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Allowing for dissipation in the scattering of light by a freely orienting system leads to distinctive 
polarization asymmetry, e.g., to the emergence of circular polarization of the scattered 
radiation in the scattering of photons with linear polarization. The phenomenon is similar to the 
emergence of ellipticity in the light reflected from an absorbing-medium boundary (a 
metal) and is caused by the skew-Hermitian part of the scattering amplitude. This paper studies 
the asymmetry in dipole-allowed scattering for various dissipation mechanisms: the 
photoelectric effect, radiative reaction, and resonant scattering. The polarization-angular 
structure of dipole-forbidden light scattering is analyzed, and we calculate numerically the cross 
section of such scattering and the degree of asymmetry for hydrogen and cesium atoms. 
O 1994 American Institute of Physics. 

1. INTRODUCTION 

Dissipation of light energy in the propagation of light 
through a medium leads to several effects whose specific 
features are determined by the irreversible nature of the dis- 
sipation process. For instance, Baranova, Bogdanov, and 
zel'dovichl and Manakov and ~ a i n s h t e i n ~  examined new ef- 
fects associated with the variation in the electric and mag- 
netic properties of a medium in the presence of dissipation, 
such as gyrotropic properties induced by a constant electric 
field (the electrical analog of the Faraday effect) in a con- 
ducting liquid and optical rectification (induction of a static 
electric polarization by a monochromatic wave) in a cen- 
trally symmetric medium. Note also the classical emergence 
of elliptical polarization in the reflection of linearly polarized 
radiation from an absorbing-medium boundary (a metal).3 
Formally, the new effects emerge because the problem con- 
tains a T-odd parameter r characterizing the intensity of 
dissipation. 

This paper examines similar effects in the scattering of 
light by a gaseous medium. Allowing for dissipation in this 
case leads to distinctive anomalies in the polarization- 
angular dependence of the cross section: for one thing, scat- 
tered photons are circularly polarized because of scattering 
of linearly polarized radiation by unpolarized particles. The 
role of the parameter r mentioned earlier is taken in scatter- 
ing processes by the skew-Hermitian part of the scattering 
amplitude, this part being related to amplitudes of other 
physical processes than the present one, which constitute the 
sources of dissipation. 

Although there may be various dissipation mechanisms, 
the "anomalous" terms in the scattering cross section usually 
arise because of interference of the Hermitian and skew- 
Hermitian parts of the partial amplitudes and have the same 
polarization-angular structure. Let e l ,  k1 , wl and e2, k2, w2 
be the polarization vectors, the wave vectors, and the fre- 
quencies of the incident and scattered photons ( 1  e, 1 = 1, 
km=(wm/c)nm,  m =  1,2), and A,=in,-(e,xe;) and 
I, = em .em = the degree of circular and linear polar- 

ization of the mth photon (-  1 <Arn< 1) .  As will be shown 
below, in the presence of dissociation, the cross section 
d a / d R  is different for right-hand and left-hand circularly 
polarized photons, so that 

where e= cos-'(nl en2) is the scattering angle, and 

Note that the right-left asymmetry in the scattering of light, 
determined by A,  arises in the absence of dissipation pro- 
cesses as well, but in right-left asymmetric media, e.g., in a 
chiral molecular gas.4 The vector structure of A differs from 
the right-hand side of Eq. (1). 

The term with I2 in Eq. (1) describes the onset of circu- 
lar polarization in the scattering of a linearly polarized pho- 
ton, and I, describes the reciprocal effect. Since Il is propor- 
tional to l2 and I2 to I,, both II and I2 vanish if the two 
photons are 100% linearly or 100% circularly polarized. On 
the other hand, the effect peaks when one photon is circu- 
larly polarized and the other linearly polarized. Suppose, for 
instance, that the incident photon is linearly polarized 
(el  =e:) at an angle to the scattering plane and that P is 
neither 0 nor 90". Then the scattered radiation contains pho- 
tons with circular polarization whose number is determined 
by the term with I2 in Eq. (I), and the numbers of left-hand 
(A2 = 1)  and right-hand (A2 = - 1 )  circularly polarized pho- 
tons scattered in the same direction differ. The quantities 
11,2 are at their maximum in scattering through 90" and 
P=45" and disappear in the total cross section integrated 
over angles. 

Interestingly, when light is reflected by a metal surface, 
the difference AR in the reflection coefficients for photons of 
different circular polarizations is also described by Eqs. (1) 

696 JETP 79 (5), November 1994 1063-7761 19411 10696-1 1$10.00 O 1994 American Institute of Physics 696 



and (2), with the subscripts 1 and 2 referring to the incident 
and reflected waves, w,= w2=w, and the function 
f(w, - o, 8) proportional to the absorption coefficient (the 
imaginary part of the dielectric constant) of the reflecting 
medium. 

