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The radiative force in the field of two counterpropagating waves is examined for an atom with a 
nonuniform initial Zeeman sublevel distribution. The study is carried out for an atom with 
a preliminary optical orientation induced by a circularly polarized optical pump wave, and for an 
atom prealigned by a linearly polarized light wave. Here the frequency of the 
counterpropagating light waves and that of the optical pump, of either circular or linear 
polarization, are resonant with adjacent atomic transitions of the A level configuration. It is shown 
that the radiative force for an optically polarized atom possesses vector properties and other 
quantitative characteristics that are fundamentally new as compared to the previously studied 
radiative forces for atoms with a uniform initial Zeeman sublevel distribution. The main 
features of the new radiative force are the absence of spatial oscillations with a half-wavelength 
period, and the possibility of controlling the signs of the even and odd (in the atomic 
velocity) parts of a given force. The parameters involved can be chosen such that the new radiative 
force appears as either a damping or an accelerating force. O 1994 American Institute of 
Physics. 

In problems of laser cooling of atoms and localizing at- 
oms in electromagnetic fields, radiative forces in the field of 
one or more light waves have been widely studied in recent 
years (see Refs. 1-3 and references therein). Particular atten- 
tion has been paid to the rectified radiative force, which var- 
ies smoothly over a wavelength. For a two-level atomic 
model that is nondegenerate with respect to the projection of 
the angular momentum, the rectification of the radiative 
force is achieved either by the interference of two or more 
light waves of equal frequency4.5 or in a bichromatic light 
field.4,6,7 For this purpose, three-level A-configuration atoms 
with no degeneracy have also been considered, for which the 
rectified radiative force is obtained by mixing light waves of 
different In a special atomic model and 
112- 112 and 1/2-4312 angular momentum transitions, radia- 
tive force rectification was achieved by averaging the force 
over a half wavelength.12-l5 Inclusion of degeneracy in the 
above problems leads to considerable difficulties in radiative 
force calculations, and complicates the physical interpreta- 
tion of the effects i n v o l ~ e d . ~ ~ - ' ~  

In all previous theoretical and experimental studies, ra- 
diative force analyses have been carried out for an atom 
which, prior to entering the field of one or more light waves, 
is in a degenerate state uniformly distributed over the projec- 
tion of the angular momentum (Zeeman sublevels), or alter- 
natively in the zero-momentum ground state. However, it is 
known that prior optical polarization of the atom, which 
leads to a nonuniform distribution over the Zeeman sublev- 
e l ~ ,  has a significant influence on the subsequent optical phe- 
nomena arising from the atom's interaction with a resonant 
light field. This has been observed in spontaneous emission, 
l9 resonant fluores~ence,2~ in the photon echo effect,21 two- 
pulse free ind~ction, '~ light scattering,23 and probe pulse 
spectroscopy.24 It is natural to assume that a nonuniform ini- 
tial Zeeman sublevel distribution will change the properties 
of the radiative force and will influence the methods by 

which it is rectified. However, these changes are possible 
only for an atom with nonvanishing momentum in its reso- 
nant states, so the inclusion of degeneracy in this problem is 
necessary in principle. 

In the present work, we investigate the radiative force 
theoretically for an optically polarized atom of arbitrary mo- 
mentum which, prior to entering the field of two counter- 
propagating waves, has a nonuniform Zeeman level popula- 
tion due to preliminary optical pumping. To calculate this 
force we employ an atom with a A configuration of levels 
E c < E , < E b ,  and with the Ec-+E,  transition forbidden. 
Owing to the interaction of the atom with the optical pump 
light wave, which is resonant with the EC+Eb transition, 
and owing to the spontaneous decay of the excited Eb state, 
the Zeeman sublevels of the metastable level E ,  become 
nonuniformly populated. This sort of optical pumping, in- 
volving the transition of the atom to the metastable level 
E ,  , gives rise to an optical polarization of the atom, with a 
definite orientation and alignment in the long-lived E ,  state. 
The optically polarized atom subsequently enters the field of 
two counterpropagating light waves which are resonant with 
the adjacent E,+Eb transition, and exchanges photons with 
those light waves, the system having a different symmetry 
than that studied earlier in Refs. 1-18 for an atom with an 
initially equiprobable Zeeman sublevel distribution and for 
an atom in a zero-momentum initial state. In an optically 
polarized atom moving in the field of counterpropagating 
light waves, two symmetry types are possible. One corre- 
sponds to optical pumping by a circular wave, and the other 
appears after optical pumping by a linearly polarized wave. 

If the optical pumping is by a circular wave with wave 
vector and circular polarization s = + 1 ,  the crucial factor 
is the preliminary orientation of the atom, characterized by 
the direction of k, and by the right-handed ( s =  1 )  or left- 
handed ( s  = - 1 )  rotation of the optical electric field, i.e, by a 
right- or left-handed screw. For an atom with prior optical 
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orientation moving in the field of two counterpropagating 
circular waves with wave vectors ko and k2 = - k1 collinear 
with ko and with the same senses of circular polarization 
XI = A 2  = + 1, the radiative force contains independent con- 
tributions from the counterpropagating waves. Therefore the 
force does not depend on interference effects, and does not 
contain spatial oscillations with a period equal to half the 
wavelength .rrlkl. Consequently, the force does not require a 
rectification procedure, which sets it quite apart from radia- 
tive forces previously examined in Refs. 1-18. 

For counterpropagating light waves of equal amplitude, 
certain terms of the calculated force cancel, and the remain- 
der divide the force into two parts, even and odd with respect 
to the atomic velocity v. The odd part, for a negative offset 
of the counterpropagating waves from resonance (A<O), 
plays the role of a frictional force. The even part changes 
sign under the substitution A,+ - A,, and also under the 
substitution ko+ -k, for fixed s or under the substitution 
s+ - s for fixed ko. Thus, one can control the signs of the 
even and odd parts in an experiment. This makes it possible 
to choose the parameters A, A , ,  S, and ko such that the 
radiative force in question plays the role of either a damping 
or an accelerating force. For A = O  the odd part vanishes, 
whereas the even part is nonvanishing. In particular, for 
highly collimated atoms with A # 0 moving with low lon- 
gitudinal velocities (relative to k,) such that (k lv  I< yb , the 
ratio of the odd part to the even is I k,v 1 yb  ' , where yb ' is 
the relaxation time of the excited state of energy E b  . In this 
case the radiative force assumes a characteristic form with 
resonances at A = + yb/2. 

