
Irreversible phonon-free energy transport in disordered Coulomb systems 
I. Ya. Polishuk, L. A. Maksimov, and A. L. Burin 

Kurchatov Institute Russian Science Center, 123182 Moscow, Russia 
(Submitted 26 May 1994) 
Zh. Eksp. Teor. Fiz. 106, 1169-1184 (October 1994) 

A disordered Coulomb system in a random external potential is used as an example for an 
analysis of relaxation processes which occur in an ensemble of two-level systems with a dipole- 
dipole interaction. Phonon-free relaxation processes can occur only at temperatures T>O. 
They are associated with the existence of a special class of elementary excitations: resonant 
bidipoles. At low temperatures the relaxation rate of these excitations is a linear function 
of the temperature, and the thermal conductivity has a K - T ~ ' ~  behavior. At ultralow temperatures, 
this behavior may outweigh the mechanism in which heat is transferred by phonons 
scattered by two-level systems, with K-T2. O 1994 American Institute of Physics. 

1. INTRODUCTION 

The primary relaxation mechanism in disordered semi- 
conductors in which the mobility threshold is below the bot- 
tom of the conduction band-the mechanism responsible for 
the electrical conductivity-is the electron-phonon interac- 
tion. The phonons stimulate hops of electrons between dif- 
ferent localized states, leading to a Mott law1 
G ~ X ~ [ - ( T ~ / T ) ~ ' ~ ] .  When the Coulomb gap is taken into 
account, the result is a ~hklovskii-~fros law2 
P~X~[- (T, /T)~ '~] .  

It has been shown3 that an irreversible motion occurs in 
a subsystem of localized electrons which is isolated (from 
phonons), because of an inelastic interaction. At low tem- 
peratures, this motion leads to a power-law dependence 
oocT2. A problem of independent interest is irreversible 
phonon-free energy transport in such a system (in the ab- 
sence of a particle transport). The latter was first taken up in 
this formulation in Ref. 4, for the case of an ensemble of 
two-level systems interacting by an RPa law with a>3. It 
was shown there that an irreversible energy transport occurs 
only at temperatures T>O. It occurs by virtue of multipar- 
ticle (multiquantum) transitions, when a change in the state 
of the surrounding two-level systems leads to fluctuations in 
the transition energy at a resonant pair of two-level systems 
of interest. The results of Ref. 4 cannot be generalized di- 
rectly to the a = 3  case, since in that case we cannot draw a 
conclusion regarding the existence of an infinite resonant 
cluster. In the present paper we consider the case of an en- 
semble of two-level centers with an R - ~  (a=3) interaction. 
As is shown in Sec. 2 of this paper, this is the case to which 
the model of an electrically neutral system of interacting 
electrons and holes in a random potential reduces at low 
temperatures? In Sec. 3 we describe a fluctuation mechanism 
for the onset of an irreversible motion, and we construct a 
self-consistent equation which describes this process. The 
RP3 interaction gives rise to an irreversible motion in a sub- 
system of resonant dipoles; this motion exists even at T=O in 
the case of a soft Coulomb gap (Sec. 4). In the case of hard 
Coulomb gap, a motion of this type arises only at a nonzero 
temperature, because of the existence of a special class of 
excitations: resonant bidipoles (Sec. 5). We call attention to 

the important role played by excitations of this type in the 
propagation of sound in such systems, first studied theoreti- 
cally in Ref. 6. In Sec. 6 we show that the energy-transport 
mechanism discussed in Sec. 5 leads to a phonon-free ther- 
mal conductivity. At sufficiently low temperatures, the ther- 
mal conductivity has a temperature dependence K - T ~ ' ~ .  We 
conclude the paper with a discussion of the results of the 
study, and we offer some qualitative considerations which 
indicate the existence of a hard Coulomb gap in a spectrum 
of charge excitations of a disordered Coulomb system. We 
set Planck's constant equal to unity: 6=1. 

2. RESONANT CLUSTERS IN DISORDERED COULOMB 
SYSTEMS 

We consider the problem of a system of electrons in a 
random potential? We assume that the mobility threshold is 
well above the Fermi level p. The localization centers of 
one-particle states, with a characteristic localization radius I ,  
are half-filled and are distributed randomly, separated from 
each other by an average distance a = 1.  We assume I<a. 