The effects can also be described in terms of Stokes 
parameters, which prove convenient in the study of polariza- 
tion phenomena and make it possible to allow for partial 
polarization of photons. In this connection some results that 
will prove useful in what follows can be recalled (see, e.g., 
Ref. 5). The Stokes parameters of the incident and scattered 
photons are denoted by ti1), t i1),  (r) and ((,2), t i2),  t i2) ,  re- 
spectively. They are defined with respect to two coordinate 
systems, xl  ,y ,zl and x2 ,y2 ,z2, whose z axes are directed 
along the wave vectors kl and k2, the x axes coincide and 
are perpendicular to the scattering plane [xll(kl Xk2)], and 
the y and y2 axes lie in the scattering plane. The parameters 
5:) give the degrees of circular polarization ((:=A,), the 
(y) characterize the linear polarization along the xi or yi axis 
(($)= + 1 or (f)= - 1 corresponds to full polarization along 
the xi or yi axis), and the t(1') characterize linear polarization 
in a similar manner in directions that form an angle of f.rr or 

1 -an with the x axis. For a fully polarized photon, 
(, = 1 sin 2p  and t3 = 1 cos 2p, where cp is the angle between 
the x axis and the semimajor axis of the polarization ellipse, 
and 1 = is the degree of maximum linear polariza- 
tion introduced earlier. 

Introducing, as usual, the photon density matrix pap by 
replacing e,ez with pap and expressing pap in terms of the 
Stokes parameters, we reduce Eqs. (2) to 

This implies that the features just described are due to terms 
proportional to ((l')(ik) in the scattering cross section. In this 
regard it must be noted that the polarization-angular depen- 
dence of the scattering cross section of a photon scattered by 
an unpolarized free electron in relativistic theory has the 
form5 

+ h(y)(h2) cos 8), (3) 

where ro is the classical electron radius, and f ,  g, and h are 
simple functions of the frequencies of the incident and scat- 
tered photons. As shown in Ref. 5, the lack of terms propor- 
tional to ((l')(ik) is due to the hermiticity of the scattering 
amplitude in second-order quantum electrodynamic perturba- 
tion theory used in deriving Eq. (3), and is not forbidden by 
general symmetry considerations as it is, for example, in re- 
lation to terms proportional to ((,') and (:) or ((1')tF) and 
((;')tik). The known nonrelativistic expression for the scat- 
tering cross section of light scattered by a freely orienting 
system accompanied by a transition between states of the 
same parity in the dipole approximation," 

when written in terms of the Stokes parameters, has the same 
polarization-angular structure as Eq. (3). The only thing that 
changes is the formulas for the invariant parameters f ,  g, 
and h, which in terms of the scalar ( G O ) ,  skew-symmetric 
(GI), and symmetric (G2) scattering cross sections have the 
form 

For a bound electron, the scattering amplitude may have a 
skew-Hermitian part by the first nonvanishing order, and the 
lack of terms of type (2) in Eq. (4) is a result of the dipole 
approximation [the independence of the amplitude from the 
photon wave vectors in the vector combinations in (2)]. The 
terms proportional to ((l')(ik) in the radiative corrections to 
Eq. (3) were calculated in Ref. 6, and in the scattering cross 
section of hard photons scattered by a relativistic atom in 
Ref. 7. 

Below, the functions f(wl , - w2) in Eq. (1) are obtained 
for various dissipation mechanisms accompanying the scat- 
tering of light by a freely orienting system. Since the nondi- 
pole effects in the interaction of light and the scatterer must 
be taken into account, as mentioned earlier, Sec. 2 studies the 
general structure of the scattering cross section with allow- 
ance in the first nonvanishing order for the magnetic dipole 
and electric quadmpole terms in the radiative interaction op- 
erator and examines the case where no ,  exceeds ionization 
energy lEil of the initial state li) of the atom. Here the irre- 
versible process that leads to terms of type (2) in doldR is 
the photoelectric effect. Note that after absorbing a photon 
hwl and emitting a photon hw2, the atom goes into a bound 
state instead of becoming ionized. The anomaly arises be- 
cause scattering occurs against the background of an open 
photoionization channel (the atom can be said to be virtually 
ionized and then recombined in the scattering process). 

One universal dissipation mechanism independent of the 
relation between h w ~ , ~  and I Ell is radiative reaction caused 
by light scattering. Indeed, fixed- angle scattering of light 
always occurs against the background of an open channel of 
scattering into other angles and of transitions into other final 
states allowed by energy conservation and selection rules. 
Allowing for radiative reaction requires calculating the radia- 
tive corrections to the scattering amplitude. Section 3 exam- 
ines such a situation for hw,< IEll. Of course, in the optical 
frequency range considered here, the functions f in Eq. (1) 
that result from radiative corrections are small but increase at 
resonance. Here, allowing for radiative corrections requires 
only introducing resonant level widths. Resonant scattering 
is examined in Sec. 4. 

