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The excitation of an electric potential at the surface of a metal sample subjected to nonuniform, 
time-varying plastic deformation is analyzed. The conditions assumed here correspond to 
those under which an electrical response to abrupt deformation has been observed experimentally 
[V. S. Bobrov and M. A. Lebedkin, JETP Lett. 38, 400 (1983); Sov. Phys. Solid State 31(6), 
982 (1989)l. The excited potential is derived as a function of the flux density of plasticity carriers. 
The qualitative behavior of the electrical signals is analyzed under some fairly general 
assumptions regarding the properties of these fluxes. The validity of applying the statistical results 
on the electrical response found experimentally {V. S. Bobrov et al., in Abstracts, Fifth All- 
Union Seminar on Structure of Dislocations and Mechanical Properties of Metals and Alloys 
(Sverdlovsk, 1989) [in Russian] (Nauka, Moscow, 1990); Physica B 165-166, 267 (1990)) 
to the behavior of the plasticity carriers is discussed. Some experiments are proposed which would 
make it possible to test conclusions regarding the universal nature of the processes involved 
in abrupt plastic deformation. 0 1994 American Institute of Physics. 

1. INTRODUCTION However, it turns out that the lengths of the pulses them- 

When a metal sample is subjected to plastic deformation, 
and fluxes of plasticity carriers are set up, the electron sys- 
tem of the metal is driven away from equilibrium and must 
react to the perturbation through an electrical response. This 
problem was taken up in Ref. 1, where the electrical response 
to a steady-state flux of dislocations was derived. Voltage 
signals which arise between contacts on the surface of a 
sample have been ~ b s e r v e d ~ , ~  experimentally during abrupt 
deformation, under conditions such that substantial flux den- 
sities of dislocations are set up briefly and in a spatially local 
way. The response of the electron system was detected as a 
series of brief voltage pulses accompanying abrupt changes 
in the load during the deformation. It was found that the 
number of pulses corresponds to the number of instances in 
which individual clusters reach a surface. It may be possible 
to learn about the behavior of the system of plastic- 
deformation carriers by studying the electrical response. In- 
terest has been attracted to the development of this method 
by some unexpected results of statistical analysis of data on 
series of microsecond pulses. Specifically, it was shown that 
the normalized distribution functions of the pulse heights 
during abrupt deformation are the same in A1 and Nb (Refs. 
4 and 5). This agreement, in the face of some extremely 
different microscopic deformation processes (the detachment 
of dislocation clusters in A1 versus the propagation of twins 
in Nb), apparently indicates that the behavior of the complex, 
nonequilibrium systems of plasticity carriers is universal in 
n a t ~ r e . ~ "  

Of interest in this connection is a possible correspon- 
dence with i state of self-organizing as is sug- 
gested by the approximate power-law distribution function 
found through an analysis of the experimental data. It is im- 
portant to note that the same shape has been observed for the 
distribution of time intervals between neighboring pulses. 

selves have a different distribution: an exponential one: 
which is not characteristic of a state of self-organizing criti- 
cality. Accordingly, to find firm support for the electrical- 
response method, and to justify serious applications of this 
method, it is necessary to determine in more detail than in 
Ref. 1 the interrelation between the characteristics of the 
pulses which are detected and the source perturbing them: 
the flux of plasticity carriers. This is the problem taken up in 
the present paper. Formulating the problem in a fairly gen- 
eral way, we focus on determining qualitative characteristics 
of the perturbed potential at a contact without invoking any 
specific model for the dynamics of clusters. Along this path 
we analyze mechanisms for the formation of the pulses 
which are detected, and we analyze how purely electronic 
processes determine the shape and length of these pulses. 