If the optical pumping is produced by a linearly polar- 
ized wave with wave vector ko and polarization vector lo, 
then the crucial factor is the preliminary alignment of the 
atom, characterized by the direction of the vectors ko and 
lo. In this case, the interaction of the atom with linearly 
polarized counterpropagating waves with wave vectors kl  
and k2= - k, collinear with ko, and with polarization vec- 
tors l1 and l2 forming angles cpl and cp2 with lo is of particu- 
lar interest. Under these conditions, the radiative force at 
A = O  contains independent contributions from the counter- 
propagating waves, with arbitrary amplitudes R, and R2.  It 
is therefore unaffected by interference and does not contain 
spatial oscillations with period .rr/kl, i.e., it is a rectified 
force. For R ,=R2 some of the terms of the force cancel; 
those that remain are due solely to the alignment of the atom 
and are even functions of the velocity v. This even radiative 
force (in v) changes sign under the substitution 
kl - i  - k,(k2-t - k2) if the polarization planes of the coun- 
terpropagating waves remain unchanged, and under the sub- 
stitution cp1-q2, with constant k, . Depending on cp, and 
cp2, the force under study therefore appears as either a damp- 
ing or accelerating force. Owing to the atomic alignment, 
one can choose the angles cp, and q, such that for R1 =R2 
and A Z 0, the radiative force also contains independent 
contributions from each of the two counterpropagating 
waves. This is achieved by setting = 0 and cp2 5 ~ 1 2 ,  or 
cp2+ ~ / 2  and cp, =O.  In this case the radiative force splits 
into two parts, even and odd in the velocity v, which exhibit 
no spatial oscillations with period ~ l k , .  The angles cp, and 

cp, and the offset A can be chosen such that a given radiative 
force plays the role of either a damping or an accelerating 
force. For low longitudinal velocities (along k t )  such that 
Iklvl+ y b ,  the ratio of the odd part to the even is 
1 klvl yll , and the radiative force has resonances at 
A = + yb/2. In all cases the signs of the odd and even parts 
are easy to control, which is very important in practical ap- 
plications. 

In the present study we employ an ultrashort optical 
pump of arbitrary intensity, and the radiative force calcula- 
tion is carried out in second-order perturbation theory in the 
(weak) field of counterpropagating light waves over the time 
interval 0 4 t e  rp,  where T, is the optical pumping time in 
the counterpropagating waves. This makes it possible to ex- 
amine the radiative force for arbitrary degeneracy of the 
resonant levels, and to compare with an initially uniform 
Zeeman sublevel distribution both in the unsteady regime for 
0 t 5 yb/2, and in the steady-state regime at yb/2< t G rp . 
It is found that owing to the orientation and alignment of the 
atom, the absorption of a photon from one light wave and the 
emission of a photon toward the other occur in a substan- 
tially different way compared with an initial equilibrium 
Zeeman sublevel population. The vector properties and quan- 
titative characteristics of the radiative force in the field of 
two counterpropagating light waves change so markedly that 
the force due to radiation pressure on an optically polarized 
atom may be regarded as a new radiative force. The latter 
may find application in the confinement of an atom using 
light waves and in the laser cooling of atoms. This is espe- 
cially attractive for atoms with a hyperfine level structure, 
because for these the required A configuration of the hyper- 
fine structure components can be easily achieved. 

1. OPTICAL PUMPING IN THE A LEVEL CONFIGURATION 

Consider an atom with no nuclear spin and with a A 
level configuration Ec<E,<EB,  where the E,-+E, transi- 
tion is forbidden. Prior to the interaction with the external 
force field, the ground level E ,  has a uniform Zeeman sub- 
level distribution, while the metastable Ea and excited E b  
levels are unpopulated. Apart from the energy, the state of 
the atom is characterized by the quantum numbers J , ,  J,, 
and Jb of the angular momenta J, , Ja , and Jb,  and by the 
projections M, , M a ,  and M b  of these momenta on the quan- 
tization axis. At some instant of time, the atom reaches the 
electric field of a traveling light wave 

where lo is the unit polarization vector, Ro the amplitude, 
ko the wave vector, a0 a constant phase shift, and wo is a 
frequency close to the transition frequency wb, 
= ( E ~  - ~ ~ ) r ' i  -'. Compared to the exponential 
exp[i(k,,r- wet)], the amplitude Ro  is a slow function of 
time if one takes into account the retardation of the light, and 
it is also a slow piecewise continuous function of coordinates 
in the plane perpendicular to the wave vector k,. 

The state of the atom in the field (1) is described by the 
quantum-mechanical equations for the components of the 
density matrix p =  p(t)  in the J M  representation, 
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where 

v  is the velocity of the atom, dMbMc is the matrix element of 
the electric dipole moment operator d, dba and dbc  are the 
reduced dipole moments,25 y and y' are the spontaneous 
emission probabilities of the photons h oba and ii wbc , and c 
the speed of light in vacuo; summation over repeated matrix 
indices is understood. 

Suppose the atom reaches the field (1 )  at point ro  at time 
to and, as time goes on ( t o < t ) ,  moves through the field in a 
straight line, r= ro+ v ( t -  t o ) .  Then in Eqs (2) - (4)  we may 
write 

The role of the boundary conditions for Eqs. (2)-(4)  is 
played by the density matrix elements, 

which describe the equilibrium state of the atom before en- 
tering the field (1) .  