Nondipole effects were discussed above in connection 
with ordinary scattering accompanied by a transition be- 
tween atomic levels ti) and If) of the same parity. In dipole- 
forbidden scattering (between states of opposite parities), 
type (2) terms in the cross section are no longer small cor- 
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rections; their presence for h w l >  lEiI was noted in Ref. 8. 
Section 5 studies the polarization-angular dependence of the 
dipole-forbidden scattering cross section and gives the re- 
sults of numerical calculations of d a / d R .  In the process, a 
general expression is derived for the scattering cross section 
in the simplest possible form, which contains only scalar 
products of vectors present in the problem and trivial com- 
binations of reduced matrix elements of a two-photon tran- 
sition. Note that the general structure of the dipole-forbidden 
scattering cross section has been studied in several papers 
(see, e.g., Refs. 8 and 9), but the results proved to be ex- 
tremely complicated since the angular part is expressed in 
terms of tensor products of six vectors, which are difficult to 
analyze, and the radial part in terms of cumbersome combi- 
nations of reduced matrix elements incorporating the Wigner 
9 j  and 12j symbols. 

2. LIGHT SCATTERING CROSS SECTION WITH NONDIPOLE 
INTERACTION EFFECTS 

In the most general case, the scattering cross section for 
a centrally symmetric system contains only combinations of 
the vectors ei and ni ( i  = 1,2), with d u / d R  a linear function 
of each vector e l ,  er  , e2, and e,* . If nondipole effects are 
considered only in the first nonvanishing order, the depen- 
dence of the cross section on n1 and n2 is quadratic, so that 
the general structure of the polarization-angular dependence 
can be established on the grounds of phenomenological con- 
siderations by computing the number of linearly independent 
combinations of the above vectors. Choosing the following 
12 combinations has proved expedient (the orthogonality 
condition (ek.nk) = 0 and normalization have been used in 
building the combinations): 

where 

In dipole scattering, the cross section is independent of n i ,  
with only the coefficients of Qi being nonzero, in accordance 
with (4). In certain special cases, the number of invariant 
parameters determining d u l d l R  also decreases. For instance, 
in elastic scattering (wl = 02) ,  symmetry under time reversal 
(see Sec. 87 in Ref. 5), i.e., invariance of the cross section 
under the substitutions 

n1,2-' - n2.1 7 e1,2+e;,1 , (6) 

requires that the coefficients of 1 el .n212 and le2.n1 1 be 
equal and that the coefficient of Im E 2 ,  which changes its 

sign under the transformations (5 ) ,  vanish. Employing vector 
algebra, it is fairly easy to establish how the vector combi- 
nations in (2) are related to Im : 

In terms of the Stokes parameters, 

Note that the vector combination in (5) and the additional 
combination of four vectors, 

determine the polarization structure of scattering in the gen- 
eral case, too (without employing the multipole expansion of 
the photon vector potential); the only difference is that the 
coefficients of the combinations become functions of the 
scattering angle 6. Here the Qi and (n,  .n2)Qi combine in 
such a way that the cross section contains ten terms with 
coefficients depending on wl,2 and 6. The cross section can 
also be written in terms of the Stokes parameters if one em- 
ploys Eq. (8) and the following relations: 

+ 2(5(11)5(12)+ 5y)(y))cos 6. 

Here ((22)- - t2 (') as e: -+ e2. 
We now give the results of quantum mechanical calcu- 

lations of the scattering cross section for a freely orienting 
system accompanied by a transition between the states 
li)=lnJiMi) and Ij)=lnfJfMf) of the same parity, with 
nondipole interaction effects in the first nonvanishing order 
taken into account. The interaction operator for incident and 
scattered photons of the E 1 -, M 1 -, or E2-type can be written 
as follows(e= el or e =  e2):') 

v = v d + v m + v q ,  (9) 

where 

with d, p, and Qij the electric dipole, magnetic dipole and 
electric quadrupole operators, and {a@b) the irreducible 
tensor product defined in the standard way." Due to the se- 
lection rules, the E l ,  M I ,  and E 2  operators do not interfere 
with each other in the scattering amplitude Ap , so that 

A -A(O) ~ ( 2 )  
f i - f i + p ,  (10) 

where A$)= (f l{V$2)t~Ei+o,V$1)+ @ ) ~ ~ ~ - ~ ~ V $ ~ ) ~ } l i )  is 
the dipole scattering amplitude? with the superscripts in V 
referring to the incident (1) and scattered (2) photons; GE is 
the Green's function of the atom, and 
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is the nondipole part of the amplitude, which is of order a2 
compared to AP). Since we are interested only in the cor- 
rections to the cross section that contain terms of order 
nlinzk, to simplify formulas we have not allowed in Eq. (9) 
for the interaction operators of the M2- or E3-type. Al- 
though these operators do interfere with Vd in the scattering 
amplitude and yield corrections of order a', they do not lead 
to terms like (1) in the cross section. The cross section with 
the first nondipole correction has the form 

where da(O)ldR is specified in Eq. (4), and 

Since neither the M 2  nor the E 3  interaction, quadratic in 
ni,  are taken into account, the cross section does not contain 
the mi and lek.nmI2 of ( 9 ,  so that the general structure of 
d ~ ( ~ ) l d S 1  is as follows: 

