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A study is made of transient surface processes associated with the excitation of a reflected wave 
at the interface between the vacuum and a linear medium upon incidence of an 
electromagnetic wave with a leading edge. Estimates of the time to achieve steady-state reflection 
at a definite frequency (described by the Fresnel formulas) are given for a plasma and a 
dielectric. O 1994 American Institute of Physics. 

1. INTRODUCTION 

The propagation of an electromagnetic wave with a lead- 
ing edge in a linear medium with dispersion was first ad- 
dressed and solved in the well-known work by L. Brillouin 
and A. ~ommerfeld.' As a wave with a leading edge im- 
pinges the vacuum-medium interface, surface transient pro- 
cesses develop which are due to the excitation of reflected 
and refracted waves and determine the approach to the 
steady-state reflection-refraction regime.2 Previous calcula- 
tions of surface transient processes are only concerned with 
the properties of the reflected waves near its leading edge 
and do not enable one to estimate the time for the onset of 
steady-state reflection. 

In the present work, surface transients at the interface 
between a vacuum and a linear medium with dispersion are 
described by invoking the impulse response and unit-step 
response functions familiar from the theory of linear sys- 
tems. This enables one to avoid computational problems, and 
to obtain results common to all linear reflecting media by 
relying on causality and using the high-frequency asymptotic 
behavior of the dielectric constant. 

Analysis of surface-transient asymptotic behavior yields 
the relaxation mechanism during reflection from a transpar- 
ent medium, and provides time estimates for establishing 
Fresnel formulas for a plasma and a dielectric. The results 

and determines the onset of steady-state oscillations follow- 
ing the arrival of the wave leading edge at r- =O. In the 
special case A (7- > 0) = A  ,, , Eq. (1.1) describes a wave with 
a sharp leading edge, where the amplitude jumps from zero 
toAo. 

If the wave (1.1) is normally incident upon the flat inter- 
face z = 0 between the vacuum z< 0 and the linear medium 
z>0 with index of refraction n(o) ,  the electric field of the 
reflected wave, E,(z,t), can be written in the form 

where r+=t+zIc ,  z<O, R ( o ) = [ l  - n(w)ll + n(w)] is 
the amplitude reflection coefficient at frequency o ,  and 
E(w) is the Fourier transform of the field (1.1). 

Using the familiar Fourier transform theorem for a prod- 
uct of two functions, Eq. (1.2) becomes 

where 

suggest the existence of speed limitations in optical devices is the complex amplitude of the reflected wave and 
due to interface wave processes. 

1. IMPULSE RESPONSE AND THE UNIT-STEP RESPONSE 
OF THE VACUUM-MEDIUM INTERFACE 

Consider an electromagnetic wave with a leading edge 
which propagates in vacuum in the positive z direction and 
has the electric field 

where t is the time, 7- = t -z/c, c is the speed of light in 
vacuum, i =  n, and o is the wave frequency. The com- 
plex amplitude A(r-) satisfies the condition 

lim A(r-)=const=Ao 
r - + + m  

is the impulse response at the vacuum-medium interface. If 
the function R(o )  has singular points on the real o axis, 
then in the integration in Eq. (1.6) we take a detour around a 
small semicircle above the points. 

According to the causality principle, the dielectric con- 
stant E(w), the index of refraction n(o) ,  and the amplitude 
reflection coefficient R(w) have no singular points in the 
upper half-plane.3 The high-frequency asymptotic behavior 
of these functions for linear media corresponds to the re- 
sponse of an ensemble of free electrons? 
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where a,= 4- is the electron plasma frequency, e 
and m are the electron charge and mass, respectively, and N 
is the electron concentration of the medium. 

From this it follows that for 7 6 0  the contour in (1.6) 
can be closed in the upper half-plane and the Cauchy theo- 
rem can be applied to the closed contour thus obtained. The 
result is 

and 

(1.9) 

Here 

is the unit-step response of the vacuum-medium interface 
for reflection at frequency wo . 