Equations (2)-(4) ,  with (5) and (6) ,  are solved in the 
resonance approximation, when the offset Ao= w o -  obc is 
small, ( A o ( 6  oo . For a weak light field ( I ) ,  which during the 
time period 0 s  t  - to satisfies the inequality 

the method of successive approximations used in perturba- 
tion theory is applicable. In this case the required density 
matrix quadratic in the field (1 )  is 

For a circular wave (I), the dependence of the polariza- 
tion vector lo=lkOs on ko and on the parameter s ,  which 
defines the direction of rotation of E o ,  will be written in 
explicit form independent of the choice of coordinate system, 
namely 

-2-1 /2(  ( l ) + i l g ) ) ,  
4'"s- slkl) ( 8 )  

where s  = 1 ( s  = - 1 for right-handed (left-handed) circular 
polarization. The vectors in ( 8 )  satisfy the relations 

( l ) -b1 (2 )=1( ' )1 (2 ) -0  ( 1 )  - I ( ] )  1 ( 2 )  - - 1 ( 2 )  
blLO - LO ko ko - ' I - k o -  $ 1 ,  -ko- h) 

where p is a unit pseudoscalar. Under the substitution 
k o - +  - ko , the polarization vector (8 )  transforms as 

Ikos+-lkO.-s7 

which for ( 1 )  implies the substitutions s+  - s  and 
(YO-' (YO + T .  Under the inversion, the polarization vector ( 8 )  
transforms in a different way, 

lk(p+1,',,-s 9 ( 9 )  

implying the substitution s+  - s  for (1 ) .  
We now employ a Cartesian coordinate system x y z  with 

basis unit vectors 1, ,1, , and I , .  We choose the quantization 
axis (z )  to be collinear with k,, and direct the x axis along the 
unit vector i t ) ,  which enters into the polarization vector (8) .  
The density matrix (7) then becomes diagonal, 

P M ~ M ; ( ~ , s ) =  P M , , ( ~ ~ s ) ~ M , , M ; ~  S =  * 1 .  (10) 

Coordinate inversion leads in ( 7 )  and (10) to the substi- 
tutions (9 )  and 

Mb=lrJb+ - M b ,  Mk-+ - M A .  

From this it follows that under inversion, we have 
P - M , ,  , - M ; ( ~ ? - s ) =  P M , , M ; ( ~ J )  or 

Equations (10) and (11) are a consequence of the sym- 
metry of the interaction of the atom with the circular wave 
( I ) ,  where the quantization axis is collinear with b and the x 
axis is parallel to I{)= I , .  Therefore, the equations are valid 
to any order in perturbation theory as well as outside of its 
range of applicability. 
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Equations (2)-(4) are simplest to solve nonperturba- 
tively when the interaction time r of the atom with an arbi- 
trarily intense light wave (1) is extremely short, 

If an atom with velocity v, crosses a laser beam (1) of 
diameter D, then the inequality (12) holds for D yb-G lv, 1 ,  
where v, is the component of v perpendicular to ko. The 
inequality (12) also holds for an ultrashort light pulse of 
duration r which at to impinges upon an atom located at 
point ro .  For velocities v 4 c ,  the atomic motion along k, 
may be neglected during the passage of the ultrashort light 
pulse. In both cases quoted, the amplitude in (1) is some real 
function of the time, Ro= Ro(t - to). 

In order to solve Eqs. (2)-(4) at t a t o  for an ultrashort 
interaction (12), we generalize the calculations of Ref. 21 to 
a single atom with velocity v. As a result, for some offset 
A,= wo- wbc and velocity v satisfying 

the solution to Eqs. (2)-(4) for a circular wave takes the 
same form as (10) with a characteristic factor 

where 

and the 3 j  symbol (: i )  is defined in Ref. 25. If the field 
(1) is weak, Eqs. (10) and (14) turn into (7) by virtue of (8) 
and (12). 

If during an ultrashort time interval 0 S t  - to S r the am- 
plitude Ro is constant, then for an arbitrary offset 
Ao= wO- wbc and any velocity v, the quantity (15) in Eq. 
(14) should be replaced by 

where 

and after the interaction with the field (1) the quantity (17) 
for to+ rQt maintains a constant value with an argument 
t-to= 7. 

If the atom interacts with a linearly polarized wave (1) of 
arbitrary intensity, we direct the quantization axis (5 axis) 
along the real vector lo. Then in the Cartesian coordinate 
system [ *  *s t ru t  * *] i j5 ,  of the three contravariant unit vec- 
tors I ( - ~ )  (s = 0,+ 1 )  of the form 

we choose lo = J ( - ~ )  with s = 0 as the polarization vector. In 
this case it is convenient to take a Cartesian system with the 
i axis along lo and the i axis antiparallel to k,, in which the 
atomic E b  state is described, according to Eq. (7), by the 
density matrix 

where the factor preceding the S function satisfies 

Equations (20) and (21) are a consequence of the sym- 
metry exhibited in the interaction of the atom with a linearly 
polarized wave when the quantization axis .i is chosen along 
the polarization vector lo and the i axis is antiparallel to 
ko. They therefore retain their validity no matter what the 
method of calculation. 

In an ultrashort interaction (12) with a linearly polarized 
wave (I), the solution of Eqs. (2)-(4) in the coordinate sys- 
tem iji for t o s t  takes the form (20), in which the charac- 
teristic factor P&,(t,s) with s = 0 is given by Eqs. (14)-(18) 
with M~ +M, , M ; + M ;  , and s+O. 

We now go from the iji coordinate system to the xyz 
system discussed earlier, with the quantization axis z collin- 
ear with k, , and with the x axis along the prescribed linear 
polarization vector I, = lo, by executing three successive ro- 
tations through Euler angles a , P ,  and y, as discussed in Ref. 
25. To this end we first rotate about the i axis through an 
angle a=O, to transform to a new coordinate system 
x,y ,zl . This is followed by a rotation about the new y ,  axis 
through an angle P= - 7i-12, transforming to another new 
coordinate system, x2y ,z2. Finally, a rotation about the new 
axis z2 through an angle y=O takes us to the desired xyz 
system. Using the density matrix transformation law under 
rotations of a Cartesian coordinate systems through Euler 
angles a , P ,  and y (see Ref. 25), we obtain the density ma- 
trix pMbM;(t,O) in the xyz system, with the quantization axis 

z collinear with b and the x axis along lo: 

where the quantity dgq(- 7i-12) is a special case of the real 
factor d M , ( ~ )  that enters into the Wigner D function 

The spontaneous decay of the excited state, which is 
described by the density matrices (10) and (22), gives rise to 
a nonuniform population in the Zeeman sublevels of the 
metastable level E ,  . This sort of optical pumping, in which 
an atom is transferred from the ground state E ,  to a long- 
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lived state E, by a circularly polarized s= 2 1 wave or a 
linearly polarized s = O  wave, is described by a density ma- 
trix pMaM:(t,s) that satisfies 

where the width of the metastable level is taken to be zero 
and the initial condition at t = to is pMaM:(to ,s) = 0 

(s = 0,+ 1).  Here pM ' ( t , ~ )  is defined in Eqs. (10) and (22). 
b b 

Let the optical pump duration be arbitrary and equal to 
r. Then at some much later time 

the density matrix in the excited state E b  relaxes to zero [ 
pw M'(t,~)=O], whereas in the metastable level E, it as- 

b b 

sumes a constant value pMaM ' ( t , ~ )  = py 1 (s) determined 
a b b 

by the solution of Eq. (23): 

where the first (second) term inside the brackets describes 
the population of the metastable level E, during (after) op- 
tical pumping. 