If the scattering amplitude is Hermitian, time-reversal sym- 
metry leads to the invariance of the cross section under the 
substitutions (see Sec. 87 of Ref. 5) 

also reversing the sign of Im which means that the g 
parameters in Eq. (14) must vanish. Thus, the "anomalous" 
terms in d a l d R  are nonzero only if the amplitudeAp in (10) 
is non-Hermitian, i.e., if among the virtual (intermediate) 
states through which scattering proceeds there are states in 
which real transitions are energy-allowed (such transitions 
are precisely the dissipation processes accompanying scatter- 
ing, as discussed in Sec. 1). 

In the simplest case the nonhermiticity of Ap is related to 
the possibility of photoionizing an atom at w > 1 Eil and is 
due to the Green's function GEi+,l+iO acquiring a skew- 
Hermitian part at a positive energy in A:) and AP) 

where HO is the atomic Hamiltonian and 9' denotes the 
Cauchy principal value. Now, if we separate both AP) and 
AP) in Eq. (13) into their Hermitian and skew-Hermitian 

parts via (15), we arrive at an expression for the "anoma- 
lous" part of the cross section, da!i;,ldR, determined by 
the last two terms in Eq. (14): 

Here IEJM) is a state in the continuous energy spectrum of 
the atom with energy E = E i  + w1 = E + w2, and A::)' is the 

( I )  Hermitian part of A::). Clearly, da,,,, is determined by a 
distinctive interference of the amplitude of ionization from 
the states li) and If) to the state IEJM) accompanied by 
absorption of photons of frequencies wl and m2, respec- 
tively, which suggests a relation between the polarization 
anomalies in the cross section and the presence of an open 
ionization channel in the atom. 

The projections of angular momenta in Eq. (13) are 
summed by the standard methods of angular-momentum 
theory.'' For the dipole amplitude, the expansion in irreduc- 
ible parts has the well-known form 

where 

are the invariant amplitudes determining the cross sections of 
scalar, skew-symmetric, and symmetric scattering in Eq. (4), 
with 

Cgz,, and (2:;) are the Clebsch-Gordan coefficients and the 
Wigner 6 j  symbols, and G; is the partial Green's function 
corresponding to the angular momentum J ,  whose value is 
determined by the "triangle rule" for the 6 j  symbol in ap. 

If we allow for (9) and write the operator VZ,k)+ q) in 
the form 

where 

we arrive at the expansion of AF) in the irreducible parts 
similar to Eqs. (17) and (18): 
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Clearly, the amplitude contains 14 independent invariant pa- 
rameters B,ap three for M  1  -M l ,  five for E2-E 2  scattering, 
and six "mixed" terms. Only ten of these with p=0,1,2 at 
a= /3 and p= 1,2 at a f /3 contribute to the cross section 
(13): 

Having employed the rules of correspondence of spheri- 
cal and Cartesian components of tensors and carried out 
some lengthy calculations, we can write the tensor products 
of the six vectors in (21) in terms of combinations of ordi- 
nary scalar products defined in (5).  One such relation is 

At this point it is convenient to introduce special nota- 
tion for the products a i ~ , * ~  in (21) corresponding to the 
contribution of magnetic ( M p )  and quadrupole ( Q p )  effects 
and their interference (c;):  

In terms of these quantities the coefficients in Eq. (14) ac- 
quire the form 

z = M l + ~ 2 + ~ ~ - ~ z + ~ l - $  Q ,  

+ $ ( M , * + ~ M , * - Q : + ~ Q , * ) .  

The general formulas (14) and (23) simplify when the 
angular momenta J i  and J f  of the levels I i) and If) are small, 

e.g., at Ji= 0  and J i  = i. If fine structure is ignored, the M  1  - 

M  1  terms (with a= /3= 1 )  vanish for transitions between 
states with different angular momenta ( l i  -f l f )  and at 
l i= I f  = 0. The formulas for d a / d R ,  written in terms of the 
radial matrix elements with the optical-electron Green's 
function g l ( E ; r , r l )  for the two most interesting cases, are 

(a) s-s scattering ( l i=  l f  = 0 ) :  

where 

with A!;( the radial dipole and quadrupole scattering ampli- 

tudes. 

determining at li) = 1 f) the dipole and quadrupole polariz- 
abilities of the li) state. 

(b) s-d scattering ( l i=  0  and l f  = 2 ) .  In this case the 
following three atomic parameters are nonzero: 

In da(O)ldR only the symmetric-scattering amplitude, 
a2= J2/3~(210), is nonzero. In view of the unwieldiness of 
the general expression, only the expression for the cross sec- 
tion with the nondipole correction containing I l  and I 2  is 
given below: 

+ * ( w 1 , - o z ) I 1 - * ( - ~ 2 , ~ 1 ) 1 2 } ,  (25) 

where 
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TABLE I. Frequency dependence of the 1s-2s and 1s-4s cross sections for the hydrogen atom (numbers in parentheses denotepowersoften:(-n)= lo-").  