2. BASIC EQUATIONS 

We begin with a kinetic equation for the electron distri- 
bution function f (p,r , t):  

We take the effect of plastic deformation into account in 
(2.1) through changes in the dispersion relation for the elec- 
trons due to the field of elastic deformations (by analogy 
with the way it is taken into account during the application of 
ultraso~nd'~): 
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Here e0 is the spectrum of the undeformed metal, ); 'and G 
are the deformation-potential tensor and the elastic-distortion 
tensor, V is the velocity of the displacement of the elastic 
medium, and mo is the mass of a free electron. In the distri- 
bution function we distinguish a locally equilibrium part fo: 

This part is normalized to the local electron density.'' The 
shift of the chemical potential, Sp, is 

where 

In the linear approximation, the known equilibrium part of 
the distribution, X, satisfies the equation 

Here we have introduced electric potentials, 

and an electrochemical potential a ,  

1 
a = q +  - S p ,  

e 

and we have introduced the notation 

The potentials are found from the electrical-neutrality condi- 
tion 

(x )  = 0, (2.10) 

which replaces the Poisson equation in the case of a metal, 
and from Maxwell's equation 

(we have chosen the gauge div A=O), where the current den- 
sity is 

The electrical response to the plastic deformation is sensed at 
the surface of the sample, so the scattering of electrons by 
the surface must be taken into account in this problem. This 
scattering has a substantial effect on the nature of the non- 
equilibrium distribution and the electric field near the surface 
(Refs. 11 and 12, for example). We consider the case of 
diffuse scattering and the corresponding boundary condition 
(there is no current across the surface) 

The superscript > here means d&ddp,=vn>O, n is the di- 
rection of the inward normal to the surface at the point r,; 
and the 5 on the angle brackets mean integration regions 
with v,SO, respectively. 

Let us analyze the situation in samples which are large in 
comparison with the mean free path I. In this case the scat- 
tering at one face does not affect the scatterkg at another, so 
in analyzing one of the contacts it is sufficient to consider 
only the scattering at the corresponding surface, imposing 
condition (2.13) at that surface and formulating the other 
conditions as for a half-space. 

Let us consider the case of a very nonuniform deforma- 
tion, in which fairly isolated clusters are formed. We reslrict 
the discussion to the plane problem: The clusters and the 
corresponding fluxes of plasticity carriers are uniform along 
one coordinate. In other words, these fluxes are set up by a 
system of parallel rectilinear dislocations. We also assume 
that the changes in the plasticity processes occur over times 
far longer t h q  the electron relaxation time. We can then omit 
the term dxldt from (2.6), on the basis that it is small in 
comparison with ;x=(~/T)x (below we use the approxima- 
tion of a relaxation time 7). These limitations, which are not 
of fundamental importance, are fairly realistic for the case of 
an abrupt deformation, and they do simplify the calculations. 

Let us assume that the contact is at the x=O surface. We 
consider an individual cluster (or twin) in which the density 
and the flux are localized in the xy plane (the dislocations are 
directed along the z axis). We take Fourier transforms in the 
coordinate y ,  which is parallel to the surface, and we write 
(2.6) in the form 

Here 

l = v r ,  and F4(x) = (2.15) 

is the Fourier transform of F(r,t). The solution of (2.14) 
under condition (2.13) is 

dx'  
x.(v.x~= [I; , (.q(-ux,vy ,vz.r) 
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Xexp - - ( 1 + i q l )  , I ;  I 

To pursue the calculations we assume an isotropic spectrum: 

(in typical metals the constant X satisfies A-1). 
We can write an expression for the current j, which 

appears in Eq. (2.11) for A, : 

Here 

dx' + Io  -ji- ( " : ( x ' ) [ K o l ( l x - x ' l )  

- ( ~ ) 2 K 0 3 ( l x - x ' l )  + l '  div a q ( x ' )  K 1 3 ( l x  I I 
(2.19) 

Electrical-neutrality condition (2.10) can be written as the 
integral equation 

where 

F . = U : ( O ) K O ~ ( X ) +  /:dx' div i q ( x ' ) K o 3 ( l x - x ' l ) ,  

dx'  +I, ,  7 [ w q ( x ' ) [ K o ~ ( / x - x ' ~ ) - 3  

- . ' I ) ] } .  

