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We study certain aspects of coherent gain and pulse propagation in two-component media. We 
show that in the subthreshold gain regime, a pulse whose area exceeds a critical value 
will develop into a 7r pulse; as it propagates in a two-component medium, the latter will be 
continuously amplified in intensity and compressed in width. We also study the propagation of 
large-area pulses in two-component media, and show that such a medium can give rise to 
bound pulse pairs that periodically overtake one another. A class of soliton solutions has been 
identified for two-component media. O 1994 American Institute of Physics. 

1. INTRODUCTION transition dipole moments da<db.  We use the two-level 

Self-induced transparency is one of the most obvious 
effects of the coherent interaction of radiation with resonant 
media.' The theory underlying this phenomenon is presently 
well understood not just for two-level media-it has also 
been generalized to degenerate levels and multilevel 

Efficient mathematical methods have been devel- 
oped for solving this class of problem."7 

The advent of femtosecond pulsed lasers has engendered 
a new wave of interest in studying the coherent interaction of 

atomic approximation to describe the medium. Assume that 
the two types of atoms have the same transition frequency o 
between the ground and excited states. Since the Rabi fre- 
quency is proportional to the dipole moment (IRa,bmda,b), 
we have Ra<R, ,  and we can thus refer to type a atoms as 
"slow" and type b atoms as "fast." 

We work with a specimen of a two-component medium 
of volume V containing N ,  slow atoms and Nb fast ones. We 
use dimensionless coordinates and time 

light with resonant media. This interest derives both from the X'  =x/L, t ' = t l r ,  (1) 
possibility that new methods for the spectroscopy of matter 
may be developed, and that we may be able to do without a 
number of familiar theoretical approximations. It may also 
be possible to develop control techniques for the shape and 
parameters of femtosecond pulses. 

The generation of solitons with self-induced transpar- 
ency is, on the one hand, one of the fundamental phenomena 
of quantum electronics, while on the other, it governs the 
extent to which pulses can be amplified in two-component 
resonant media. Further pulse amplification and narrowing is 
feasible only if one moves to denser media, which then in- 
creases the transverse relaxation rate and thereby destroys 
the coherence of the atomic subsystem. 

In this paper, we address the coherent interaction dynam- 
ics of light with two-component media that consist of reso- 
nant components with differing transition dipole moments. 
We show that the formation dynamics of n7r pulses in such 
media is much richer than, and qualitatively different from, 
processes in one-component media. A 277 pulse relative to 
one of the components can be amplified by virtue of the 
population inversion of the second component while its area 
is conserved, and the pulse is therefore compressed. Further- 
more, a bound propagation regime is possible in which two 
27r pulses (relative to one of the components) alternately 
invert the population of the second component, and thus pe- 
riodically overtake one another, thereby forming a bound 
pulse pair. 

2. STATEMENT OF THE PROBLEM. BASIC EQUATIONS 

Consider the amplification of a short pulse in a medium 
that consists of two types of atoms, a and b, with differing 

where L = C T  and r is some characteristic pulse width. 
Henceforth we omit the primes. 

For exact resonance, the combined Maxwell and optical 
Bloch equations for the slowly varying wave amplitudes (a), 
the polarization of the fast (p) and slow (P)  atoms, and the 
population differences of the fast (r) and slow (R) atons, 
which describe pulse propagation in a two-component homo- 
geneously broadened medium, are 

The notation in these equations is 

where T?) and Tib) are the transverse relaxation times of the 
slow and fast atoms. In deriving (2), we have neglected in- 
homogeneous line broadening in either type of atom. In ac- 
tual experiments, however, the latter can substantially relax 
the resonance requirements on the transitions, thanks to the 
resonance of the various components of the inhomoge- 
neously broadened spectrum. 

We assume that the pulse width is such that 
r p - 4 ~ ~ ) , ~ $ b ) ,  so that we can neglect the relaxation terms in 
the dyn,amical equations for the population differences in (2). 

The field amplitude a has been normalized in (2) such 
that n(x,t) = ( a  (x,t) 1 is the photon number density ex- 
pressed in units of the slow-atom density na=N,IV. 
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We further assume that at the initial time, the fast atoms 
in the two-component medium are in the ground state, and 
the slow atoms are in the excited state. The medium is there- 
fore made up of amplifying (slow) and damping (fast) atoms. 
The initial conditions are 

Thus, ro=Nb/Na is the concentration of fast atoms in the 
two-component medium, and the concentration of slow at- 
oms is taken to be unity (R,=l). 