1s-2s 1s-4s 

~ E I J  u0 d ua u" us ua 

Because of the presence of M 1 - E  2 terms B ,aP, the coeffi- 
cients of Il  and I2 in Eq. (25) prove to be different, in con- 
trast to Eq. (24). 

To give an idea of the magnitude of the asymmetry ef- 
fects, Table I lists the scattering cross sections for the 1s-2s 
and 1s-4s transitions in the hydrogen atom, calculated by 
using the Coulomb Green's function. As expected, for 
w  2 lEiI both ua and us are small compared to the dipole 
cross section uO, but at w-20)Ei \  the magnitude of 
A ( d u l d 0 )  is comparable to d u l d 0 .  For the case of the 
ground state of hydrogen considered here such frequencies 
already correspond to the x-ray region, but for the highly 
excited atomic levels the asymmetry can be significant in the 
optical range, too. Note also that when w% 1 ~ ~ 1 ,  the numeri- 
cal calculations must allow for higher multiplicity effects and 
for relativistic corrections, which by themselves do not lead 
to asymmetry but can change the numerical value of the 
cross sections. 

3. SCAlTERlNG ASYMMETRY DUE TO RADIATIVE 
CORRECTIONS 

When f i  w l  < IEil, the amplitude Ap in (12) is Hermitian 
and anomalies can arise only if the radiative corrections to 
scattering are taken into account. To lowest order in a, these 
corrections are represented by the Feynman diagrams in Fig. 
1 (Sec 40 in Ref. l l ) ,  to which diagrams with interchanged 
photon lines w l  and w2 must be added. The skew-Hermitian 
part of the radiative-correction amplitude A;iad is determined 
by the poles of the diagrams, and corresponds to virtual tran- 
sitions to the energy-allowed state In). It can be expressed in 

terms of the product of two ordinary transition amplitudes 
from the ti) and If) states to the intermediate bound state 
In). For instance, for the diagram (d) in Fig. 1, the pole has 
the form depicted in Fig. 2 ( f i w , = E i + h w l - E n ) .  The 
prime on the sum over n  in Fig. 2 means that only the In) 
states with o n > O  are taken into account. The x's in Fig. 1 
designate the places where the diagrams must be dissected to 
obtain the pole terms. Dissecting the horizontal electron lines 
yields the contribution of virtual Raman-scattering processes 
of the type depicted in Fig. 2. At 1 i) = If) the same pole parts 
also determine the skew-Hermitian part of the polarizability 
tensor for f i  w l  < 1 Eil calculated in Ref. 12. For 1 i( # 1 f )  the 
dissections of the lateral electron lines in the diagrams (a) 
and (b) in Fig. 1 and in the diagrams with interchanged pho- 
ton lines must also be taken into account. These dissections 
yield the contribution of spontaneous hyper-Raman scatter- 
ing processes ( E i  + f i (w l  - w 2 -  ~ , t ) - - + E , r ) ,  with emission 
of an additional photon hw, ,  and transition to a virtual state 
In') with E n I < E F ,  followed by the transition In')+[ f )  
with absorption of a photon of frequency 
w n l = w l - w 2 + ( E i - E n , ) l f i .  The states In) and In') belong 
to different sets and have opposite parities. The polarization 
and direction of propagation of the photons w ,  and on, are 
not fixed and are summed over. 

Our problem does not require a full QED calculation of 
~ ; i a ~  since the regular part of does not lead to asymmetry 
and provides only small corrections to d u ( O ) l d ~ .  On the 
other hand, the pole parts of the Feynman diagrams, as is 
known,5 require no renormalization and, according to what 
has been said earlier, can easily be written explicitly. The 
asymmetry in scattering is described by the second term in 
the cross section 

which can be obtained from (12) by adding A;iad to the am- 

FIG. 1. FIG. 2. 
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plitude Afi=A(iO1+Af).  As the expression in Fig. 2 shows, 
asymmetry has the additional smallness of order a3 com- 
pared to the case where h o , > ( ~ ~ l .  This is due to the small- 
ness of the radiation widths of the atomic levels. 

Thus, the corrections are generally small and only point 
to the important fact that polarization anomalies in the scat- 
tering are caused by radiative reaction. An exception is the 
scattering at frequencies o, = o, (the transparency frequen- 
cies), at which the dipole amplitude A f )  vanishes. Such fre- 
quencies always exist, for example, in s-s and s - d  scatter- 
ing, for which A(iO) is the only atomic parameter ap in Eq. 
(18) ( a o  or a 2 )  that changes sign in each interval between 
resonances IE,-En, l=l l<hwl<lE,-E,+l , l= l l  (see Ref. 
13). At w12:w,  the main scattering is the quadrupole, deter- 
mined by the amplitude A(i2) in Eq. (20) with a= P= 2 and 
p = Jf , and radiative correction effects could be observed. 