For an arbitrary duration r and any amplitude R,, the 
density matrix (25) for a circularly polarized optical pump 
wave is diagonal by virtue of Eq. (lo), and in view of Eq. 
(11) it satisfies 

The optical polarization of an atom in a long-lived state 
of energy E, is characterized by multipole moments p?) 
X(J, ,s) which enter into the series expansion of the density 
matrix (25) in 3 j  symbols, 

(27) 
where 0 s  x S  W, and - x S q S  x. Here the multipole mo- 
ments of order x =  0,1,2 describe the atomic population, ori- 
entation, and alignment, respectively. 

Owing to the symmetry taken into account in Eqs. (lo), 
( l l ) ,  and (26) we obtain for a circularly polarized optical 
pump wave 

In optical pumping by a linearly polarized wave, from 
the symmetry taken into account in Eqs. (20)-(22) it is found 
that the multipole moments in (27) with s = O  are of order 
x=2n (n=0,1,2 ,...) and that OS(q( .  

To calculate (25) to second order in a weak field (I), Eq. 
(7) is useful. If the circularly polarized optical pump wave is 
ultrashort (see Eq. (12)) and arbitrarily intense, then in order 

to calculate the density matrix (25) and the multipole mo- 
ments in (27), one should employ Eqs. (10) and (14)-(18) 
with s = + 1. For a linearly polarized optical pump wave, 
Eqs. (22) are needed. 

As a result, for ultrashort pumping by a circularly polar- 
ized optical pump wave (1) with s = 5 1, we obtain 

where the 6 j  symbol {a b cd e h }  is defined in Ref. 25. 
In ultrashort optical pumping by a linearly polarized 

wave (1) with s=O, we find 

where x=2n(n=0,1,2 ,... ). 
From the solution of Eqs. (2)-(4) and (23) for an arbi- 

trary instant of time to+ r S t ,  after optical pumping of any 
duration T, it follows that the level population probabilities 
Wb , Wc , and W, will be determined by the spontaneous de- 
cay of the excited state E b  and 
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where Wb(~),WC(r),  and Wa(r) are the population prob- 
abilities of the levels E b  ,Ec , and E, at time t = to + 7, when 
the optical pump is turned off. For sufficiently large r in Eqs. 
(31)-(34) we must write 

For an ultrashort optical pump, the probability Wb(r) 
can be calculated using Eqs. (10) and (22), and for W,(r) a 
similar argument applies. The probability Wa(r) is deter- 
mined by using the first terms in brackets in Eq. (25). 

2. RADIATIVE FORCE FOR AN OPTICALLY POLARIZED 
ATOM 

Consider two collinear laser beams. The electric field of 
one is defined in Eq. (1). The second is a superposition of 
two counter- or copropagating traveling light waves 

where 

cP1 = klr- a , ,  4,= k2r- a 2 ,  

1, and l2 are unit polarization vectors, R1 and R2 are constant 
real amplitudes, a, and a2 are constant phase shifts, and the 
frequencies wl and w2 are equal, wl = w2= w, and close to 
the frequency wba = ( E ~  - E,)  h-I for the transition from the 
metastable level E, to the excited level E b .  The wave vec- 
tors b , k l ,  and k2 are collinear, and the atomic velocity v 
and wave vectors b , kl , and k2 all lie in the same plane. 

The atom moves in the plane of the beams in such a way 
that its transverse velocity v, is directed from the first beam, 
which is responsible for the optical pumping, to the second 
one, which exerts on the atom the radiative force we wish to 
determine. The beam separation 1 and the transverse atomic 
velocity are chosen such that the time llv, the atom spends 
between the beams obeys the inequality (24). This requires 
that v,41 yb .  

An optically polarized atom with a nonuniform Zeeman 
sublevel population (25), with s= O,? 1, enters the field (35) 
at point r; = 0 at time t; = 0, and for 0 =G t it moves through 
the field in a straight line, r= vt. The interaction of the atom 
and the field (35) in the Cartesian system xyz with quantiza- 
tion axis z collinear with b is described by a density matrix 
p=p(t,s) in the J M  representation, which by virtue of (5) 
satisfies the equations 

with initial conditions at t = 0 in the form 

where the density matrix pMIIMl(s) is defined for the general 
a 

case in Eq. (25). 
We use the familiar formula for the radiative force (see, 

e.g., Refs. 1-3, 16, 18) 

and calculate perturbatively to second order in the weak field 
(35). We drop terms in (40) with double the frequency w, 
which is equivalent to averaging over time from t to 
t+27rlw. 

In solving Eqs. (36)-(38) by perturbation theory, the 
small parameter in the series expansion of p=p(t,s) in the 
field (35) is the greater of the two parameters 

where A = w- wb; . In Eq. (41) we have omitted an unim- 
portant factor preceding t, which depends on J, and J b  and 
does not exceed unity. 

As a result, the desired density matrix at t a O  and 
bounded at large t by (41) takes the form 

where 

It is clear that for a weak field 

the density matrix (42) may be used both in the unsteady 
regime t s  yb/2, and in the steady-state regime yb/2et ,  
which sets in in the region (41) after a long period of time 
compared with the relaxation time 2/yb. For any t in the 
region (41), the radiative force (40) can be written as 

where 

The vectors A and B are a convenient notation for 
counter- or copropagating light waves (35) of arbitrary am- 
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plitude and polarization. We can expand these vectors in 
terms of the contravariant unit vectors (19) defined in the 
Cartesian coordinate system xyz ,  

Then the quantity (46), after summing over the matrix indi- 
ces, using (27) and the 3 j  sum rules,25, takes the form 

where the summation indices q ,  and q2 take on the values 
+ 1 because the vectors (43) and (47) are orthogonal to the 
quantization axis z. 