To each localization center i of this lattice we assign a 
random potential $i (reckoned from the Fermi level), with a 
distribution function 

The energy of the multielectron system is thus the sum of the 
electron energy in potential (1) and the Coulomb interaction 
(V) between electrons. Here 

where the operators *+(r), and *(r) create and annihilate an 
electron at the point r. the intrasite repulsion is assumed to 
be strong enough that no more than one electron can occupy 
a site. Under this assumption, we can restrict the analysis 
below to a model without spin. We assume 
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As the one-particle basis functions of the problem we 
initially choose the one-particle (one-site) localized eigen- 
states of an electron in potential (1). The complete Hamil- 
tonian of the problem can then be written 

v= v, + v,, 

Here the operators c+  and c i  create and annihilate an elec- 
tron in a localized state at site i, and we have ni=c+c, .  
Combinations of the type (ni  - 112) in expression (4) explic- 
itly ensure electrical neutrality of the system. In the sums in 
the expressions for V1 and V 2 ,  the subscripts in a pair always 
have different values. The matrix element Uij-Uolrij de- 
scribes the Coulomb interaction between electrons in local- 
ized states. The quantity u{, is the seed amplitude for the 
transition of an electron from site i to site j in the field of an 
electron at site k. An important role is played in this problem 
by the matrix elements for the simultaneous transition of two 
electrons from sites i , j  to sites k , l ,  

in the case in which the distances between the localization 
centers satisfy rik ,r j lG rkl , r i j  . (Here T k ( r )  are the wave 
functions of the base states.) We place the origins of coordi- 
nates for r, and r2 at the points k and 1, respectively. With an 
eye on an order-of-magnitude estimate, we ignore the angu- 
lar dependence of the matrix elements, and we replace 
Ir,-r,\-' in (5) by the expansion 

By virtue of the orthogonality of the selected basis states, the 
first nonvanishing contribution to expression (5) comes from 
the third term of this expansion. As a result we find 

Correspondingly, we can show that we have 

Following Ref. 5, we recall a classification of elementary 
excitations in the system described by the Hamiltonian Ho. 
The basis functions selected above are also eigenfunctions of 
the Hamiltonian H o .  The simplest excitation, a charge exci- 
tation, arises in the transfer of an electron from some site i to 
infinity; it has an energy -c i ,  where 

As an electron goes from infinity to some vacant site i, the 
energy of the system increases by ei . Since the s i7s  are mea- 
sured from the Fermi level, all the sites with s i < O  are filled 
in the ground state, while the others, with sj>O, are vacant. 

The transport of an electron over a finite distance r j j  
leads to a dipole excitation of the system, with an energy 

Such a pair of sites is a "dipole." If the electron is at site j, 
then the dipole is by definition in an excited state with an 
excitation energy 4; the dipole is instead in the ground state 
if the electron is at site i .  

To a large extent, the low-temperature kinetic and ther- 
mal properties of this model are governed by low-energy 
charge and dipole excitations. 

The seed density of charge excitations in (1) is constant 
and is governed entirely by the random potential q5. In a first 
approximation in the Coulomb interaction, the density of 
states of the charge excitations of the system, g(a), is found 
from the requirement that the system be stable with respect 
to dipole excitations, i.e., from the condition that the quantity 
4 be positive. This density of states is 

where A=uoy'l2 is the "soft Coulomb gap." 
In the next approximation, the distribution function of 

the charge excitations is found from the condition that the 
system be stable with respect to the simultaneous excitation 
of two dipoles, i.e., from the condition that the quantity w$ 
be positive: 

Condition (11) leads to a structural feature in the density of 
states of the charge excitations, i.e., to the formation of a 
hard Coulomb gap in the density of states. We thus have 

Note, however, that while the existence of a soft Cou- 
lomb gap in the density of states has been repeatedly con- 
firmed experimentally in measurements of the temperature 
dependence of the hopping conductivity, the existence of a 
hard Coulomb gap remains an open question. 

In the present paper we are interested in the temperature 
region T4A.  For the problem solved below, only excitations 
with energy 

can be important. Accordingly, charge excitations with the 
density of states (12) are exponentially suppressed, and we 
will consider them no further. 