For s-s  scattering at o1=ot,  the scattering cross sec- 
tion (26) assumes the form 

(27) 
Here 

is the radial part of the quadrupole scattering amplitude, n Raman and n hyper-Raman are the pole parts of A;* corre- 
sponding to spontaneous Raman and hyper-Raman processes 
such as 

As Eq. (27) clearly shows, the asymmetric part of d a  has a 
smallness of only first order in a compared to the symmetric 
part (quadmpole in the case at hand) of the scattering. For 
the ground state of hydrogen the transparency frequencies lie 
in the UV range, and for alkali atoms in the optical range. 
For instance, for elastic Is\-1s scattering in hydrogen we 
have (in atomic units)13 

The atomic parameters exhibit strong dispersion dependence. 
Allowing for the more complicated resonance structure of  rama an and nhyper- ama an th an that of AQ and for the numeri- 

cal factors in (27), one can expect the asymmetry effects at 
w l =  of to amount to several percent. 

4. ASYMMETRY IN RESONANT SCAlTERING 

As ol approaches the resonant transition frequency 
Er-  Ei  , it becomes impossible to use perturbation theory 
techniques to take radiative corrections into account, and ra- 
diative reaction is allowed for by introducing the radiative 
width r of the resonant level: E r 4 E r -  iT12. In the resonant 
case it also proves possible to compensate for the smallness 
of order a2 in d o  caused by the fact that the interaction is 
nondipole. To this end one must use the resonance on the 
dipole-forbidden l i )-(r)  transition, in which A(i2) becomes 
comparable in magnitude to the nonresonant dipole ampli- 
tude A?). 

If there is resonance, one can retain in the amplitude 
A?) specified by Eq. (12) only the resonant term in the 
Green's function GEi+Ol:  

Here for the sake of simplicity we have assumed that the 
resonant level Ir)= In JrM, )  with Er>Ei  has no multiplet 
structure (or that the detuning A is much smaller than the 
multiplet splitting). Combining (13) with (28), we arrive at 
the following expression for the "anomalous part" of the 
cross section [cf. Eq. (16)l: 

The angular structure of A f )  and A T  has the same form (17) 
and (20) as in the nonresonant case, so that after separation 
of the angular parts, Eq. (29) is reduced to the last two terms 
on the right-hand side of Eq. (14). It is very clear that the 
change in sign of IrnE,,2 under time reversal discussed in 
Sec. 2 is balanced by the reversal of sign in the width r, 
which by its very meaning is a T-odd parameter. 

The coefficients in Eq. (14) are specified in (23) with 
obvious changes in the reduced matrix elements following 
from (28). For one thing, all the coefficients except g l  and 
g2  contain the factor Al(A2+ r2/4). In the resonant case one 
must also allow for purely multipole scattering, 

which is no longer small. As a result, the angular structure of 
the resonant scattering cross section incorporates all ten vec- 
tor combinations discussed in Sec. 2 in relation to the general 
case. 
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Because the general formulas for the coefficients in Eq. 
(30) are cumbersome, we write only the formula for the total 
resonant scattering cross section with l ,=l ,=O. Here only a 
quadrupole resonance with the d-level of the state Ir) is pos- 
sible, and the cross section has the form 

2a0Qres 
+ 2  Re E l  cos 8+Iel-n2121e2-nl12]+ 

where a,= $I$) [see Eq. (24)], and 

The asymmetry effects become especially important 
when the dipole and quadrupole scattering amplitudes be- 
come equal and all the terms in (31) are of the same order of 
magnitude, i.e., at 

As is known, radiation widths are of order (r31~,l, smaller 
than r in (32). However, the necessary value of T can easily 
be obtained if we allow for collisional broadening. Taking 
collision broadening into account consistently requires using 
the density matrix of the resonant levels. Without going into 
detail, we only note that here the scattering cross section will 
be a structure similar to (31), where r must be interpreted as 
the transverse width, which determines the relaxation rate of 
the off-diagonal elements of the density matrix. Next, the 
quadrupole scattering cross section dd4) ld f l  [the second 
term on the right-hand side of Eq. (31)] also contains longi- 
tudinal widths, which determine the damping rate of the sta- 
tistical tensors corresponding to the magnetic sublevels of 
the state Ir). Finally, in addition to describing resonant scat- 
tering, dcd4)ldR describes collision-induced resonance fluo- 
rescence, which leads to a spread in the scattered photon 
frequency by a quantity of order A. 