The force expression (45), with (48), remains valid for a 
long time (24) after passage of an optical pump wave (1)  of 
arbitrary duration T ,  which may have either circular 
(s = + 1 )  or linear ( s  = 0 )  polarization. In an ultrashort opti- 
cal pump wave (12), calculation of the multipole moments in 
(48) requires that we make use of Eqs. (29) and (30). 

3. RADIATIVE FORCE FOR AN ATOM WITH CIRCULAR 
OPTICAL POLARIZATION 

We next consider an atom whose optical polarization is 
due to a circularly polarized wave (1)  with s = 5 1. Accord- 
ing to Eq. (28), the lower index of the multipole moment in 
(48) is zero in this case, and the sum (48) becomes 

where 

x ; ] p ( J a , s ) ,  , = + I ,  s = ? l .  

(50) 
Because of the symmetry property (28), the sum 

i 2  1,s) + G( - 1,s) in Eq. (49) is an even function of s ,  
iereas the difference G(1 ,s )  - G ( -  1,s) is odd. This means 
at under inversion and the substitutions b-t-k, or 

-+ - s ,  the sum G(1 ,s )  + G( - 1,s) is unchanged, whereas 
.he difference G ( 1 , s ) - G ( -  1,s) transforms according to 

where the unit vector I ,  characterizes the direction of the 
quantization axis. 

As a result, the radiative force (45) at t a O  for an atom 
with a circular polarization (25) and s =  +- 1 takes the form 

where the factors d i X )  (x=0 ,1 ,2 )  are special cases of the 
general expression 

Consider first the force (51) for counterpropagating cir- 
cularly polarized waves (35) with k ,  = - k2 and polarization 
vectors 1, = lk  of the form 

n n 

where the z axis is collinear with k, , and where 

a, = ( ~ , k , ) l k ,  ; 

A,= 1 for right-handed and A,= - 1 for left-handed polar- 
ization. The unit vector 1, coincides with the unit vector 
1 g  of Eq. (8) .  

For the same sense of circular polarization 
( A  = A 2  = f 1 )  of the counterpropagating waves ( 3 9 ,  the 
force (51) is 

where for the quantity (44) we have introduced the notation 

I ( b ) = I r ( k n )  + i I r l (kn) .  

Here I r ( k , )  and IN(k,)  are the real and imaginary parts of 
the quantity (44): 

( - $1 cos[(A - k ,v ) t ]  - - exp ] T 
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The force (54) contains only independent contributions 
from either of the counterpropagating waves (35), and no 
interference terms with spatially oscillating factors 
sin(2klr) or cos(2klr). The absence of these rapid spatial 
oscillations, with a period equal to the half wavelength 
rrlk, , is a basic feature of the radiative force (54) in the field 
of two counterpropagating circular waves (35) with the same 
sense of polarization, h = h = -f 1. 

The terms involving D:') and D ( , ~ )  in (54) are propor- 
tional to multipole moments of order x= 1 and x = 2  de- 
scribing the orientation and alignment of the atom. However, 
of fundamental importance here is the atomic orientation in- 
duced by the circularly polarized optical pump wave (1). 

The terms in D(,') and Dr2) in (54) are always directed 
along kr, . In contrast, the term involving D(,')>o is parallel 
to k, only when k, lk, and X, are both either equal or un- 
equal to the specified quantities k,, /ko and s .  This has to do 
with the fact that the atomic orientation induced by optical 
pumping is invariant under the simultaneous substitutions 
k,,-+ - k,, and s-+ - s. This means that the atomic orienta- 
tion can be characterized both by the direction of the wave 
vector k and by the sense of rotation of the electrical field of 
the optical pump wave, that is, by its left- or right- 
handedness. If only k, lk, and b / k o  or h, and s coincide, 
then the term involving D(,')>o (D(,')<o) will be antiparal- 
lel (parallel) to k, . 

Since D(,')+ D ( , ~ ) >  ID$')I, the radiative force of the nth 
light wave will be directed along k,(n = 1,2). However, for 
counterpropagating waves (35) with R ,  = R2 = R, terms con- 
taining the sum D(,')+D(,~) cancel, and the direction of the 
force (54) depends heavily on the prior optical orientation of 
the atom, 

where f = l d b , ( ~ h - '  is the Rabi frequency and the sum 
I ' ( k , ) + l r ( -  k,) and difference I r ( k , )  - I r ( -  k l )  are re- 
spectively even and odd functions of the velocity v. 

According to Eq. (41), Eq. (55) holds for 

where rp is the optical pumping time in the counterpropagat- 
ing light waves (35), 

For low-intensity light waves (35), there exists a long 
time interval 

over which the steady-state regime is established, and the 
force (55) takes the form 

where the vector Fo is an even function of the velocity v ,  

The force (57) is unchanged by the substitution 
k, 4 - k, with fixed X ,  . Therefore with a proper choice of 
A,k, , ,s ,  and D(,'), it can be either a damping or an acceler- 
ating force. The odd (in v) part of the force (57) plays the 
role of a frictional force for A < 0. The even (in v) part of the 
force (57) changes sign under the substitution h ,  + - A 1  and 
under the substitution b+ - k,, with the index held s fixed, 
and under s+ - s  with ko held fixed. From the transforma- 
tion law for the polarization vector (8) under such substitu- 
tions, it follows that the even part of the force (57) changes 
sign if the right-handed circular polarization in the optical 
pump wave (1) is replaced by a left-handed polarization or 
vice versa. Hence, one can control the signs of the even and 
odd (in v) parts of the force (57) separately during an experi- 
ment. 