The density of states of dipole excitations in the space of 
energies and dimensions is given by 
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where v=(o,r). In the case of a soft Coulomb gap, at ener- 
gies which satisfy condition (13), we have 

where r,= y-l"Sl. It follows that the density of states of 
dipoles with a small excitation energy falls off rapidly with 
increasing size of the dipole under the condition r,>r,. In 
the case of a hard Coulomb gap we have 

Low-energy dipole excitations which satisfy condition (13) 
can be constructed at sites with large values E ~ A ,  which do 
not lie in the Coulomb gap; the excitation energy in (9) is 
kept small by means of the offsetting term U,/r. A decrease 
in the density of states of dipole excitations as the result of a 
hard Coulomb gap, on the other hand, occurs to a far lesser 
extent. 

A dipole (a pair of sites with ci<O and &,>O) thus es- 
sentially forms a two-level system with a distribution func- 
tion 

where f(w) =[l+exp(wp)]-'. The minus sign on o in (17) 
corresponds to the case in which the dipole is in the ground 
state (the electron is at site i), while the plus sign corre- 
sponds to the case in which the dipole is in the excited state 
(the electron is at site j). In addition, if the system is not in 
thermodynamic equilibrium, then the function f (o )  in (17) 
may depend on the coordinate of the dipole. As a result, the 
concentration of excited dipoles may be thought of as a mea- 
sure of the local temperature. 

Up to this point we have actually been discussing exci- 
tations in a system described by the Hamiltonian H , .  The 
hybridization of excitations due to the interaction V [see (4)] 
evidently leads to a tendency toward localization. This ten- 
dency is most noticeable in the case of resonant 
exc i ta t ion~,3~~ '~ ,~ '~  for which the matrix element for a transi- 
tion between two states reaches a value on the order of the 
transition energy. Excitations of specifically this sort are re- 
sponsible for delocalization and transport in the system. The 
interaction V1 [see (4)] gives rise to hybridization of the 
one-site basis functions (the eigenfunctions of Hamiltonian 
H,) and to a trivial renormalization of the energy of the 
charge excitations, (8), which can be ignored. If this hybrid- 
ization is taken into account, it leads to a renormalization of 
the energies of the dipole excitations. This renormalization is 
important if the dipole is resonant, i.e., if its excitation en- 
ergy, (9), is smaller than transition amplitude (7), so we have 

In this case we have the following expression for the renor- 
malized excitation energy: 

hi= J(oi)2+ (ui)2. (19) 

The two-particle amplitude for transition (6) is simulta- 
neously renormalized, so we have 

[see (11) regarding the meaning of Ed]. The derivation of the 
estimate (20) is precisely equivalent to the derivation of (6) 
and (7). In addition, we have made use of the orthogonality 
of the new hybridized wave functions (which do not have an 
exponentially small overlap integral). The two terms in (20) 
are generally of the same order of magnitude. However, the 
resonant dipoles will play an important role below. For a pair 
of such resonant dipoles the first term in expression (20) 
(which is proportional to the tunneling amplitude) can be 
discarded, since under condition (18) the second term is ac- 
tually dominant. This second term does not contain exponen- 
tially small tunneling amplitudes. 

Denoting by U, the transition amplitude (7) for a dipole 
of size r ,, and integrating expression (15) over the frequency 
o within the limits set by the resonance condition (18), we 
find an estimate of the size distribution of the resonant di- 
poles: 

Using (16) and (18), we can easily show that the hard- 
Coulomb-gap factor for these dipoles can be used in the form 

where the parameter rd=(r~1)1'5 can be interpreted as the 
maximum size of a resonant dipole. 

Energy transport may be associated with a transition in 
pairs of dipole excitations if one of the dipoles is initially in 
the ground state, and the other in the excited ~ t a t e . ~ ' ~ ' ~  Analy- 
sis of various possibilities for energy transport by this 
mechanism shows that it is necessary to consider pairs of 
dipoles, i.e., bidipoles. We wish to stress that these bidipoles 
are themselves elementary entities (two-level systems of a 
sort) for the kinetics of excitations in highly disordered 
~ ~ s t e m s . ~ , ~ , ~  

We assume that for some dipole pair a and b ,  with pa- 
rameters va and vb, respectively, the energy of their interac- 
tion, Ed  [see (ll)], is small in comparison with the excitation 
energy (9) for each. We thus have 

In this case we can introduce a distribution function for a 
bidipole, F(v,T), i.e., the joint distribution function of the 
two dipoles under consideration: 