The unit-step response (1.10) is the Fourier component, 
at frequency wo, of the instantaneous spectrum of the pulse 
response, and according to Eqs. (1.2), (1.6), and (1.8)- 
( 1 . m  

lim R(wo,r+)=R(wo),  lim Er(r+)=R(wo)Ao.  
s+++- 7+++- 

(1.11) 

The time to achieve steady-state reflection at frequency w0 
can be taken to be the time needed for the unit-step response 
to assume its steady-state value, the amplitude reflection co- 
efficient R(wo). 

2. CHARACTERISTICS OF THE LEADING EDGE OF THE 
REFLECTED WAVE 

According to Eqs. (1.8)-(1.9), for all linear media at the 
leading edge of the reflected wave2 

If at the leading edge of the incident wave (1.1) the ampli- 
tude is zero, then the reflected wave obeys the additional 
condition 

In an incident wave with a sharp leading edge, when in 
Eq. (1.9) dnAld< =O,n>O, we have 

and all the transient characteristics are determined solely by 
the time constants of the reflecting medium. 

Subsequent analysis is restricted to an incident wave 
with a sharp leading edge, for which 

From Eqs. (1.6, ( 1 . 0 )  and the relation 
R( -  w*)=R*(w), 

where R(w) = R1(w) + iR '(w) and * denotes complex con- 
jugation. 

Using the analytic properties of the function R(w) in the 
upper half-plane and recalling the asymptotic behavior (1.7), 
one can prove the validity of the Kramers-Kronig 
relations3 

where the integration in the vicinity of the singular point of 
the integrand, w= wo, is in the principal value sense. 

Using the oddness of the function ~ " ( w )  along with 
(2.6), it is easily found that 

R1(w0)= - dm. 

Since as wO--lw the quantity w2 in the integrand can be 
neglected compared with w i ,  Eqs. (1.7) and (2.7) imply the 
sum rule 

Substituting (2.8) into (2.5) and taking into account (2.1) 
together with (2.4) we obtain formulas describing the prop- 
erties of the reflected wave near its leading edge 
( r +  -4 lla,): 

Thus, at the leading edge of a wave reflected from an arbi- 
trary linear mediu, there is always a phase shift of T, and the 
amplitude buildup process is characterized by a lag time of 
order llQp (Ref. 2). 

According to the Kramers-Kronig relations (2.6), the 
reflected wave will be causal only if the function R(w) is 
complex. If the reflecting medium is an absorbing or ampli- 
fying one, then obviously the function R ( o )  is complex. It is 
of interest to note that even in a transparent reflecting me- 
dium, when E"(w)=o and the dielectric constant fails to 
obey the Kramers-Kronig relations, the function R(w) may 
still be complex and satisfy the relations (2.6). For this it is 
sufficient that the dielectric constant ~ ( w )  be negative over a 
certain frequency range. Over this range, the refractive index 
of the medium is imaginary, and the amplitude reflection 
coefficient obeys IR(w)l= 1. This corresponds to total reflec- 
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tion of the normally incident plane monochromatic waves 
over this frequency range. A nonabsorptive plasma is an ex- 
ample of such a medium. 

3. REFLECTION FROM A PLASMA 

The amplitude reflection coefficient of a nonabsorptive 
plasma is 

where R(- w*) = R *(w). The function (3.1) has two branch 
points, w = f- f lp , which correspond to the zeros of the di- 
electric constant and separate the regions of total 
(1 w 1 S 0,) and partial (1 w 1 > a p )  reflection of normally in- 
cident plane monochromatic waves. 