When the counterpropagating waves (35) with 
R , = R2 = R have different senses of circular polarization 
(XI = - X 2  = 2 1), instead of (55) we obtain 

where + = 2 k l r - a 1 + a 2 ,  and the sum ~ ' ( k ~ ) + l ' ( - k ~ )  is 
an odd function of the velocity v. In the steady state (56), the 
force (59) takes the form 

The vector (58), parallel to k , ,  has been introduced to 
simplify Eqs. (57) and (60). Recalling the equality 
kl(k,  ko) = kokf for collinear vectors k, and k,, , it is found 
that those terms in the forces (55), (57), (59), and (60) in- 
volving a factor D:') are parallel or antiparallel to k ,  de- 
pending on the signs of the parameters h , , s ,  and D i .  

If the counterpropagating waves (35) are linearly polar- 
ized, their polarization vectors will be 

ln=Ix cos cpn+ully sin cp,, n = 1 , 2 ,  (61) 

where positive angles cp, are reckoned clockwise from the x 
axis (looking along I,), regardless of the direction of 
k1(k2= - k,). 
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The radiative force for an atom with circular optical po- 
larization (51) moving through a field of counterpropagating 
linearly polarized waves (35) with R = R2 = R is 

(~zko) -- SD(,') sin p cos 4 [I ' (kl)-I t (-  k,)] 
ko 1 

+ (D(,O)+D(,~))COS cp sin 4 i 
(Izb) -- SD!" sin cp cos 4 [I"(k,)+Itt(-k,)]], (62) 

ko I 
where 

Here cp is the angle between the polarization planes of the 
counterpropagating waves (35). In the steady-state regime 
(56), the force (62) becomes 

(Izko) -- SD!" sin p sin )] yb(klv) + [ (D (,o) 
ko 

(Izko 
+ ~ \ ~ ) ) c o s  cp sin 4- - S D ~ )  sin cp cos 4 

ko 1 
As functions of the coordinates, the forces (59), (60), 

(62), and (63) undergo spatial oscillations with a period of 
half the wavelength, 7r/k1, whereas the forces (55) and (57) 
do not exhibit such oscillations. Moreover, all of these forces 
contain terms that are even or odd in the velocity v. At 
resonance (A=O), all of the odd terms vanish, as do the 
forces (59), (60), (62), and (63). 

For highly collimated atoms moving with low longitudi- 
nal velocities u, (relative to k,), 

the odd (in v) terms in the forces are small compared to the 
even terms in proportion ] klvIYt1 . For low longitudinal ve- 
locities (64), the most interesting force, Eq. (57), assumes the 
characteristic form 

Clearly, for A = 0 the force (65) is nonzero, whereas the 
forces (60) and (63) vanish. Under the resonance conditions 
A = 2 yb/2, the absolute value of the ratio of the first and 
second terms in brackets in (65) is 

Therefore for sufficiently low velocities v,, the main contri- 
bution to the force (65) derives from the prior optical orien- 
tation of the atom. The quantities A,ko,Al ,s, and D{') may 
be chosen such that all terms in (65) play the role of either 
damping or accelerating forces. 

To obtain an order-of-magnitude estimate of the forces 
(57), (60), (63), and (65), consider the factors 
D(,"),x=0,1,2 for an ultrashort optical pump (12). Making 
use of Eqs. (52) and (29) we obtain 

After simplifying the mathematics, the area 8 of an ul- 
trashort optical pump pulse becomes 

For J c = O  and s= 1, according to (16) we have 
J b = M b =  1. Therefore, for a large area 6 such that 

from Eq. (66) for atomic transitions between states with mo- 
menta J c = O  and Ja=Jb=l we find 

For J, = 112,s = 1 and a large area 6' satisfying 

with the help of Eq. (66) we obtain 

In particular, for Jc=Ja= 112 and Jb=3/2, Eq. (69) 
yields 
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D ~ O ) =  ')'I12 Yb,  D!')= ~ 1 7 2  Yb, D',')=o. 

For J,= J, = Jb = 112, from Eq. (69) we find 

4klhf2 
F= - {[l1(k1)-If(- k l ) ] [ ~ r ) + ~ ~ 2 ) ( 1  -3  cos 4)]  

Yb 

In a weak optical pump field, which enables us to re- and for the steady-state regime (56) it can be written 
place the sine in Eq. (15) for t - to= T with its argument, Eq. 
(66) becomes Fo A 

F= [[DbO)+Db2)(l -COS d ) ]  yb(klv)+ 3DF) 
Yb 

J + ~ , + 1  ~ ( ~ ~ + ~ ) ( ~ ~ b + ~ )  ~ ' l " ) = ( - l )  c 
1 

Yb(2JC+ 1 )  [: -1 ;I2 X A'-(k1v)'+ :Isin 41. [ (74) 

X I 1  I "}[ '  %I[;; T ; l ] 0 2 .  
For circularly polarized counterpropagating waves (35) 

Ja Ja J b  Jb  J b  J~ with opposite senses of polarization (A1 = - h2 = + 1), in- 
For small angular momenta we therefore obtain the fol- stead of (73) we obtain 

lowing values: 4klhf2 
F =  --- 

(1) for J,=O and J, = J ~ =  1, D(:)= ~ 4 ~ 1 4 5  yb , Yb ( D ~ ' + D ~ ' ) { [ I ~ ( ~ ~ ) - I ~ ( -  kl)] 
~ ( 1 ) ~  - 

1 y42/216yb ; 
(2) for J,=J,= 112 and Jb= 312, D(')= 1 ~ 4 ~ / ~ ~ ~ b ,  X(l+cos4)-[IN(k1)+I"(-kl)]sin+}, (75) 

0 ( , ' )=5y4~ /432y~ ,  Di2)=0; and in the steady-state regime (56) the force (75) is 
(3) for J c = J a = J b =  112, D\')= y$b2/36yb, D\')= y42/ 

108 y,, D ~ ) = o .  