Here v specifies a complete set of parameters which charac- 
terize the bidipole. In particular, it includes va , vb , and the 
distance between these dipoles, R.  [Wherever we can do so 
without causing any misunderstanding, we will use the same 
notation, F(v,T) and U,, for the distribution function and 
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the transition amplitude. We can then speak in terms of the 
parameters of a resonant cluster, i.e., a resonant dipole or 
bidipole.] In general, each such bidipole can be in four states, 
and it is characterized by a spectrum of excitations R in 
addition to transition amplitude (20). We introduce the dis- 
tribution function of a bidipole with a given excitation en- 
ergy R .  We can then write 

By virtue of condition (23), we can omit the parameter Ed 
from the argument of the Sfunction. For such bidipoles, the 
distribution function is obviously independent of the relative 
spatial orientation of the constituent dipoles. Furthermore, a 
bidipole is by definition resonant if the transition amplitude 
U, for it, given by (20), is such that the condition 

IRI<U, (26) 

holds. The parameter U, is at most no greater than Ed [see 
(20)l. Accordingly, to the same accuracy we can discard the 
term R from the argument of the Sfunction in (25). This 
means that dipole distribution function (25) depends only 
weakly (not at all, in the approximation under consideration 
here) on both the distance between dipoles and the excitation 
energy R. Carrying out the trivial integration over in (25) 
within the limits specified in (26), we find an estimate of the 
distribution function of resonant bidipoles with a given tran- 
sition amplitude U, : 

We wish to stress that in this expression and also everywhere 
below we have v=(v, , vb ,R,), where R,-the size of the 
bidipole-is the distance between dipoles a and b .  If follows 
from (27) that resonant dipoles actually form a two-level 
system and are made up of dipoles with approximately equal 
transition energies (these energies differ by an amount no 
greater than U,), but one is in the ground state and the other 
in the excited state. The transition energy in such a bidipole 
is found to be of order U,. The transition itself is the ex- 
change of an excitation between the dipoles. 

In a resonant dipole, an electron is simultaneously at 
both sites (although with different probabilities). In a reso- 
nant bidipole, on the other hand, the electrons are smeared 
over the sites of the corresponding dipoles, even if neither of 
the dipoles is resonant. 

3. DERIVATION OF A SELF-CONSISTENT EQUATION FOR 
THE RELAXATION RATE 

We adopt the hypothesis that irreversible motion of elec- 
trons occurs between the sites-the localization centers-in 
the system, in accordance with the following scenario. An 
electron is initially localized at some single site. We assume 
that a fluctuation has arisen for random reasons of some sort 
(they will be clarified below). As a result, the energy at this 
site and that at some other site, close by and vacant, change 
in such a way that the sites form a resonant dipole. After a 
certain time, for the same random reasons, this pair of sites 

ceases to be resonant, and the electron can, with a finite 
probability, become localized at the second site. The resonant 
dipole disappears in the process. Each such hop of an elec- 
tron is accompanied by a change in the dipole moment and, 
correspondingly, in the field of the dipole under consider- 
ation. This is the random factor which causes the energy 
fluctuation at surrounding sites and leads to the creation and 
disappearance of resonant dipoles. 

We turn now to the description of a possible scenario for 
the evolution of the transition energy at some pair of sites. 
We assume that this pair of sites is initially not in resonance. 
At a later time, as the result of a fluctuation, the energy of the 
site which corresponded to the excited state of the dipole at 
the initial time begins to decrease, while the energy of the 
second site (which originally corresponded to the ground 
state) begins to increase. (We are actually interested in the 
mismatch of the levels, i.e., the difference between these 
energies.) In the course of such a "motion" of the energy 
levels, this difference can then ultimately reach the resonant 
value, equal to the transition amplitude U,. There is a finite 
probability (of order 112) that this tendency in the direction 
of the motion of the levels will persist. We adopt this instant 
of time as the initial time for a study of the subsequent evo- 
lution of the mismatch in the energy of the dipole. After a 
certain time t,, this pair of sites ceases to be resonant. The 
mismatch in the energy levels, changing sign, becomes 
greater than U, in absolute value. As a result, the positions of 
the ground and excited states trade places spatially. If this 
process occurs fast enough to satisfy the condition 

then one can show that the probability for the transition of an 
electron to the other site is small in proportion as this param- 
eter is small. The electron remains in its previous position, 
although the energy of the transition between sites changes 
sign. In the opposite case, 

r V - t ; l < u V ,  (29) 

of a slow (adiabatic) fluctuation, the probability for a transi- 
tion to the other (previously vacant) site is unity (to within 
exponential accuracy). Such a transition is accompanied by a 
fluctuational change, over a time t,, in the dipole moment of 
this pair of sites. 