In (2.18)-(2.21) we have used 

Equations (2.11) and (2.20)  for the potentials contain terms 
which depend on Fourier components of the velocities of the 
elastic distortion, w q ( x , t ) ,  and the acceleration of the me- 
dium, v q ( x , t ) ,  accompanying the plastic deformation. These 
functions serve in this problem as given sources, which gen- 
erate the electrical response. 

3. CALCULATION OF POTENTIALS 

We write a solution of Eq. (2.20)  as follows: 

Here r ( x l y )  is a Green's function, given by 

dx'  1  
~ ( X I Y )  lo ~ K o ~ ( l x - x ' I ) r ( x ' y ) =  21 ~ ~ ~ ( I x - y l ) .  

(3.2) 

It can be written in the following way:13,14 
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The function d x )  is a solution of Eq. (3.2) which is nonin- 
creasing as x+m; in it we have set y =O. This solution is 
made up of a linear combination of the solution of the ho- 
mogeneous equation, 

and its derivative M1(x).  
In the limit q1+0, in which the kernels Knm(x) in (2.22) 

become the known functions E n  -,(x), where 

Eq. (3.4) becomes the Milne equation, which describes the 
transmission of radiation or a flux of particles with indepen- 
dent velocities (e.g., neutrons) through an isotropically scat- 
tering m e d i ~ m . ' ~ " ~  As in the Milne problem, Eq. (3.4) can be 
analyzed by the Wiener-Hopf method, and we can determine 
the asymptotic behavior of the function M(x). Skipping over 
the details of the analysis, we write the result: 

In the Milne problem, i.e., with q1=0, we have a length 
zo=0.7 11. Without any loss of generality we can set M (0) 
=l. The function Ml(x) satisfies an equation which differs 
from (3.4) by virtue of its right side, which contains the 
functions KO3(x) and K13(x), and which decays exponen- 
tially at x S l .  The function .).(x) is given by 

The right side of (3.1) depends on the functions describing 
the source, on the function Q4 itself [the quantity GQ(0) in 
(2.19)], and on the potential A:. In turn, the potential A: 
must be found from Eq. (2.11), whose right side contains the 
integral term G@(x) according to (2.18) and (2.19). This 
integral term is also determined by the function Qq(x). This 
term can be calculated by multiplying (3.1) by 
(1/1)K13(/x - x l  /)sign(x - x  ') and integrating over x. Using 
several integral relations (given in the Appendix), we find 

We can now determine the quantity G@(O) which appears in 
the expression for the potential Qq in (3.1) and also in the 
equation for the current, (2.18), as one of the terms in G(0). 
The contribution described by G@(O) stems from a redistri- 
bution of the electron density near the surface as the result of 
diffuse scattering by the surface. Finding G@(O) from (3.8), 
and substituting the result into G(O), we find 

Incorporating GQ(0) results in a substantial renormalization 
of the parts of G(0) associated with the sources. In the case 
of interest here, q l < l ,  the denominator in (3.9) is small; this 
circumstance is reflected in a substantial way in the values of 
the potentials at the surface. 

Using (3.8) and (3.9) to eliminate the potential Q from 
expression (2.18) for j,, we find from (2.11) an inhomoge- 
neous integrodifferential equation for A, .  The inhomoge- 
neous part contains contributions which depend on x in vari- 
ous ways. Some of the terms [-K,,(x)] are significant only 
at distances on the order of the electron mean free path I. The 
behavior of the other terms is governed by the spatial varia- 
tion of the deformations. Let us assume that these variations 
occur over distances S1, so we can simplify the integral 
expressions in (2.19), (2.21), (3.8), and (3.9), retaining the 
leading terms. In the variation of A,(x) we should again see 
a different behavior, dictated by the behavior of the inhomo- 
geneous part of the equation and also by the form of the 
operators which act on A,,  and which introduce yet another 
dimensional parameter: the skin depth S-C(CT~W)-~'~ (W is 
the characteristic frequency). We also assume 1GS (the nor- 
mal skin effect). We distinguish two parts in j, and A, : a 
rapidly varying part (which varies over a distance -1) and a 
smoother part. It is not difficult to see that the rapidly vary- 
ing part of A, can be ignored in comparison with the smooth 
part, so the equation for A, can be written in the approxima- 
tion of the normal skin effect. It becomes an inhomogeneous 
differential equation. We will write this equation, without 
reproducing the corresponding calculations, whose content is 
described above: 
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where 

3 
- - 

1 6  
1 div V(O)+ lidx' ch qx'  div V(xl) 

Here we have used the Laplace time transform 

where p is the Laplace argument. Everywhere in (3.10)- 
(3.11) we have written the Fourier and Laplace transforms of 
the functions (for brevity, we are omitting the indices q and 
P). 