It is well that pulse evolution in propagation 
problems depends on the area under the input pulse, both in 
resonantly amplifying and resonantly damping media. Using 
(2), it can be shown that the pulse area for the slow ( a )  and 
fast (b) components is 

where the Bloch angle e a , b ( ~ , t )  is given by 

Under conditions in which the amplification of the incident 
pulse is purely coherent, i.e., a, = a,= 0,  we can derive the 
equation for the evolution of the Bloch angle e(x,t) 
= ea(x,t) = J m e b ( x , t )  in a two-component 
medium? 

where 

F=R~P.  sin B+ ro, sin[ Jh e l .  
Pa 

in the special case JPb% = 2, R o = l ,  ro=0.5, this is 
equivalent to the double sine-Gordon equation,2'5'7 which 
governs the dynamics of self-induced transparency in degen- 
erate transitions with angular momentum J = 2  and AJ=0, 
Am = o . ~  

Analysis of Eqs. (6) and (7) shows that a two-component 
medium will have a threshold. For the initial stages of small- 

FIG. 1. a) Profile (I) and Bloch angle (2) for 
a pulse with amplitude A,=2 and width 
r p = l  b) Dependence of F on the Bloch 
angle for a pulse with y=2. 

area incident pulses ( C ~ T ) ,  at which time the populations 
vary slowly (R=Ro , r =  - r,), the right-hand side of Eq. (6) 
becomes 

The area of an incident pulse will increase as it propagates if 
R0Pa>roPb .  The requirement for coherent amplification of 
a weak pulse in a two-component medium is therefore 

If this condition is met, the two-component medium will 
have an above-threshold gain regime for incident pulses; if 
not, it will have a subthreshold regime. 

For numerical modeling, we assume that the incident 
pulse has a Gaussian profile: 

Thus, the area of the incident Gaussian pulse can be easily 
calculated: 

3. CRITICAL AREA OF A PULSE 

Equation (6) dictates the Bloch-angle dynamics of a 
pulse propagating through a two-component medium. The 
right-hand side contains the function F ,  which can have ei- 
ther sign. When F<O, the area under an incident pulse will 
decrease as it propagates, and the pulse will be attenuated; 
conversely, if F>O, the pulse area will increase and the pulse 
will be amplified. It can be seen from Eq. (7) that in the 
subthreshold gain regime (RoPa<roPb) ,  F will have the 
form shown in Fig. lb,  in which case a Gaussian pulse with 
amplitude Ao=2 and width rP= 1 (Fig. la)  will have area 27r 
in accordance with the definition (11). The profile of the 
incident pulse is given by Eq. (lo), so the total pulse ampli- 
tude is A =A,&, and its peak intensity is I = . r r l~ ,1~ .  

It can be seen from Fig. 1 that the function F is negative 
when the Bloch angle B(t) at the leading edge of the pulse is 
less than the critical angle @, so energy is absorbed from the 
leading edge by the fast atoms in the medium. But if the area 
of the pulse is large enough and the Bloch angle B(t) can 
exceed e*, F will become positive and the pulse area will 
start to increase, i.e., the pulse will be amplified, extracting 
energy stored in the medium. 
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FIG. 2. Pulse intensity as a function of x2 
(a) and pulse width as a function of x (b). 
The concentration of fast-component atoms 
is r,=0.2501 ( I ) ,  0.35 (2), 0.4 (3), 0.45 (4). 

This scenario clarifies what we mean by a critical pulse 
area X* = 8*. For weak pulses with less than the critical area 
(Z<Z*), the right-hand side of Eq. (6) is always negative. 
Consequently, the area of a weak pulse propagating through 
a two-component medium will steadily decrease, and the 
pulse itself will be damped.8 

This property of two-component media-the absorption 
of small-area pulses in the subthreshold gain regime-is an 
important consideration in high-gain systems. 

The thresholding nature of pulse amplification is a dis- 
tinctive feature of two-component media. The expression for 
the critical pulse area Z* when Pb= 4Pa  can be derived from 
Eq. (6): 

X*=arc( l ly) ,  (12) 

where y=4rolR,. 
The critical pulse area clearly depends on the properties 

of the medium, and will have different values for the fast and 
slow components. Thus, if the area of a pulse incident upon 
a two-component medium in the subthreshold gain regime is 
less than the critical area Z*, the pulse will be damped. 