Condition (29) can also be interpreted another way. The 
very concept of a resonant cluster v is meaningful only if the 
quantum-mechanical uncertainty in the energy, which stems 
from the finite lifetime of a resonant cluster, t,-I?;', is 
smaller than the transition energy of this cluster, which is on 
the order of the transition amplitude. 

Resonant dipoles play a major role in charge transport.3 
In energy transport, the onset and disappearance of resonant 
bidipoles also play an important role (ultimately, a dominant 
role). A fluctuation of the transition energy in a bidipole oc- 
curs as the result of a fluctuation in the energy at one of the 
dipoles. If the difference between the excitation energies of 
the dipoles reaches the transition amplitude of the bidipole, 
the latter becomes resonant. 

We wish to stress that, until the dipole or bidipole be- 
comes resonant, its interaction with the surroundings does 
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not change. Only during the time interval t ,  while the cluster 
is in resonance do its dipole moment and thus the interaction 
with the other dipoles and bidipoles change. It is for this 
reason that nonresonant clusters are not directly pertinent to 
energy transport. In the discussion below we will thus con- 
sider only resonant dipoles, and then only those resonant 
dipoles which satisfy condition (29). 

We proceed now to the derivation of a self-consistent 
equation for determining the reciprocal lifetime r, of a reso- 
nant cluster (dipole or bidipole). This time is equal to the 
probability for the decay of the cluster per unit time (the 
subscript v represents the complete set of parameters of the 
resonant cluster). A resonant cluster disappears or appears if 
an electron in another resonant cluster, v', at some distance 
R ,,t from the first, undergoes a hop (if the cluster v' decays). 
The decay of the resonant cluster v' causes a fluctuation of 
the transition energy at cluster v: 

Here r v  and rut are the sizes of the dipoles of clusters v and 
v'. Cluster v ceases to be resonant if the energy fluctuation 
AE ,,I exceeds the transition amplitude of this cluster: 

Strictly speaking, a fluctuation of transition energy is accom- 
panied by a fluctuation of the transition amplitude. However, 
it is easy to show, with the help of (6), (7), and (20), that the 
fluctuation of the latter can be ignored. 

The probability rv for the decay of the resonant cluster v 
per unit time is numerically equal to the total number of 
decays per unit time of the surrounding resonant clusters v' 
which satisfy conditions (29) and (31): 

Here P, is the distribution function of the resonant clusters 
[see (21) and (27)], and the function 0 reflects conditions 
(29) and (31). 

Let us look at some general properties of the solution of 
Eq. (32), which is a homogeneous nonlinear integral equa- 
tion. We first note that there exists a trivial solution r,=0. 
This circumstance indicates that there is no irreversible mo- 
tion in the system and that the localization of excitations is 
complete. We are only interested in a nontrivial solution of 
Eq. (32) for which the relation T,#O holds for at least certain 
values of v. Let us assume that the condition rv<U,  holds 
for all v. Since we have 8(UV~-I',1)=1 in this case, Eq. (32) 
becomes a linear integral equation, which has no solutions 
other than the trivial one. Consequently, if a nontrivial solu- 
tion of Eq. (32) exists, then the condition 

must hold for certain values of v. 

4. ABSOLUTE ZERO (T=O); ROLE OF RESONANT DIPOLES 

Let us assume that the temperature of the system is T=O. 
Since there are no bidipoles, the only mechanism for energy 
transport is then that of dipole excitations. We first analyze 

the case of a soft Coulomb gap. We make use of expression 
(21) for the density of dipole excitations; that expression is 
conveniently approximated by 

Here we have assumed that the renormalized transition en- 
ergy of the resonant dipole satisfies w<Uo exp(-rll). Sub- 
stituting (34) into (32), we find 

The right side of this equation is independent of v. Conse- 
quently, the quantity 

is an invariant, independent of the type of dipole. We divide 
both sides of the last equation by this invariant (it is nonzero 
if there is irreversible motion in the system), and we evaluate 
the integral which remains. We cut this integral off at the 
parameter r ,  , found from the condition for the vanishing of 
the argument of the 0 function in (35). Using (33), (36), and 
(7), we find 

As a result we find the estimate 

from (35). From the latter relation we find 

Using (7), (33), (36), and (37), we find the order-of- 
magnitude result 

This relation indicates that irreversible motion may exist in 
the system, but it contradicts basic principles of thermody- 
namics. It will be analyzed in detail in the Conclusion of this 
paper. 