4. RADIATIVE FORCE FOR AN ATOM WITH LINEAR 
OPTICAL PUMPING 

A2-(k1v)'+ - sin 4 . 
4 I I 

If an atom with linear optical polarization (25), with If the counterpropagating waves (35) are polarized lin- 
s= 0, enters the field of light waves (39,  the radiative force early and have polarization vectors (61), then the radiative 

is described by Eq. (45) with the quantity Q in the form of force (72) for RizR2=R is of particular interest: 

the sum (48) containing terms with s=O, x=0,2, and 4k1hf2 
q1+q2=0,+2. In terms with x = 2  and q l + q 2 = 2 2 ,  we F= --- {3Db2'(cos2 ( P ~ -  cos2 p2)[I ' (kl)+Ir  
must use the multipole moment relation Yb 

which follows from the properties of the Wigner D functions, +60h2) cos ( P ~  cos ( ~ ~ ] [ [ I ~ ~ ( k ~ ) + I " ( - k ~ ) ] s i n  4 

-[ I r (k1) - I t ( -  kl)]cos $1). (77) 

For the steady-state regime (56), the force (77) is 
and from Eqs. (22), (25), and (27), all for s = 0. This makes - I 

it possible to represent (48) as a sum of two parts, which are Eb 
F=  7 / [ D r ' + ( 3  cos2 q 1 + 3  CO$ ( P ~ - Z ) D ~ ~ ) ] A  yD(klv) 

proportional to AB and to A,B,. Here A ,  and B,  are the Yh - .  

projections of the vectors (43) and (47) on the x axis, which 
is parallel to the polarization vector lo of the optical pump 3 + - Df)(cos2 (P, - cos2 (P,) yb A'+ (k1v)'+ +q 
wave (1). As a result, the force (45) for an atom with a linear 2 i y:) 
optical polarization (25), with s=O, moving in the field of 
the light waves (35) may be written, by (70) and (71), as -A[(DbO)-2~b~))cos  ( P + ~ D F )  cos (PI cos ( P ~ ]  

where the quantity DC),(x= 0,2), is given by Eq. (52) with 
s = 0, and Eq. (72) holds for light waves (35) of arbitrary 
polarization and with k1 = k2 or k1 = - k2. 

For circularly polarized counterpropagating waves (35) 
with k l=  - k2,R1=R2=R, and the same sense of circular 
polarization (A, = A 2 =  + I ) ,  the radiative force (72) takes 
the form 

Radiative forces for an atom with prior linear polariza- 
tion, Eqs. (73)-(78), contain terms that are even or odd in 
v. Outside resonance, A # 0, all of the forces (73)-(78) 
have interference terms with factors sin(2klr) and 
cos(2klr), and thus exhibit spatial oscillations with a period 
of half a wavelength, .rrlkl. 

In the resonant case A= 0, the forces (73)-(76) vanish, 
whereas the forces (77) and (78) do not. For A = 0 and R1 
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f R2, the force (77) does not exhibit spatial oscillations and 
contains independent contributions from the individual light 
waves: 

Given that Db0)>2DL2), the force (79) for either light 
wave with index n is directed along the wave vector kn . For 
counterpropagating waves with R = R 2 ,  = R ,  the terms 
D( ,O) -  20(,2) drop out and the remaining terms are different 
from zero only in the presence of alignment, 

The force (80) is even in v and changes sign under the 
substitution k, + - kl(k2--+ - k2)  if one fixes the polariza- 
tion planes of the counterpropagating waves. Moreover, the 
force (80) changes sign if one fixes the direction k l ( k 2 )  and 
interchanges the polarization planes of the counterpropagat- 
ing waves, which leads in Eq. (80) to the interchange 
( P I  ++ q 2 .  In particular, for c p l  = cp2  the force (80) vanishes. 
Here, positive angles c p l  and cp2  are reckoned clockwise 
from the x axis looking along the z axis, and the x and z axes 
characterize-the atomic alignment. Depending on c p l  and 
cp2, Eq. (80) is either a damping force or an accelerating 
force. 

Owing to the atomic alignment, one can choose angles 
c p l  and cp2  such that for A Z 0 ,  the forces (77) and (78) 
contain only independent contributions from the two light 
waves, with no interference terms. To this end we must set 
c p l  = 0 and q 2  = 2 7~12 or = + 7~12 and cp2  = 0.  The forces 
(77) and (78) then contain both an odd (in v )  frictional part, 
and a part even in v .  For example, in the steady-state regime 
(56) for q 2 = 0  and cp2= + 7~12, from (78) we find 

The force (81) does not exhibit spatial oscillations, 
which is a fundamental property of this force. For low lon- 
gitudinal velocities (64), under the resonance conditions 
A = + yb/2 the absolute value of the ratio of the first and 
second terms in brackets in (81) is 

If one sets c p l  = + 1712 and cp2=0, the sign of the factor 
312 in (81) is negated. Hence, in an experiment one can con- 
trol the signs of the even and odd (in v )  parts of the force 
(81). The parameters can be chosen such that (81) is either a 
damping or accelerating force. 

For an ultrashort optical pump (12), the quantities 
D r ) , ( x = 0 , 2 )  in Eqs. (72)-(81) can be calculated using 
(52) and (30) to give 

If J,=O and s=O, according to Eq. (16) we have 
J b = l  and Mb=O. Then in the case when the area (67) is 
large [satisfying Eq. (68)],  for atomic transitions between the 
states with momenta J ,  = 0 and Ja  = Jb = 1 ,  using (82) we 
obtain 

For the weak field (8<3ll2) of an ultrashort optical 
pump obeying Eq. (12), Eq. (82) yields 

5. RADIATIVE FORCE FOR AN ATOM WITHOUT OPTICAL 
POLARIZATION 

To determine changes in the radiative force (40) due to 
the prior optical polarization (25) with s = O,+ 1, consider an 
atom with a velocity v which, prior to entering the field of 
the counterpropagating waves (35) at point rh = 0 at an initial 
time th = 0 ,  has a uniform Zeeman sublevel distribution at the 
metastable Ea level. This initial state of the atom is described 
by a density matrix p = p ( t )  in the JM representation at 
t=O: 

The initial conditions (83) for Eqs. (36)-(38) then sat- 
isfy all the requirements used in calculating the radiative 
forces (55), (59), (62), and (72)-(78). Therefore the force 
(40) for an atom with no prior optical polarization can be 
described by Eqs. (55), (59), (62), and (72)-(78) in which, 
according to (83), we must put 

Thus in the steady-state regime (56) with R 1 = R 2  
= R ,  the force (40) for an atom with no prior optical polar- 
ization moving in the field of counterpropagating circular 
waves (35) with the same sense of circular polarization 
( A l = A 2 =  2 1 )  takes the form 

For opposite senses of circular polarization 
( A ,  = - A2= + I ) ,  the force (40) has a different value, 
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If an atom with no prior optical polarization moves in a 
field due to linearly polarized counterpropagating light 
waves (35) with polarization vectors (61), the radiative force 
(40) is 

F =  FoA [yb(k lv ) ( l  -COS 9 COs 4 )  
3 ( 2 ~ , + 1 ) ~ ?  

