drag current density 

Substituting Eq. (3.4), which corresponds to thermal colli- 
sionless electrons, 

We now discuss the above integral in a little more detail. 
Since 

and noting that, by the collisionless inequality (3.2), the low- 
velocity region must be excluded from the integration in Eq. 
(A2), the 6(v) contribution will not be taken into account. 
Then 

On the other hand, note that if we had included the contri- 
bution (A3) then, being of opposite sign, it would completely 
cancel the right-hand side of Eq. (A3). 

Now let us turn to the divergence of the drag current due 
to cold electrons, 

u2 
div j,=- ek2 I dv - Sfo= 2eneveiIJj ,  (A4) 

6 uiu , , ,  v(u) 

where 

It is readily seen that the neighborhood of the upper limit, 
corresponding to the asymptotic form (4.8), contributes to 
(A5) a quantity of order (klei)-'", which is negligible to 
within the numerical errors. Then 

Hence 

div jc = - 2enpI vei . ('47) 

Thus, the cold electron contribution cancels the thermal elec- 
tron contribution (A3) completely. It can be said that the cold 
electron distribution (4.4)-(4.6) enables one to discuss in a 
sensible manner the influence of the singularity (A3) on the 
drag current compensation effect. 
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Translated by E. Strelchenko 

This article was translated in Russia. It is reproduced here the way it was 
submitted by the translator, except for stylistic changes by the Translation 
editor. div jT= 2en,Ivei. (A37 
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