We turn now to the existence of a nontrivial solution of 
Eq. (32) at T=O in the case of a hard Coulomb gap. We first 
carry out the summation over R,,I in (32). Using (30), we 
find 

where 

is essentially the radius of the resonant interaction of the 
clusters. 

To solve Eq. (41), we multiply both sides by 
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and carry out the summation over v. For the invariant in (36), 
which does not depend on the parameters of the resonant 
cluster, 

we then find the equation 

anomalous diffusion associated with a one-particle delocal- 
ization of excitations by virtue of the behavior of the hop- 
ping amplitude, X R - ~  (Ref. 9). 

Using (27), we now write Eq. (45) for resonant bidipoles 
in a different form, switching from summation to integration 
over the parameters of the resonant bidipoles: 

We can find an upper estimate of the contribution of resonant 
dipoles to sum (49 ,  taking P ,  from (lo), (21), and (22). If 
we omit the 0 function in it obviously this estimate can only 
increase. Finding our estimate then reduces to analyzing the 
integral 

If the parameter r ,  = 1 In r, is less than or equal to one, then 
we find ( l ~ r , ) ~ ' ~  as an upper estimate of this integral. If we 
instead have r l P 1 ,  we find the estimate (rllro)4+(l/ro)4is. 
Since the relation l<r,lln ro always holds, the upper esti- 
mate of integral (46) is actually (~lr , )~ ' 'Gl .  Equation (45) 
thus has no solution in the case of a hard Coulomb gap, with 
only resonant dipoles being taken into account (because the 
right side of this equation is always much less than unity). 
Accordingly, self-consistent equation (32) has no solutions 
other than the trivial solution r = 0 ,  and it indicates that there 
this no irreversible motion in the system. 

5. TEMPERATURES T>O; ROLE OF RESONANT BlDlPOLES 

We first note that for T>O (46) is an upper estimate, so 
in the case of a hard Coulomb gap the conclusion that there 
is no irreversible motion in a system of dipole excitations-a 
conclusion reached in the preceding section of this paper- 
remains in force. As for the case of a soft Coulomb gap, we 
note that, formally, the dipole transport mechanism, which 
leads to relation (40), can outweigh the bidipole mechanism 
only at temperatures 

[see (54) below]. We restrict the discussion below to higher 
temperatures, at which the dipole contribution can be ignored 
in comparison with the bidipole contribution. 

Let us examine the relaxation which occurs at a tempera- 
ture T>O and which is associated with bidipole excitations. 
Looking back at Eq. (45), we note that the summation in this 
equation is over all types (v) of resonant bidipoles. Here r ,  is 
that size of one of the constituent dipoles at which a fluctua- 
tion of the transition energy occurs. Since we are restricting 
the discussion to the temperatures (47), the characteristic size 
of the dipoles of interest here, found from the condition 
T= U, exp(-rll), is smaller than r,. Thus the energies of 
the charge excitations making up the dipole, --Uo/r, are 
large in comparison with the width of the Coulomb gap, 
Uo/r,. We can therefore ignore the effect of the Coulomb 
gap. At the temperatures of interest, we can also ignore the 

Here r', r", 3", 3 ' ,  U(r1),  and U(rt') are the dimensions, 
renormalized energies, and transition amplitudes of the di- 
poles making up the resonant bidipole of size R .  

We first integrate over R and 6" in (48). As a result we 
find 

x 1 rr"dr t r~( r t ' )  ( d k / 2 ) f ( k r ) f ( -  k ) .  (49) 
1 

For an order-of-magnitude estimate, we replace f (6') by 1, 
and f(-A') by exp(-&'IT). We find 

x ( - U ( r r ) / ~ ) - U - ' ( r ' )  exp 

+ T I U ( r l ) ~ ( U ( r ' ) -  T)}. (50) 

It is easy to see that estimate (50) holds at large and small 
values of U(r)IT. We substitute (50) into (49), and we evalu- 
ate the remaining integrals separately for the regions 
U(r ') > U(r") and U ( r l )  < U(rU). The integrals over the 
two regions are of comparable magnitude. Recalling that we 
have TGUo, we find the following from (48)-(50): 

where 

is a characteristic size of the dipoles. Over the broad tem- 
perature range 

the relation r ,  < r o  holds. Also using (33), (36), and (51), we 
find 
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The existence of a finite lifetime supports the suggestion that 
there is an irreversible motion. Let us find some characteris- 
tic parameters of the problem. 