Finding a solution of (3.10), 

and determining A,(O), 

m 

A,(())= - (Q- 1q1)( dx' exp(-Qx1).X(x'), 
0 

which appears on the right in (3.13) and which enters @(x) 
in (3.1) [through expression (3.9) for G(O)], we have all the 
equations we need to write explicit expressions for the elec- 
tric potentials in terms of functions describing the deforma- 
tion. 

In this problem we need to find effective values Weff  of 
the potentials at the surface contacts such that the differences 
between these potentials specify the voltage in the external 
measurement circuit connected to these contacts. It is not 
difficult to show for the general case, by analyzing the ex- 
pression for the average rate of change of the electron pulse 
over the electron distribution, that this voltage is 

where ri are the coordinates of the contacts at the x=O sur- 
face. Fourier transforming in y in (3.15), and using the gauge 
condition div A=O adopted above, we find a Fourier compo- 
nent of the effective potential: 

Using (3.9) and (3.14); the expressions for F, H, and T; and 
several integral equations given in the Appendix [involving 
the functions M in (3.6)], we now substitute Q, from (3.1) 
and A, from (3.13) into (3.16). After some lengthy calcula- 
tions, we find the leading part (in the small parameter ql and 
the other small length ratios) of the effective potential: 

gv=Q[?x(0)+ l:dx div V(xl)exp(-QX') I 

This expression contains Fourier and Laplace transforms of 
the functions v and u,, . Taking inverse transforms, we find 
the value of We, at the time t at the point (x=O, y )  on a 
contact: 

The Laplace contour Cp runs parallel to the imaginary axis 
in the (Rep ,  Im p )  plane, to the right of all the singularities 
of the function W g .  

4. RESPONSE TO NONUNIFORM TIME-VARYING PLASTIC 
FLUXES 

To pursue the analysis we need to invoke a description 
of the plastic flow. Using Hooke's law for an isotropic ma- 
terial in the equation of motion of the medium, 

and expressing the stress & in terms of the distortion G ,  we 
eliminate 6 from (4.1) with the help of an equation for the 
dynamic plasticity,'6 

We find equations for the components of the velocity of the 
medium, V. The inhomogeneous parts of these equations 
contain components of the dislocation flux density j i k  . As we 
have already mentioned, we are assuming that this flux is 
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FIG. 1. 

spatially quite nonuniform, which makes it possible to dis- 
tinguish individual clusters, and we are assuming a rapid 
variation in time (departure from the point of attachment and 
stopping upon attainment of the surface). Within the frame- 
work of our analysis, these time and length scales should be 
substantially greater than the electron scales ( r  and I). 

In describing continuous clusters of parallel dislocations 
or plane twins, it is convenient to use the representation17 

jik=bk[vJ]i (4.3) 

where b is the Burgers vector, v is the vector tangent to the 
dislocation lines, and J is the vector flux density, which sat- 
isfies the continuity equation 

The dislocation density pd is normalized to N, which is the 
number of dislocations in a cluster. We assume that the flux 
density J corresponding to the cluster under consideration is 
directed at an angle qo from the x axis, parallel to the 5 axis, 
like the vector b (Fig. 1): 

After we carry out a 'Fourier expansion in y and a Laplace 
expansion in t ,  the equations for the quantities V, and div V, 
which we will need below, take the following form: 

F ( X )  - K ? ~ X )  = - 2b y: iq cos 2 q d r ( x )  I 
sin 2q0  -- 

2 

and StTl  is the transverse or longitudinal sound velocity. The 
boundary conditions corresponding to the absence of a stress 
uix ( i  =x, y) at the x =O surface are 