5. DIPOLE-FORBIDDEN SCA'ITERING 

Now let us discuss the scattering accompanied by a tran- 
sition between the levels li) and If) of opposite parities for- 
bidden in the electric dipole approximation. For states with 
IJi - Jfl = AJs 3, the amplitude of such scattering is deter- 
mined by the interference of the E 1 - and (M 1 + W2)- 
interaction. Hence the cross section has a smallness of order 
cr2 compared to du(O)ldR, as the cross section defined in 
Eq. (13) has, but contrary to the latter the angular structure 
incorporates not only the products n in2k but also the bilin- 
ear combinations n lin l k  and nzinzk. As a result the dipole- 
forbidden scattering cross section generally incorporates all 
the vector combinations specified in Eqs. (5) with coeffi- 
cients depending only on frequencies: 

To achieve a higher symmetry in the coefficients we have 
used the combinations of the I, and I, of Eqs. (2) rather than 
the Im E l  and Im E2  of Eqs. (7). As before, when the am- 
plitude has a skew-Hermitian part, F1,2 # 0. For one thing, 
when w ,  > (EiI, we can write an expression like Eq. (16) for 
the "anomalous part" of the cross section. But now all the 
parameters A,-F, in Eq. (33) are of the same order of mag- 
nitude and the asymmetry effects contain no smallness pa- 
rameter for all w l >  lEil. 

Expanding the scattering amplitude in irreducible parts 
as in Sec. 2, we can represent the cross section in an invari- 
ant form containing no projections of the angular momenta 
Ji and Jf : 

where 

Calculating the tensor products in Eq. (34) by employing 
relations of type (22), we arrive at explicit expressions for 
the coefficients A,-Fi in terms of bilinear combinations of X 
and Y. The corresponding formulas are given in the Appen- 
dix. Together with (33) they completely solve the problem of 
the polarization-angular dependence of the cross section of 
dipole-forbidden scattering by a freely orienting system. 

These results serve as a direct generalization of Plac- 
zek7s theory of E l  -E l  scattering: which was precisely 
based on the expansion (17) for AP). In the case at hand the 
initial amplitude Afi contains four partial amplitudes corre- 
sponding to absorption of a dipole (E 1)  photon with emis- 
sion of a photon of the M 1  or E 2  type (Y('),Y(~)) and, vice 
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TABLE 11. 

mlIEiI Atom "1 " 2  "3 "4 b1 b2 

versa, absorption of an M 1  or E 2  photon with emission of 
an E 1 photon (x('),x(~)). AS was the case with AP) , each 
can be expanded in three irreducible parts with p = a , a +  1, 
given by Eqs. (35) and similar to ap in (18). As a result the 
cross section is determined by 12 invariant amplitudes xF) 
and Y?) this number is equal to the number of coefficients 
in (33). Owing to interference, the relation between X,Y and 
A,-F,  is even more complicated than between ap and GP in 
(19). 

As the formulas in the Appendix imply, the parameters 
F1 ,2=F1 ,2 (~1 , -  w2) in (35) transform into each other 
under permutation of arguments [F2(w1 , - w2) 
= - F l ( -  w2, wl)] and determine the asymmetric part A a  
of the cross section in Eq. (1) with f ( w l ,  - w2) 
= 2F1(wl, - w,). The coefficients F1 are determined by 
the imaginary part of the product xr)Ybp)* of amplitudes. In 
forward scattering, which may be of interest, for example, in 
connection with stimulated Raman scattering, the asymmetry 
effects disappear and the polarization dependence of the 
cross section is determined by the same three combinations 
Qi as for dipole scattering [Eq. (4)] with coefficients 
A , +  B ,  . At 8= i71 the asymmetry effects are at their maxi- 

mum and, as Eq. (8) implies, the cross section contains terms 
proportional to 5(,')[(,2) and ti1)#), which vanish in the 
dipole-allowed scattering through an angle of 90". Asymme- 
try disappears after integrating over 8, and the total cross 
section a ,  when integrated with respect to 8, summed over 
the scattered-photon polarizations of the scattered photon, 
and averaged over the incident-photon polarizations, assume 
the form 

Here the a?) = Ix?)~ + I Y?)I are the partial cross sections 
of E l - M I  and E l - E  scattering (at a= l  and 2, respec- 
tively) similar to the invariant cross sections GP in (4), which 
determine the total cross section of E 1 -E 1 scattering, 

The selection rules for scattering are specified by the 6 j  
symbols in the x?) . For instance, at Ji=Jf= 4 the param- 
eters a 2 ) ,  $:), and 4') are nonzero, and at Ji = 0 only the 
X(,") with p = Ji are nonzero. Of special interest is the scat- 
tering cross section for a transition with AJ=0,  since one- 

photon transitions between such states are highly forbidden 
and light scattering may prove effective in studying the prop- 
erties of levels with high angular momenta J f .  The cross 
section in this case is expressed solely in terms of the param- 
eters x ~ ) = x  and Y ~ ) = Y  although it does contain all the 
vector combinations of Eq. (33): 

Note that in this example F 2 = F l .  This follows from the 
relation 

which is valid in the lack of interference of M 1  and E 2  
interactions but invalid in the general case. 