If the area of an incident pulse is greater than C*, it will 
increase up to the point at which F > O .  From Fig. lb, F is 
clearly positive over the interval 8 * < 8 < ~ ,  so the pulse area 
must increase until it reaches T-in other words, a T pulse 
must form in a two-component medium. Note therefore that 
8= 8, by virtue of the T pulse relative to the slow compo- 
nent. 

4. SUBTHRESHOLD AMPLIFICATION OF WEAK PULSES. 
CRITICAL CONCENTRATION OF THE FAST 
COMPONENT 

We consider first the subthreshold amplification of a 
pulse with area ~ * < X < T .  Figure 2 shows the results of 
numerically modeling the propagation of a low-amplitude 
pulse in two-component media containing a variety of con- 
centrations of the fast component. A Gaussian pulse with 
amplitude Ao=0.7, width rp=0.5, and area Zo=0.35.rr is in- 
cident upon the medium. The critical areas for the media 
indicated in the figure are Z * = 0 . 0 0 9 ~  (I), 0 . 2 5 ~  (2), 0.297 
(3), and 0 . 3 2 ~  (4). For curve 1 we have Xo+X*, and for the 
medium with properties corresponding to curve 4, C.,*C*. It 
should be clear from (12) that the critical concentration of 
fast-component atoms is r * = 1/(4 cos zo) =0.55 for a pulse 
with area C,=0.35~,  implying that such a pulse will be am- 

plified in a two-component medium only if r,< r *. The nu- 
merical models show that as a weak pulse propagates 
through a two-component medium, its area tends to T. 

Since the fast and slow atoms in a two-component me- 
dium have different transition dipole moments d ,  we see 
from (3) that for a medium in which d b =  2 d a ,  the pulse area 
relative to the fast component will be twice the area relative 
to the slow component. A weak pulse will thus be amplified 
into a T pulse relative to the slow component, and at the 
same time it will become a 2~ pulse relative to the fast 
component. 

Figure 2 shows the intensity of an amplified weak pulse 
as a function of x2. Two stages can be identified in the gain 
dynamics of a weak pulse: an initial stage in which the two- 
component medium takes the incident pulse and produces a 
characteristic T pulse relative to the slow atoms of the me- 
dium, and a second stage in which that pulse is amplified. 
Note that the first, in which the pulse grows in area, displays 
more rapid growth (than x2) in the peak pulse intensity. As 
soon as the pulse area reaches 71; however, the intensity rises 
less rapidly, becoming proportional to the square of the dis- 
tance that it has traveled in the medium. We see from Fig. 2a 
that 1mx2 for x>2, and it also shows that the peak pulse 
intensity rises more rapidly in a two-component medium in 
which the fast-atom component has the higher concentration. 
A possible explanation stems from the fact that the pulse 
energy in the range We* goes into redistributing the popu- 
lations of the components. At 8= d 2 ,  the second (fast) com- 
ponent turns out to be fully excited, and since that compo- 
nent amplifies pulses more efficiently, the pulse amplitude 
rises more rapidly as 8* increases, which can be seen in Fig. 
2a. 

Figure 2b shows the width of an amplified weak pulse as 
a function of distance traveled in the medium, and makes it 
clear that the width of the amplified pulse steadily decreases 
with distance. At a given distance, the narrowest pulse is 
produced in the two-component medium with the highest 
concentration of fast atoms. Figure 2b enables us to charac- 
terize the pulse-narrowing behavior: the width 7, of the am- 
plified pulses decreases as mllx. Plotting r0 against llx, it 
can easily be shown that the pulse width tends to zero, rather 
than to a finite value as in the soliton c a ~ e . ~ , ~  

This work thus demonstrates that the most efficient am- 
plifying medium for a weak pulse with area Z is a two- 
component medium in which the fast-atom concentration is 
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as close as possible to the critical value, ro-r*. If rO>r*,  
however, an incident pulse will be damped rather than am- 
plified. In the course of amplification, the area of a weak 
pulse will increase to 7r. As it propagates through the two- 
component medium, the 7r pulse thus formed will steadily 
grow in peak intensity, proportional to the square of the dis- 
tance traversed in the medium ( IXX~) ,  and its width will 
steadily decrease inversely as the distance traveled (romllx). 