(1  -2  yi).f10)+2 y:v~(o)-by: sin 2 q d ( 0 ) = 0  

iqV,(O) + Vi(0) + b cos 2 q d ( 0 )  = 0. (4.7) 

In the case of interest here, in which the flux J is directed 
toward the x=O surface, the solutions of (4.6) must satisfy 
the condition q x ) ,  V(x)+O as X+W. Writing the solutions 
of (4.6), determining u,,, and substituting the necessary 
quantities into the equation for the effective potential, (3.17), 
we find a rather lengthy expression which contains integrals 
of the type ~ ;dx j (x )ex~( -ax ) ,  where a=Q,  K, or K!, and 
j =jqp is a Fourier and Laplace transform of the time deriva- 
tive of the flux J .  In this step we draw on some qualitative 
considerations which follow from the physical picture of 
abrupt plastic deformation: The rate of change of the flux, 
J(x,t),  must be greatest where dislocations are detached and 
where they stop. In the case at hand, the predominant con- 
tribution to the integral with j should come from the vicinity 
of the point at which the surface is reached. (In particular, 
this point is closer to the contacts at which the effect is 
detected. Furthermore, surface perturbations, which decay to 
a lesser extent than bulk perturbations with distance from the 
source, should propagate away from the point at which the 
surface is reached.) Under the assumption that the size of this 
surface region satisfies x,<aP1 (a=Q, K ~ ,  K,), we omit the 
exponential factors from the integrals: 

Under approximation (4.8) the expressions for q,,, from 
(3.17) simplify, and Wzg becomes 

W:g=2 sin 2qo ( l  - y:) 

Here 

with 

Here u j  are the roots of the dispersion relation for surface 
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waves,16 with u l<l  and ~ 2 , ~ )  Ysl. Substituting (4.9) into 
(3.18), and carrying out some manipulations, we find 

sin 2qo 
wed0,5,T)= 

Here we have introduced 

and the dimensionless variables 5, k ,  T, and 6. The contour 
C a  passes to the right of the singularities of the integrand, 
parallel to the imaginary u axis; being closed on the left, it 
sets an upper limit on the integration over time. The inte- 
grand, as a function of 6, has a pair of surface-wave poles, 
6= +iu, and branch points 6= +i, rtil y,, - k .  Taking a cut 
between il y, and - il y, , and also between -m and - k ,  and 
closing the contour of the integration over 6, we find the 
pole contributions and the integrals along the banks of the 
cuts in (4.11). The pole contributions, which describe the 
electrical response accompanying the surface acoustic waves 
which are excited, and also the contribution from the (-m, 
- k )  cut, which is related to the "skin" behavior of the elec- 
trical spike, characteristic of a transverse field, are 

2 sin 2qo  wr = 
eff lr2e 

The other parts of Wea, associated with cuts on the imagi- 
nary 6 axis, are not as representative. They vary more 
smoothly, and to a lesser extent, as a function of y and t. The 
analysis which follows is accordingly conducted for expres- 
sion (4.13). 

5. ANALYSIS OF THE INTEGRAL RELATIONS 

To analyze the integrals in (4.13) we need to specify the 
k dependence of Y k ,  i.e., the behavior of the dislocation flux 
density J in (5.5) as a function of y. We have already men- 
tioned that we are considering narrow clusters. For the dis- 
cussion below we assume that the dimensions of the contacts 
at which their potentials are detected are far larger than the 
width of the clusters transverse with respect to the glide 
plane. The electrical pulse, which varies in they direction, is 
received by the entire area of the contact, so the detected 
signal should be compared with the average of expression 
(4.13) over the width of the contact: 

where d is the width of the contact, and y2>y1 are the co- 
ordinates of the edges of the contact (y =O is the point at 
which the cluster reaches the surface). Without specifying 
the details of the model of the cluster, we can now approxi- 
mate the behavior of the transverse direction by a Sfunction: 

where the constant a is on the order of the width of the 
cluster. According to (4.8), we should thus set 

in (4.13). Let us consider the first term in (4.13) (with z(')). 
Expressing the integral over k in terms of an integral along a 
closed contour (which includes the real semiaxis; the imagi- 
nary semiaxis, positive or negative, depending on the sign of 
the argument of the exponential function, with the distance 
between the branch points; and the arc connecting the semi- 
axes), we find 
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Here 

where KO is the modified Bessel function, and 0 is the unit 
step function. 