Table I1 lists the results of calculations of the parameters 
[(see Eq. (37)l 

for the transition from the ground state to the first excited f 
state in hydrogen atoms (1s-4f) and cesium atoms (6s- 
6f). The frequencies are given in units of the ionization po- 
tential of the initial state (for cesium I E ~ , ~  = 31406 cm-l). 
The table shows that the "anomalous" terms are of the same 
order of magnitude as the other terms in the cross section. 
Note the different nature of the frequency dependence of the 
cross sections for hydrogen and cesium: in the chosen fre- 
quency range the cross section for hydrogen decreases while 
that for cesium increases with frequency. 

For the Ji= O + J f =  1 transition the coefficients A,, 
B,, A 2 ,  and B2 vanish, while the rest can be expressed 
simply in terms of the parameters introduced in the Appen- 
dix: 

If the multiplet structure is ignored, the matrix elements of 
x(,') are real for all frequencies wl ,  and the skew-Hermitian 
part is present only in the radial matrix element 
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in the expressions for R:  and Q: : 

Table I1 lists the coefficients [see Eq. (33)] 

for 1s-2p scattering in hydrogen and 6s-6p scattering in 
cesium for estimates. As in the previous example, the matrix 
elements have been calculated for Cs by employing Green's 
functions in the model potential approximation.13 Here the 
absolute value of the cross section is greater by several or- 
ders of magnitude than that for s-f and the frequency de- 
pendence is smoother. 

The resonant case can be analyzed along the same lines 
as in Sec. 4. Here, too, the most interesting case is the reso- 
nance on the quadrupole 1 i)- 1 r )  transition with a width T, a 
resonance absent in the E\1-El scattering from the initial 
state l i )  (the amplitude x(,:& in (34) are resonant.) However, 
the coefficients F1,2 are now determined by the interference 
of x?) and the nonresonant amplitudes Y F ) ,  which are of 
the same order in LY as the x?). Hence the asymmetric part 
A a of the cross section containing I ' / (A~  + r2/4) ,  which has 
a smallness of order r l l E i l - r l w  compared to the resonant 
terms I ~ f ) 1 ~ .  Nevertheless, the absolute value of A u  near 
resonance is related to the cross section a(') of El-El scat- 
tering as follows: 

with the result, for instance, that the intensity of the circu- 
larly polarized component of the radiation emerging in 
dipole-forbidden resonant scattering of linearly polarized 
light is of the same order of magnitude as, or even greater 
than, the intensity of ordinary E 1 -E 1 scattering in the non- 
resonant case. 

6. CONCLUSION 

The results of the investigation show that dissipation in 
light scattering may occasionally lead to distinctive effects 
whose analysis requires measuring additional characteristics 
besides the standard set of traditional scattering characteris- 
tics such as the extinction coefficient (the total cross section), 
the degree of depolarization, and the inversion coefficient. 
One such additional characteristic may be the degree of 
asymmetry, defined as the ratio of A u  to the total cross sec- 
tion. Since in resonant scattering 

r 
Au-  

A2+ r 2 / 4  ' 

measuring the degree of asymmetry can be used to develop 
an extremely sensitive polarization method of measuring 
resonant level widths. For one thing, the results of Sec. 4 

imply that the probability of resonant two-photon excitation 
by linearly and elliptically polarized photons depends on the 
sign of the degree of circular polarization. 

The scattering system in this investigation is assumed to 
be freely orienting in space and its polarization states before 
and after scattering are not fixed. Dissipation also leads to 
anomalies when the scattering is produced by polarized par- 
ticles: for instance, the scattering cross section of unpolar- 
ized light depends on the orientation of the vector Ji of the 
initial state, and the vector Jf "prefers" a certain orientation 
when unpolarized or linearly polarized light is scattered by 
an unpolarized target. 
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APPENDIX: COEFFICIENTS IN EQ. (33) FOR THE DIPOLE- 
FORBIDDEN SCATTERING CROSS SECTION 

It has proved convenient to use the following quantities 
when writing the coefficients in Eq. (33): 

u:) = ~x)P)I '+ I Y:) ', the partial cross section in(36), 

~:'=X:)Y:)* , the product of E 1 4 , E 2  and 

Ml,E2+E 1 scattering amplitudes in(34), 
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Notwithstanding their somewhat cumbersome nature, these 
formulas graphically demonstrate the partial structure of the 
scattering cross section. For one thing, the low index used in 
the expression for A,-F,  designates the rank of the tensor 
product in Eq. (34) and determines the selection rules for the 
matrix elements in (25) ,  while the upper index, a= 1 or 2, 
symbolizes the E l  -M1 or E 1 -E2  transition type, respec- 
tively. ')1n what follows, with the exception of Sec. 3, the 
atomic system of units is used, with r i =  a4, where a is the 
fine-structure constant. 

"1n what follows, with the exzception of Sec. 3, the atomic system of units 
is used, with r i = a 4 ,  where a is the fine-structure constant. 
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