5. PULSE AMPLIFICATION IN TWO-COMPONENT MEDIA 

We established above that a weak pulse in a two- 
component medium will increase in area and turn into a 7r 

pulse. In Fig. 3a we have plotted the profile of a rr pulse 
emerging from the medium; the concentration of the two 
components of the medium correspond to y=80. Figure 3b 
shows that after formation of a 7r pulse, the population of 
slow-component atoms ranges from + 1 to -1. This pulse 
gathers up all of the energy stored in the medium as it inverts 
the population of slow atoms, so its energy 
E = $21 a (x, t )  1 2dt steadily rises as it propagates through 
the two-component medium, and is proportional to the dis- 
tance traversed ( E  mx) . 

The fast-atom population dynamics plotted in Fig. 3c 
show that the pulse area is twice as great in the fast compo- 
nent, i.e., the two-component medium produces a 271 pulse in 
the fast component. The slow- and fast-atom dynamics illus- 
trated in Fig. 3 shows that a narrow pulse interacts with a 
two-component medium coherently, since after a pulse has 

FIG. 3. Profile of a rr pulse (a), and population 
inversion dynamics for slow (b) and fast (c) at- 
oms in a two-component medium. 

passed, both the fast and slow atoms of the medium are in 
the ground state, rather than a saturated state (R-r-0), as 
would be the case for incoherent interaction. 

We know from soliton theory29537 that if a narrow inci- 
dent pulse has area 27r, it will give rise to a 27r soliton in 
both resonantly damping and resonantly amplifying media. 
The pulse in the example considered above had area 27r rela- 
tive to the fast atoms; we now consider the propagation of a 
narrow pulse with area 27r relative to the slow atoms. Figure 
4 shows the profile dynamics for an incident Gaussian pulse 
with amplitudeAO=4 and width rp=0.5 in a two-component 
medium with fast-atom concentration ro=20. The incident 
pulse clearly splits in two, and the resulting pulses rapidly 
separate. The first of the two is steadily amplified as it propa- 
gates through the medium, and it becomes narrower and nar- 
rower; the second, in contrast, becomes steadily weaker and 
broader. 

To make some sense of this situation, we turn to Fig. 5, 
where we have plotted the profiles of the incident (x =0) and 
dissociated (x=6) pulses along with the fast- and slow-atom 
population dynamics. Figures 5a-c show that a Gaussian 
pulse whose area is 27r relative to the slow component and 
47r relative to the fast component is incident upon the two- 
component medium. That Gaussian pulse, for y< l ,  could 
produce a 27r pulse relative to the slow component and a 47r 
relative to the fast component, but in the present situation 
such a pulse is unstable and splits. In Figs. 5d-f, each of the 
resulting two pulses has an area equal to 7r. Propagating 
through the two-component medium, the first inverts the 

FIG. 4. Spatial and temporal dynamics of a pulse 
with area Ho=27r in a two-component medium with 
y=80. 
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FIG. 5. Pulse profile and slow- and fast-atom popu- 
lation inversion dynamics for a two-component me- 
dium with x=O (a,b,c) and x=0.6 (d,e,f). The area 
under the incident pulse is Zo=2n: 

slow-atom population, taking them from the excited state to 
the ground state. Although the energy of the first pulse 
steadily increases, its area remains invariant, so the pulse 
intensity steadily increases and the pulse narrows. The sec- 
ond pulse raises the slow atoms of the two-component me- 
dium from the ground state to the excited state, and its en- 
ergy therefore decreases. Just as for the first pulse, however, 
the area of the second pulse is also invariant, so the pulse 
amplitude falls and the pulse broadens. The two-component 
medium is thus an amplifying medium for the first pulse and 
a damping medium for the second. It is well known that the 
pulse velocity in an amplifying medium exceeds the speed of 
light ( c ) ,  and it is less than c in a damping medium. Since 
the first pulse propagates in the former and the second in the 
latter, the first pulse travels faster than the second and they 
separate rapidly, as shown in Fig. 5. 