+ ~ ~ - ( k ~ v ) ~ +  - cos (P sin 4 . I "I 4 I 
For an orthogonal velocity klv=O, the forces (85)-(87) 

are identical to those in Ref. 18 if in the latter the elliptical 
polarizations are replaced by circular and linear polariza- 
tions, and if the magnetic field is omitted. The forces (85)- 
(87) at A=O vanish, in contrast to those for an optically 
polarized atom. For A Z 0, the forces (86) and (87) as func- 
tions of the coordinates exhibit spatial oscillations with a 
period r l k 1 .  These oscillations disappear for the force (87) 
when p= + 7712 but reappear in the next order of perturba- 
tion theory. To eliminate the spatial oscillations, various 
methods for rectifying the radiative force (40) exist. For ex- 
ample, Refs. 4-7 make use of the interference phenomena 
arising from addition of two or more light waves, while Refs. 
12-15 average the radiative force (40) over a half wave- 
length, r l k , .  

In low-intensity counterpropagating light waves (35), 
such averaging makes the sin(2klr) and cos(2klr) terms 
vanish; the averaged terms that survive do not oscillate spa- 
tially but they are quadratic functions of the perturbation 
parameter. In contrast, radiative forces for an optically polar- 
ized atom, Eqs. (57), (65), (go), and (81), do not require 
either a rectification procedure or an averaging over half a 
wavelength .rrlkl. These forces are fundamentally new as 
far as their vector properties and other quantitative charac- 
teristics are concerned. In particular, for low longitudinal ve- 
locities (64) under the resonance conditions A = 2 yb/2, the 
absolute ratio of the wavelength-averaged forces (85)-(87) 
to the radiative force for an atom with circular polarization 
(65) is 

whereas for a linearly polarized atom subject to the force 
(81), this ratio can be written 

In low-intensity light waves (35) at low longitudinal ve- 
locities (64), the force (40) was calculated in Refs. 12-15 for 
a special atomic model and under the assumptions that the 
population of the two lower-state sublevels, at rpGt ,  
changes adiabatically under the influence of the light waves, 

and that the upper-state sublevel populations may be ignored. 
These calculations are beyond the perturbation theory region 
O S t G  rp and are only valid for the J,= 112+Jb= 112,312 
atomic transitions. To rectify the force, Refs. 12-15 take a 
half-wavelength average. As we have already shown, the use 
of optically polarized atoms serves as an alternative method 
for obtaining a rectified force for arbitrary momenta J, and 
Jb . 

6. DISCUSSION 

To facilitate the calculations and simplify the math- 
ematics, we have examined atoms in a spinless-nucleus 
A configuration atoms. Examples include the 
~ , ( 6  1 ~ o ) , ~ , ( 5 3 ~  and ~ ~ ( 6 ~ ~ 7 )  atomic levels of barium 
13'~a, and the ~,[6~~(1/2,1/2)~],~,[6p~(3/2,1/2),], and 
Eb[6p7s(1/2, 1/2):] levels of lead 208~b.  

However, radiative force experiments are usually carried 
out on atoms with nonzero nuclear spin, and under condi- 
tions where the nuclear spin cannot be neglected. In the pres- 
ence of nuclear spin, the state of the atom is described by the 
energy E F  and by the quantum numbers J , I , F ,  and MF,  
which specify the angular momentum J, nuclear spin I, the 
total momentum F, and the projection of F on the quantiza- 
tion axis. The level E for J > I ( J < I )  is split by the hyperfine 
.interaction into 21 + 1 (U + 1 )  components with energies 
EF ; the range of F depends on J and I. 

Let the ground state Eo  of an atom with a given angular 
momentum Jo split into two hyperfine-structure components 
EFc and EFa corresponding to total momenta F, and F a ,  
where IJo- I1 SF, , F , S J o +  I ,  and EF,<EF,. The excited 
level E b  for an atomic state with angular momentum Jb splits 
into hyperfine components with energies EFh, where 
IJb-I\ SFbSJb+I. If the frequency wo of the optical pump 
wave (1) is close to the transition frequency 
OF~F,= (EFb-EFC)K1,  and if the frequency w of the coun- 
terpropagating waves (35) is close to the transition frequency 
W F ~ F ,  = ( E F ~ -  ~ ~ , ) h - l ,  then the hyperfine structure com- 
ponents EFc,EF,, and EFb form the A sublevel configuration 
required. The radiative force analyses carried out for an op- 
tically polarized atom will then also apply in the presence of 
nuclear spin if in all of the formulas obtained one makes the 
substitutions 

where dFbFc is the reduced dipole moment for the transition 
Fb+F, ,  which alters the total momentum. Examples are the 
3 2~ and 3 2 ~ 0  terms of sodium 2 3 ~ a ,  5 2~ and 5 2 ~ 0  of 
rubidium 8 5 ~ b ,  and 6 2 ~ 1 / 2  and 6 2 ~ 0  of cesium 1 3 3 ~ s .  It 
should be kept in mind that in the equilibrium state prior to 
entering the optical pump wave field (I), the EFc and EFa 
levels are equally populated, which halves the coefficients 
~ ( 1 ' )  and Dh2). 
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These arguments also hold for a four-level configuration 
Ec<Ea<Eb<Eg,  with transitions Ec*Ea and Eb+Eg for- 
bidden, provided the optical pump wave (1) is resonant with 
the allowed transition EC+ Eb and the counterpropagating 
light waves (35) are resonant with the allowed E,+Eg tran- 
sition. One must then make the substitutions dba+dgo ,  
yb+ yg , and A+o- ( E , - E , ) ~ - '  in the radiative force 
formulas for an optically polarized atom. The generalization 
to hyperfine structure components can be carried out in a 
similar manner. 
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