Analyzing the region of parameter values which make 
the dominant contribution to the left side of (48), we easily 
find characteristic values of the energy o, of the dipoles 
making up the resonant bidipole and also the characteristic 
transition amplitude in them: 

Since the quantity @is an invariant, relation (33) holds for all 
T,#O. Using (43), (52), and (54), we then find the following 
result for the characteristic parameters of the bidipoles: 

The characteristic size of the dipole is given in (52). The 
characteristic size of the bidipoles follows from the relation 

Specifically, we find 

In temperature region (53) the parameter y4r6,12 is much less 
than unity. Inequality (23) thus follows from (55)-(58). Sub- 
stituting the characteristic parameters found for the problem 
into (42), we find that the radius of the resonant interaction, 
(42), agrees with the estimate (58). Finally, estimating the 
concentration of resonant bidipoles with the characteristic 
parameters (55)-(58), i.e., c, , from the relation 

we find an estimate for the characteristic distance between 
resonant bidipoles, R,, which agrees with (58). The equality 
of the radius of the resonant interaction and the average dis- 
tance between the resonant bidipoles is in total agreement 
with the proposition that the resonant bidipoles form a con- 
nected infinite cluster with a quasicontinuous spectrum of 
excitations? 

To conclude this section of the paper we note that, for- 
mally, expression (54) can be used to estimate the typical 
lifetime of a resonant dipole (this time is finite, of course, 
because of the interaction with resonant bidipoles). For this 
purpose we substitute the characteristic value for U,- T into 
(54), since it is clear that only warm dipoles can play a 
significant role. From the same relation we can find an esti- 
mate of the typical size of such a dipole, which agrees with 
r, [see (52)]. The characteristic reciprocal lifetime found for 
a resonant dipole, 

is considerably smaller than the reciprocal characteristic time 
of a bidipole, (56). This circumstance indicates that the reso- 
nant dipoles have a significant inertia, so they can be com- 
pletely eliminated from consideration in solving problems of 
low-temperature kinetics. 

6. LOW-TEMPERATURE PHONON-FREE THERMAL 
CONDUCTlVl'rY 

It turns out that the process of heat transfer over macro- 
scopic distances can be associated with the self-relaxation 
mechanism described above. We will see below that at very 
low temperatures the mechanism proposed here may out- 
weigh the classical mechanism, in which heat is transferred 
by phonons scattered by two-level centers. 

It was shown above that irreversible hops are executed 
for the most part by electrons of resonant bidipoles, for 
which the constituent dipoles have approximately equal ex- 
citation energies. One of the dipoles, say dipole a, must be in 
the ground state, while the other, b, is the excited state. If 
this bidipole becomes resonant at a certain initial time, then 
after a time t,-r,' this bidipole ceases to be resonant, and 
there is a finite probability that the electrons in it will un- 
dergo an irreversible hop. The result is an exchange of exci- 
tations between dipoles, so dipole a goes into the excited 
state, and dipole b into the ground state. In this manner en- 
ergy is transported over a distance on the order of the size of 
a resonant .bidipole, R. After a certain time, excited dipole a 
can in turn, as a result of a fluctuation of the transition en- 
ergy, form a resonant bidipole with some other dipole c and, 
with a finite probability, transfer its excitation energy to this 
other dipole. Microscopic diffusion energy fluxes thus arise 
in the system. At thermodynamic equilibrium, these fluxes 
cancel out. 

If there is a temperature gradient or, equivalently, a gra- 
dient of dipole excitations in the system, then a directed, 
uncanceled macroscopic energy flux arises in the system. Let 
us calculate this flux through a unit area of the z=0  plane, 
oriented perpendicular to the temperature gradient. If some 
bidipole is to contribute to the energy flux through this area 
by means of the mechanism described above, the dipoles 
making up this bidipole must lie on different sides of the 
area. Let us assume that a resonant bidipole whose center is 
at z and whose ends are at z+R J2 forms at a certain time 
( R ,  is the size of the bidipole). We assume that the first 
dipole, at z+R J2, is in an excited state, with a locally equi- 
librium distribution function (17), determined by the tem- 
perature T(z+R J2). We assume that the second dipole, at 
z - RJ2, has a locally equilibrium distribution function (17) 
with a temperature T(z-R J2). 