We also see in Fig. 5 that as the two pulses traverse the 
two-component medium, the intensity of the first steadily 
increases. This intensity is shown in Fig. 6a as a function of 
distance traveled for various fast-atom concentrations. The 
abrupt jump in intensity at short distances (curve 5) is due to 
the splitting of the incident Gaussian 271. pulse into two 7r 

pulses. It is clear that as y decreases (low fast-atom concen- 
tration), the splitting process becomes more gradual, and the 
initial jump vanishes. It is also clear that the higher the con- 
centration of fast-component atoms, the higher the intensity 

of the first pulse; the highest intensity reached among the 
media that were investigated here occurred in a two- 
component medium with fast-atom concentration ro=20. 

In Fig. 6b we have plotted the width of the first pulse 
against distance traveled in the two-component medium. 
Here it is evident that the pulse steadily narrows as it propa- 
gates. In this figure, we can clearly distinguish three stages in 
the evolution of a 27r pulse in such a medium: an initial 
stage, a stage in which the original 27r pulse splits into two rr 
pulses, and a stage in which the first T pulse is amplified. We 
see from Fig. 6 that as the fast-atom concentration increases 
(and therefore so does y), the initial segment is curtailed, 
while the splitting region of the incident 27r pulse becomes 
more distinct. Note that the larger the value of y, the nar- 
rower the first pulse derived from the splitting. 

Figure 6c shows the pulse width as a function of llx. It 
is clear that when the 21r pulse splits, the width of the first 7r 

pulse decreases in a different way from that of a weak pulse 
( ~ ~ ~ 1 1 ~ ) .  There exists a range at large y (y=20,y=80) over 
which the pulse width remains approximately constant, but 
this is followed by even faster pulse narrowing (T,-llxv, 
where O<v<l). 

We have now considered the gain regime for a weak 
pulse and the process whereby a 7r pulse is derived from it in 
a two-component medium; we have also examined the split- 
ting of a 27r pulse incident upon a two-component medium. 
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FIG. 6. Pulse intensity as a function of x (a), and pulse width as a function 
of x (b) and l l x  (c). The fast-component atomic concentration is r0=0.3 ( I ) ,  
0.5 (21, 1 (3) ,  5 (41, 20 (5). 

Since the right-hand side of Eq. (6) has a period of 277 (in the 
Bloch angle O), we expect one of the aforementioned re- 
gimes to pertain to large-area pulses (C>27r). 

We now consider the amplification of an incident pulse 
with area 2 r r + a .  Since we are in a subthreshold gain re- 
gime, we expect that the area excess 6T. will result in the 
original pulse splitting into a 27r pulse and a pulse with area 
a. Numerical modeling shows that if the excess 6T. is less 
than the critical area ( a < C * ) ,  the incident pulse will evolve 
as in Fig. 5, splitting into a 2 7 ~  pulse and a pulse with area 
a which, as in the weak-pulse, low-amplitude subthreshold 
gain regime, will be damped by the two-component medium. 
The newly-formed 27r pulse will then split into two 7r pulses 
as it propagates through the medium. Consequently, an inci- 
dent pulse with area 2 7 r + a  (6T.<C*) will evolve in the 
same way as the split 27r pulse considered above. 

6. LARGE-AREA PULSE PROPAGATION. BOUND PULSES 
IN TWO-COMPONENT MEDIA 

Consider now the propagation of a pulse with area 
27r+6T. (6T.>C*). In Fig. 7, we show the pulse dynamics for 
an amplitude Ao=6  and width rp=0.5. The original pulse in 
the two-component medium first separates into two pulses, 
the second of which begins to distance itself from the (bimo- 
dal) first. As it continues to separate from the bimodal pulse, 
it steadily rises in intensity and becomes narrower and nar- 
rower. The first (bimodal) pulse, however, is not stable (as 
witness Fig. 7), and it again splits into two new pulses that 
rapidly draw apart. The first pulse undergoes continual am- 
plification and narrowing, while the second steadily broadens 
and loses amplitude. The two pulses spawned by the first 
subsequently become bound into a single entity. 

This sort of pulse evolution can be accounted for by Fig. 
8, which shows the population dynamics of the two compo- 
nents of the medium. In Fig. 8a, the incident Gaussian pulse 
is a 3 7 ~  pulse for the slow atoms and a 671. pulse for the fast. 
Referring back to the various situations discussed above, the 
present one is analogous to the amplification of a pulse 
whose area 2 is above the critical value (C>C*). As shown 
above, a 7r pulse is then generated by the two-component 
medium, and this is precisely the pulse that departs from the 
bimodal pulse in the initial phase of the process (Fig. 7). 