Substituting (3.1) into (1.6), some algebra yields the fol- 
lowing expression for the impulse response of the vacuum- 
nonabsorptive plasma interface: 

4 
w sin o r d  o 

Here J2(x) is the Bessel function of the first kind and we 
have used the familiar integrals4 

7T lo1 4- cos g x  dx = - J1 ( x )  , 
2~ 

1 cos px  7T 

dx= - Jo(x) 

together with the relation J2(x) = 2J1(x)Ix - JO(x) for the 
Bessel function of the first kind. 

The asymptotic behavior of the impulse response (3.2) 
for 7% l /Op,  which determines the time required to achieve 
steady-state reflection, has the form 

2 &ap cos(flpr- T I )  
GR(7)= - J;; (ap7)3/2 

(3.3) 

and corresponds to damped oscillations at frequency QP, the 
one at which the dielectric constant of a nonabsorptive 
plasma vanishes. Since the reflecting medium does not ab- 
sorb and the refracted wave of frequency R, does not trans- 
fer energy along the z axis, it follows that the damping of the 
oscillations is due to the transmission of the refracted wave 
energy across the interface into the medium from which the 

wave (1.1) is incident. This relaxation mechanism gives rise 
to the power-law decrease, with time, of the oscillation am- 
plitude at frequency a , .  

According to (1.10) and (3.2), the unit-step response of 
the vacuum-medium interface is 

For a short time r+ < l / o O ,  we can set 007=0  in the 
integrand to obtain 

describing the time-dependent reflection of a video-pulse.5 In 
the immediate vicinity of the leading edge of the reflected 
wave, where r+ 4 lILRp, Eq. (3.5) goes over into the formula 
(2.9), which is a universal characteristic of all linear reflect- 
ing media. 

To estimate the time rR(w0) to achieve steady-state re- 
flection at frequency wo, we use the condition 

for all r+ > rR(wO). Calculations using Eqs. (3.2), (3.3), and 
(3.6) indicate that 

If one takes into account the weak absorption of the 
plasma and sets 

where vCGRp is the ion-electron collision frequency, this 
obviously does not affect the reflected-wave characteristics 
near the leading edge at r+ < l/flp+ llv, . Calculation 
shows that weak absorption can determine rR(wO) only over 
the frequency range wo?Rp, where the quantity 1/vC sets 
the upper bound for the onset time. For example, when 
w0-= ap , a,+ v c 9  p 2 a p ,  

4. REFLECTION FROM A DIELECTRIC 

Consider the reflection of a wave with a sharp leading 
edge from a medium with a dielectric constant 

where the summation is over all ensembles of the medium's 
harmonic oscillators with natural frequencies w, and attenu- 
ation coefficients O <  y,<o,. The constants a, satisfy the 
relation 
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where N is the electron concentration in the medium. 
The dielectric constant (4.1) has poles 

wSp = wip + i wsp= f ws - i y, and zeros w,, = win + i wl, 
= f d m -  i ys , which lie in the lower half-plane and 

which correspond to the branch points of the amplitude re- 
flection coefficient R(w). In the transparent limit, when all 
quantities ys=O,the frequencies w, and w,, lie on the real 
w axis and separate the regions of partial and total reflection 
of plane monochromatic waves upon normal incidence. 

In calculating the impulse response it is convenient to 
analytically continue the function R(w) into the lower half- 
plane and then displace the path of integration in (1.6) by an 
infinite distance downward from the real o axis. To this end, 
we create cuts parallel to the real w axis that connect pairs of 
poles w, and zeros us, with the same s and the same signs 
of the real parts. As a result, the expression (1.6) for T>O 
can be written as a sum of integrals over the closed contours 
Ls(w) which correspond to the edges of the cuts, 

Since n( - w * ) = n * ( w) and since n( w) reverses sign on 
going from the upper edge of the cut to the lower, we have 

where the integration is carried out over the upper edge of 
the cut for wl>O, and "c. c." denotes complex conjugation. 