The most important part of (5.4) is the part with the 
function R(-), which describes the pulsed response as a sin- 
gularity propagating in the y direction at the surface-wave 
velocity u,s,. The moving amplitude of the spike does not 
decay, because of the planar situation (the cluster is extended 
along the z direction) and because we are ignoring the decay 
of the surface waves. The divergence in the pulsed singular- 
ity is generated by the approximations made above [e.g., the 
limit of small values of ql in the derivation of (3.17), the 
replacement of (4.8) etc.]. This divergence must be removed 
by means of a cutoff in a final step. The term in (5.4) with 
R(+) also has a singularity, but only if the conditions AT=0 
and {=O hold simultaneously. This situation wrresponds to a 
central spike at the point at which the cluster arrives at the 
surface; this spike decays over time and also with distance 
from the point [=0. The other parts of (5.4) are less impor- 
tant. For the estimates below we will simply use the term 
with R(-). 

After an average is taken over the width of the contact 
[in accordance with (5.1)], the part of the effective potential 
associated with the propagation of the surface-wave singu- 
larity becomes 

s!')= sign ci e~~(cp ! - ) ) [~~( (cp i - ) ( )  - sign cpj-) 
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FIG. 2. The convolution functions(') in (5.6) and the function R(-)  in (5.5) 
(dashed curves) versus cp(-) and AT(u,=0.9). 

The singularities in the functions s$') are of the following 
nature: 

With distance from the singularity, the amplitude spike de- 
creases, and the decrease is a symmetric: For (cpi-)(%l, the 
decay is exponential [~)cp$-)l-112exp(-21cp~-)1)1 on the left 
(at cp$-)<0), while it is a power law [~(cp$-))-~'~] on the 
right (at cp!-)>0). The shape of the spike near one of the 
singularities is shown schematically in Fig. 2 [the singulari- 
ties are "cut off" at the argument (Iq-\=0.1)]. The length of 
the left branch can be estimated to be AT=l; the right 
branch of the spike is longer. The convolution function in 
(5.6) contains two such bursts, which are separated by a time 
interval (llul)[(121-IclD. The signs of the pulses are deter- 
mined by the positions of the edges of the wntact, i.e., by1) 
sign f;. . 

In analyzing the second part of (4.13) (with z (~) ) ,  we 
simplify expression (4.15), retaining only the ones in square 
brackets in the integral. The other parts do not contain any 
new singularities on the integration interval, and they have 
only a slight effect on the value of the integral over 8. Skip- 
ping over the intermediate calculations, we write the result, 
found through the use of (5.3) and (5.1): 
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FIG. 3. The convolution function s(" in (5.8) versus AT(77=3). 

The convolution function si2) depends on both the time ar- 
gument AT directly and a combination of the spatial coordi- 
nate and the time, ri [see (5.8)], which is characteristic of the 
behavior of a transverse electric field (transverse with respect 
to the propagation direction). [Here ri is the ratio of the 
coordinate to the effective skin depth Sr=(c2~t/4.rrao)"2; 
the quantity ~ t - '  plays the role of a frequency.] The behav- 
ior of sj2) is shown schematically in Fig. 3. The difference 
s $ ~ ) - s ~ ~ )  which figures in (5.8) is most substantial in the 
case in which a cluster reaches the surface within a contact 
(sign 5, =-sign t2): for AT61,  the amplitude of the spike is 
K(AT)-I". The asymptotic value of the amplitude is 
~ ( 5 '  + C ~ ) ( A  T ) - ~  (under the conditions A T B  1 B r i )  If the 
cluster reaches the surface away from a contact 
(sign ['=sign c2), then the original value (for AT+O) of the 
spike is smaller ( ~ 1 / 5 ~ ) ,  and the asymptotic decrease remains 
a power law ( ~ ( 5 ~ -  ~ , ) I ( A T ) ~  under the conditions 
AT+ 1 %  r i )  In this case, the decay of the convolution func- 
tion s$~)-s\') is typically smoother. 