FIG. 7. Spatial and temporal dynamics of a pulse with 
area 2 , = 3 ~  in a two-component medium with y=80. 
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FIG. 8. Pulse profile and slow- and 
fast-atom population inversion dy- 
namics for a two-component medium 
with x=O (a,b,c), x = 2  (d,e,f), and 
x = 4  (g,h,i). The area under the inci- 
dent pulse is 8 , = 3 ~ .  

We see from the population dynamics plotted i.n Figs. 8e 
and 8f that the pulse in question propagates through the two- 
component amplifying medium, acquiring energy from the 
slow atoms and transferring them to the ground state, so that 
the pulse intensity steadily rises and its width steadily falls. 
Likewise, we see that the first (bimodal) pulse is a 27r pulse, 
which, as in the case depicted in Fig. 5, .  is unstable and 
breaks up in the two-component medium into two 7r pulses. 

Figures 8d-f show that the original 377 pulse in the two- 
component medium evolves at x = 2  into three .rr pulses: the 
first and third of these (Fig. 8d) are shown by the atomic 
population dynamics to propagate in an amplifying medium, 
while the second propagates in a damping medium. Since the 
pulse speed in the latter is lower than in the former, the third 
+IT pulse will overtake the second (Figs. 8g-i). We also see 
from this figure that the second and third 7r pulses approach 
and bind to one another, thereby giving rise to a single 27r 
pulse. The upshot is that the original 37r pulse that decayed 
into three 7r pulses at x=2  winds up producing a 7r pulse and 
a 27r pulse. 

In the present case, the area ST. is equal to 7r. Numerical 
modeling shows, however, that if C*<ST.<.rr, the tail of the 
27r+SC pulse will contribute its area (ST.) to that of the 7r 

pulse, and the pulse dynamics of the 27r+ST. pulse 
(C*<ST.<7r) will be analogous to the behavior shown in 
Fig. 7. 

In the situation depicted in Fig. 7, the area of the inci- 
dent pulse was not large enough for the two-component me- 
dium to generate a 27r pulse immediately after having pro- 
duced the first 7r pulse. 

The opposite case is shown in Figs. 9 and 10. A incident 
pulse with area E=3.57~ in a two-component medium with 
y=80 breaks up immediately into a n- pulse and a 27r pulse. 

In Fig. 9, we see that the n- pulse propagates faster than the 
27r pulse, so they quickly separate. As it propagates through 
the two-component medium, the 7r pulse is steadily amplified 
and narrowed, while the profile of the 2 7 ~  pulse continually 
varies. The pulse immediately following the first 7r pulse is 
in fact a bound pair of 71.-solitons. 

Previously, we studied the properties of a two- 
component medium in the subthreshold gain regime, where 
only the slow atoms were initially in the excited state (y>l). 
In the present case, with the original pulse splitting into a 7r 

pulse and a 27r pulse, the first (the rr pulse) causes the popu- 
lation of slow atoms (Fig. 10) to revert from R = 1 to R = - 1 
as it propagates, thereby changing the state of the two- 
component medium. Thereafter, both the fast and slow atoms 
will be in the ground state. Since the state of the two- 
component medium will then have changed, the net result 
will be that a 27r pulse that would otherwise have been un- 
stable in the excited two-component medium (R = 1) will be 
stable in the fully de-excited medium (R = - 1, r = - ro) .  

As we noted above, the 277 pulse produced by the two- 
component medium can in fact be represented as two bound 
7r pulses. In Fig. 9, the amplitude and width of these bound 
pulses are seen to vary constantly. The two-component me- 
dium is damping for the first of the two bound pulses, so its 
intensity decreases and its width increases; for the second, it 
is an amplifying medium, and the intensity increases while 
the width decreases. Since the pulse speed is higher in a gain 
medium than in a damping medium, the second of the two 
bound pulses moves faster than the first and overtakes it; 
having overtaken it, the second pulse enters the unperturbed 
medium. The propagation conditions are then interchanged: 
what had been the second pulse propagates through a damp- 
ing medium, and the former first pulse propagates through an 
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FIG. 9. Spatial and temporal dynamics 
of a pulse with area 2 , = 3 . 5 ~  in a two- 
component medium with y'80.  

amplifying medium. The bound pulses thus switch places, 
and the evolution of the system repeats itself. 