According to the mechanism proposed in the preceding 
section of this paper, there is a finite probability for an ex- 
change of excitations between dipoles during the lifetime of 
the resonant cluster under consideration. The contribution 
from this resonant bidipole to the steady-state energy flux is 
proportional to the probability for the formation of a local- 
equilibrium resonant bidipole of type v (with a different di- 
pole temperature!). This probability can be written in a form 
similar to that of (28). The flux itself is equal to the product 
of this probability and the magnitude of the energy trans- 
ferred (which is numerically the same as the transition en- 
ergy in the dipoles), I wLl - I o;l, divided by the transfer 
time t,-Ti1 : 
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If, on the contrary, the dipole at z+Rv/2 is in the ground 
state, and that at z-Rvl2 is in the excited state, then the 
contribution from this bidipole to the energy flux across the 
selected area is 

The total flux q across this area is determined by all resonant 
dipoles for which the condition -R J2<z<R J2 holds. We 
thus have 

For an order-of-magnitude estimate we ignore the fact that 
the axis of the bidipole generally does not coincide with the 
normal to the area under consideration. Assuming that the 
temperature gradient is weak, we find from (61)-(63) 

where 

This sum can be estimated in the same way as in (32), for 
example. As a result we find 

K- ( ~ 1 ~ , ) 4 / 3 ~ ~ / 3 ~ , ~ 1 6 / 3 1 5 / 3  (66) 

The temperature dependence in (66) can be understood eas- 
ily by drawing on some very simple ideas from kinetic 
theory. According to these ideas, the thermal conductivity is 
related to the specific heat c, the length scale A of the energy 
transport per elementary event, and the time scale r of this 
transport by 

K-CA~/T .  (67) 

As was shown above, the most effective bidipoles are those 
whose dipoles have an excitation energy o=T. We can thus 
assume c a T  (see also the more rigorous discussion in Ref. 
5). The quantity A is naturally associated with the character- 
istic size of the bidipole, R * . The time T is estimated as the 
characteristic lifetime of a resonant bidipole. We thus find 

in qualitative agreement with (66). 

7. CONCLUSION 

Let us discuss the results derived above. It was shown in 
Sec. 3 that the lifetime of resonant dipoles is finite in a sys- 
tem with a soft Coulomb gap at T=O [see (40)l. This result 

can be interpreted in the following way. A finite relaxation 
time implies an irreversible motion, so the system is not 
strictly speaking, in a pure ground state. Consequently, the 
entropy and therefore the temperature are not actually zero. 
This conclusion indicates that the description of the ground 
state of a disordered Coulomb system in the scenario of a 
soft Coulomb gap is an extremely approximate one. The rea- 
son is that, in the soft-gap approximation, the equality T=O 
means only that there are no excited dipoles in this system 
[see (17)l. The possible existence of bidipoles in excited 
states remains outside the scope of the stability condition (9). 
If, on the other hand, we require that there be no such exci- 
tations [see (ll)], then we find a more accurate description of 
the ground state of the Coulomb system: a hard Coulomb 
gap in which there is no trivial solution at T=O, as was 
shown at the end of Sec. 4. This situation is in complete 
accordance with the basic principles of thermodynamics. We 
thus reach the conclusion that only the hard-gap approxima- 
tion can correctly describe the properties of disordered Cou- 
lomb systems in the limit T-0. 

The soft-gap approximation is sufficient to describe the 
kinetics at TZO due to resonant bidipoles, because the solu- 
tion of Eq. (45) is insensitive to the presence of a Coulomb 
gap if the temperature is not too low. 

We recall that the thermal conductivity associated with 
the transport of phonons scattered by two-level systems has a 
T' behavior. We would thus expect that the thermal- 
conductivity mechanism discussed in Sec. 6 would be domi- 
nant at sufficiently low temperatures, since the decrease oc- 
curs by the much slower law in (68). The crossover between 
the two mechanisms for thermal conductivity requires a 
separate discussion. A deformation interaction between elec- 
trons, also of a dipole-dipole nature, may prove important 
there. 
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