6. ESTIMATE AND CONCLUSION 

Expressions were derived above for the effective poten- 
tial excited at a contact by a moving dislocation cluster or 
twin. Certain approximations were made in the derivation. 
These approximations are based for the most part on a quali- 
tative picture of localized dislocation fluxes, which change 
rapidly when they reach a surface. These approximations 
made it possible to simplify the convolution functions in the 
integral expression for w(T)=$')+$') [see (5.6) and 
(5.8)] which determines the time dependence of the potential 
which is excited. An explicit demonstration of this depen- 
dence will require specifying details about the source func- 
tion Y(T) in (5.3). For example, one might use a specific 

model for the dynamics of the cluster or twin corresponding 
to the situation under consideration, and one might describe 
the behavior of the flux J when it reaches a surface. A model 
study of that sort is a separate problem, which we are not 
taking up in this paper. Instead, we offer below some quali- 
tative estimates of the nature of W(T) on the basis of a 
physical picture of plasticity processes. These estimates cor- 
respond to some extreme but still fairly realistic cases. 

In Sec. 4 we used approximation (4.8), which is based 
on the assumption that the rate of change of the flux, J (x , t ) ,  
is large when the cluster comes to a halt in a surface region 
of thickness x,. For the function J (x , t )  itself, as for Y(t) 
= J?dx~(x, t ) ,  we would expect a nonmonotonic behavior 
here. The dislocation velocity ud(x,t) in the layer (OJ,) de- 
creases to zero as time elapses, while the density pd(x,t), 
like the number of dislocations in the layer, J7dxpd(x,t)  
= N(t)/a,  increases from zero to the value reached at the 
time of the halt. Accordingly, the flux 
J(x,t)=ud(x,t)pd(x,t)  initially increases (after the time at 
which the cluster enters the layer, t,) and then falls off dur- 
ing the slowing and at the halt at the time t,. We denote by 
At,=t,- t,=AT,lps,, AT,= T,- T, the characteristic du- 
ration of this process. 

These extreme cases hold under one of the two follow- 
ing conditions: 

1. ATo61. In other words, the function Y(T) is sharper 
than the convolution functions s") and s('), and we can use 
the approximation 

2. AT,Sl. This is the opposite limit, in which the source 
function can be replaced by a step function, 

The amplitude Yo can be estimated from 

where Ud and N are the characteristic velocity and the num- 
ber of dislocations in a cluster. The time interval A To can be 
estimated by setting At,=xolvd-xols (the velocity of the 
clusters associated with an abrupt deformation is large: 
ud-s; Refs. 17 and 18). 

Let us look at the cases in which (6.1) holds, i.e., the 
cases with ATo<l or x , < ~ - ' - 1 0 - ~  cm (in estimating P we 
set 7-=10-'~ S) and s==lo5 cmls. In this case the effective- 
voltage pulse reproduces the shape of the convolution func- 
tions ~ i ' , ~ ) :  

Udb 
W(T) = w(')+ w(')= M,S; - NAT 8 

es,d o (T-To) 