Thus, large-area (C) incident pulses in a two-component 
medium can generate an initial P pulse followed by an inte- 
gral number C-d27r of bound 21r pulses. This potential for 
the existence of bound pulses is a characteristic feature of 
two-component media. 

7. SOUTON SOLUTIONS 

Thus far, we have dealt with boundary value problems 
associated with the incidence of external pulses upon a semi- 
infinite or bounded medium. If a, = ab= 0, however, the 
system of equations (2) has soliton solutions that correspond 
to the Cauchy problem with vanishing boundary conditions 
at +m. 

Self-consistent solutions of (2) can be represented in the 
fonn a(x , t )  = a( t  - x / v ) ,  where v is the propagation velocity 
of a solitary wave, which depends on the parameters of the 
particular problem. 

For self-consistent solutions in the case Pb=4Pa, we 
obtain the following equation for the Bloch angle 8: 

ae -- 
all 

- J2[u(80) -u(e)19 

where 

FIG. 10. Pulse profile and slow- and 
fast-atom population inversion dynamics 
for a two-component medium with x=O 
(a,b,c),x=3 (d,e,f), andx=7 (g,h,i). The 
area under the incident pulse is 
P0=3.5Tr. 
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For y=41rolllRoI<1, the extrema of the potential U(8) 
come at O1=0, 82,3=?7i. The soliton solutions of Eq. (13) 
associated with these extrema are 

a) R( -a )=  t ( R o I ,  r ( - w ) = ~ l r ~ 1 :  

2 1 - y  'I2 cosh(77/r1) 

a(v)' 6 (a,) c o ~ h ' ( ~ / r ~ ) -  y ;  (15) 

where 

For y<l  and Ro>O, the two-component medium is an am- 
plifying medium, and the soliton propagation speed v ex- 
ceeds the speed of light; for Ro<O, v< l .  

When y> 1, new extrema appear at 84,5= t arc(1ly). 
However, the form of the soliton solutions associated with 
the peaks at 81,2,3 also changes: 

c) R(-w)= t lRol, r(-w)= i l r o l :  

where 

While (15) and (16) are 27i-solitons relative to the slow com- 
ponent, the solution (17) represents a O7i-soliton. 

For R(-w)= tIRol ,  r(-w)= t l r o l  and y>l,  the soli- 
ton solution is given as before by (16), although the soliton 
itself is bimodal. 

The soliton solutions associated with the peaks at 04,, 
take the following form: 

d) -arccos-'(lly)< ~arccos- ' (11 y): 

where 

The solution (18) is a soliton with area 

and the area of (19) is 

8. CONCLUSION 

We have studied certain features of the coherent ampli- 
fication of narrow pulses by two-component media. This 

work has shown that in the subthreshold gain regime, a weak 
pulse whose area exceeds the critical value evolves into a 7i 

pulse relative to the slow component and a 27i pulse relative 
to the fast component. While propagating in the two- 
component medium, the pulse is amplified in intensity 
( I ~ x ~ )  and compressed in width ( rO~x- l ) .  

In the subthreshold regime of a two-component medium, 
a 27i pulse is unstable and decays into two pulses, the first of 
which steadily rises in intensity and narrows, and the second 
of which spreads and is damped. 

We have investigated the propagation of large-area 
pulses in a two-component medium, and shown that an ini- 
tial pulse with area C in such a medium will produce a single 
7i pulse followed immediately by an integral number (2 
- 7i)/27i of bound 27i pulses. 

We have shown that two pulses bound to one another 
can propagate in a two-component medium, leapfrogging 
along and alternately being amplified and damped. 

Finally, the form of soliton solutions has been deter- 
mined for this system. 

This work has demonstrated that the dynamics of coher- 
ent interactions in two-component media is substantially 
richer than in one-component media; it would be genuinely 
interesting to conduct actual physical experiments. One ex- 
ample of such a medium might be a vapor mixture of Ca and 
Tl. The 7S-+6P transition in Tl (in which superradiance has 
been observed a number of times; see, for example, Ref. 10) 
is resonant with the 4F-+3D transition in Ca. The 7 s  level 
of Tl can be excited by a pump pulse from the ground state; 
the 7 S 4 6 P  transition in Tl has an oscillator strength 
gm=0.151, and can be considered slow. The 3 0  level of Ca 
is metastable, and the oscillator strength in the 4F+3D 
transition is gc-=0.97. 
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