For ysG us and wip< w' < win, 

so, using known integrals," one obtains the following expres- 
sion for the impulse response of an individual oscillator en- 
semble: 

Near the leading edge of the reflected wave [where for all s 
we have (win + mip) TG 1 (lIp7+ G I)], expanding (4.5) in a 
power series in T, keeping only the first term of the expan- 
sion, and using (4.2) and (4.3), we arrive again at the univer- 
sal formulas (2.9). For (04, - wip) 712% 1, the asymptotic be- 
havior of (4.5) has the form 

using the asymptotic behavior of J,(x) for x + l  and the 
12 1 2  2 

relation a,, - w, = as . 
As in a plasma, Eq. (4.6) describes damped oscillations 

at the limiting frequencies wip and wl,, which in the limit 
ys= 0 separate the regions of total and partial reflection of 
normally incident plane monochromatic waves. The expo- 
nential factor in (4.6) controls damping due to absorption in 
the medium, and the power-law factor - T-~", damping due 
to the transmission of the energy of the refracted waves into 
the medium from which the wave (1.1) is incident. 

To estimate the time rR(wO), consider the case when in 
Eq. (4.3) we may content ourselves with the contribution 
from just a single oscillator ensemble, the one with the 
smallest value of I wo- wsl. In this approximation for the 
resonant reflection region, when 1 ( o n  - mip) 
~ ( w ~ - w l , ) l G  ysoo and ys+p2(~ i , -  oiP)=p2AW,,  we 
have 

and for the nonresonant reflection region, when I (wo - win) 
x(wo- olp)I% Yswo and ysGAws, 

A ~ s ~ o  
r~(wO)= 

P(oo-wip)(wo-~in)  
(4.8) 

Thus, the time to achieve steady-state reflection at a definite 
frequency in a dielectric is determined by the damping coef- 
ficient ys of the natural vibrations of the electrons of the 
medium, and by the frequency widthAw, of the total reflec- 
tion region of the normally incident plane monochromatic 
waves. 

CONCLUSION 

The results obtained for normal incidence of a wave with 
a leading edge can be extended to an arbitrary angle of inci- 
dence 8. For example, for a wave polarized perpendicular to 
the plane of incidence, all one needs to do in the formulas 
above is make the replacements T?+ ~ ~ ( 0 )  
= t+(zcos 6Txsin B ) l ~ , ~ ~ p - t ~ ~ l c o s  13,ap+cu,lcos13, where 
the x axis is directed along the vacuum-medium interface. 
From this it follows that as steady-state reflection is estab- 
lished, the angle of reflection always remains equal to the 
angle of incidence. 

We have considered transient processes associated with 
the excitation of the reflected wave. Because of the boundary 
conditions near the vacuum-medium interface, analogous 
transient processes govern the excitation of the refracted 
wave. The refracted-wave precursor forms at a distance of 
order c/fip from the interface due to phase effects during 
propagation of the spectral harmonics. 

According to the calculations, the time to achieve 
steady-state reflection at a given frequency, that is, the time 
for establishing the Fresnel formulas, depends on three pa- 
rameters: (i) the absorption by the reflecting medium, (ii) the 
proximity of the incident wave frequency to one of the reso- 
nance frequencies of the reflecting medium, the latter being 
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determined by the zeros and poles of the dielectric constant 
of the medium, and (iii) the frequency width of the total 
reflection region for plane monochromatic waves. 

In most cases involving reflection from a plasma or a 
dielectric, the time to achieve steady-state reflection is deter- 
mined primarily by the damping coefficient of the natural 
vibrations of the electrons in the medium. For a nonresonant 
reflection from a weakly absorbing dielectric and a plasma 
with oo<Cl,, the time to achieve steady-state reflection is 
determined by the frequency width of the total reflection 
region. Note that the results obtained for a plasma can be 
used to describe a time-dependent reflection from a metal. 
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Translated by E. Strelchenko 

This article was translated in Russia. It is reproduced here the way it was 
submitted by the translator, except for stylistic changes by the Translation 
Editor. 
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