Initially, at the time T= To, a "skin" pulse s (~ )  arises. Later, 
at the times T= To+ 1 5 i l / ~ 1  , "surface-wave" spikes s!') are 
excited. As was mentioned in Sec. 5, the skin pulse is sig- 
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nificant when a cluster reaches the surface within the area of 
a contact [under the condition T- T,Gl the amplitude varies 
m ( T -  T,)-"~]; it is weakened if it reaches the surface away 
from a contact (=lllJ,I under the conditions T- To, l(LIG1). 
Accordingly, the potential difference between the two con- 
tacts may react to a skin perturbation with only one spike: 
when a cluster arrives at one of the contacts or near an edge 
of a contact. The surface-wave spikes each bring two re- 
sponses to each of the contacts on the surface at which the 
cluster arrives. The amplitudes of the responses are identical 
at their peaks and are significant [see (5.7)]. There is a defi- 
nite order in their signs and in the times of the spikes. To 
estimate an amplitude of this type, it is natural to cut off the 
pole divergence in (5.7) at AT,. In (6.5) we then find 
( ~ ( ' ) ) , , , - 1 0 ~ ~ ~ ~ ( b l d )  pV. The quantity I?r;ix can be rec- 
onciled with the experimental values of the amplitude 
(1~1-1 pV), since the case ~ b l d - l o - ~  is completely fea- 
sible. The amplitude w ( ~ )  of the skin peak is estimated 
equivalently W ~ ~ , I W ~ ~ , - ( A T ~ ) " ~  and -AToll J L l  =xolly ,I, 
for the cases in which the cluster reaches the surface inside 
and outside a contact, respectively. 

As was mentioned in Sec. 5, the spikes of the convolu- 
tion functions S increase sharply, and they decay far more 
slowly after the passage of the peak. Among them, the pulses 
s(') in (5.6) are more complicated: They increase sharply, 
change sign at the peak, and fall off smoothly. The change in 
sign is due to the pole singularity in (5.7). If Y(T) is smeared 
out slightly, and we depart from the representation (6.1), then 
the pole singularity may be suppressed to a significant ex- 
tent, but the logarithmic singularity and the ordinary asym- 
metric peak remain. In this case one can argue that the shape 
found for the pulses here is similar to that observed 
e ~ ~ e r i m e n t a l l ~ . ~ - ~ .  

Perhaps the most important result, however, is the quali- 
tative result of version (6.1) regarding the duration (6 t )  of 
the voltage pulses at the contacts, which is determined by the 
behavior of the convolution functions S(T),  i.e., by the reac- 
tion of the electron system, rather than by the properties of 
the source function Y(T), which depends on the course of 
the plasticity processes. We mentioned back in the Introduc- 
tion that, for the pulse lengths specifically, experiments re- 
veal a deviation from the universal laws for the distribution 
functions: A - IO-~  s, with a small scatter around this 
v a l ~ e . ~ , ~  For a numerical estimate we adopt AT=3 for the 
length of the pulses of the convolution functions. This as- 
sumption is acceptable according to the discussion in Sec. 5. 
This gives us 6 t = ~ ~ l , B s , - 1 0 - ~ - 1 0 - ~  s in real time, in fair 
agreement with experiment. 

Finally, we note one more qualitative conclusion which 
can be drawn from the results derived in the present paper: 
The planning of experiments and the analysis of their results 
must be more systematic and more detailed. Here it is im- 
portant to make use of what has been learned about the con- 
sequences of the relative arrangement, shape, and size of the 
contacts [the multiple pulses caused by the arrival of one 
cluster at the surface, the separation of these pulses in time, 
the polarity, the shape, the effects of the size of the contacts, 
e.g., the effects of a reduction of their size, down to the 
transverse dimensions of the clusters, in which case averag- 

ing over the area of the contact, (5.1), will be incorrect, new 
features of the spikes will be seen, etc.]. 

This work was financed in part by the Russian Funda- 
mental Research Foundation (Grant 93-02-2113). 

APPENDIX 

Here are the exact expressions for certain integrals con- 
taining the functions K,,(x), M(x),  and T(xly) which were 
used in the calculations of Sec. 3. The derivations of these 
equations, which we omit, are based on the use of (3.4), 
modifications of that equation, and definitions (2.22), (3.2), 
(3.3), (3.6), and (3.7). 

I," I 
d ~ M ( - ~ ) =  fi chqzo 
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Here x 2 O  and q= 1q1. 

"~x~erirnentall~,  one detects the potential difference between two contacts. 
If the second contact is also in the x=O plane, then it is also necessary to 
consider the spikes similar to those which have been described and which 
are associated with the coordinates of the second contact. If the second 
contact lies on another surface, then its contribution decreases under the 
approximation of Secs. 4 and 5. 
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