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The frustrated two-dimensional Heisenberg antiferromagnet on a square lattice is considered by 
the method of two-time temperature spin Green's functions in the approximation of 
spherically symmetric spin correlations. Unlike other theories, this approach does not require 
assumptions about a two-sublattice form of the ground state. As the frustration parameter 
p =J21(J1 +J2)  increases at T=O two continuous transitions occur in the system, between the 
following three states: a phase I with long-range order of the form ( - l)"x+"y (the 
analog of the Niel phase), a spin-liquid phase without long-range order, and a phase I1 with long- 
range order of the form ( - 1)". + ( - 1 ) " ~  (the analog of the "stripe" phase), where 
n, ,ny are the integer labels of the sites of the square lattice. The first transition occurs at p-0.1 
and is accompanied by the appearance of a gap in the spin-excitation spectrum at the 
points q I = ( ? n , Z ~ ) ,  and the second occurs at p-0.62, when the gap closes at the points 
qII=(+~,O) and (O,+-n). The values found for the spin correlation functions agree qualitatively 
with known numerical results in the entire range O<p<l of the parameterp. The approach 
used is compared in detail with other theories. O 1994 American Institute of Physics. 

1. INTRODUCTION J , = ( l  -p)J,  J2=pJ, O s p c l ,  J>O. (2) 

In connection with the well known problem of the long- 
range order in the theory of quantum spin systems consider- 
able attention has been paid to the two-dimensional antifer- 
romagnetic Heisenberg model on a square lattice in the 
quantum limit with spin value S = 112. In the real world this 
is a good model for the CuOz planes that are responsible for 
the superconductivity in high-temperature superconductors. 

The antiferromagnetic exchange interaction between the 
spins of first-nearest-neighbor cu2+ ions in a given Cu02 
plane are extremely large [greater than 1000 K for La2Cu04 
(Ref. I)] and considerably greater than the interplanar ex- 
change. The interplanar exchange is primarily responsible for 
the onset of the long-range order that is observed in the di- 
electric phase of the Cu02 planes [for La2Cu04 the charac- 
teristic Niel temperature is TN--300 K (Ref. 2)]. However, in 
the case of comparatively light doping of the system by holes 
(the holes form 2p, ,  orbitals on the oxygen sites) the anti- 
ferromagnetic long-range order disappears over the whole 
range of temperatures. It is customary to assume that the 
doping leads to antiferromagnetic interaction between 
second-nearest neighbors in the cu2+ subsystem in a given 
plane, i.e., to fru~tration.~ In view of this, intensive studies 
are currently being made of the frustrated two-dimensional 
Heisenberg model, described by the Hamiltonian 

The frustration parameter p can be regarded as the ana- 
log of the number x of holes per copper atom. An estimate 
based on the single-band Hubbard model with realistic val- 
ues Ult-5 leads, e.g., to a value of p-0.26 for x=O.l. We 
note that in the case of La2-,SrXCuO4 the spin system of the 
Cu02 plane loses its long-range order for x>0.02. 

In the case of the model without frustration the Mermin- 
Wagner theorem4 asserts the absence of spontaneous magne- 
tization at finite temperatures (i.e., the absence of long-range 
order), but does not rule it out at T=O (see the review in Ref. 
5). 

In the classical approximation (S*l) the frustrated 
model (1) has at p = 113 a first-order transition between two 
ordered phases. Phase I (p<1/3) is characterized by order 
vector q1=(n;.rr) and corresponds to the Niel state (Fig. la). 
Phase I1 (Fig. lb) is realized for p>1/3 and corresponds to 
the so-called "stripe" state [order vector qII=(n,O) or (O,T)]. 
The spin correlation functions in these phases have the form 

c,= C c;,  c;=(S:s:+,), 
a 

H =  2 JIZ S I S I + ~ + J ~ Z  S$i+d  9 ' i ,, 1 (1) U=X,Y,Z r=nx&u+nygy, 
i,d 

where n, and ny are integers. We note that in the case p= l  
where J, ,J2>0 are the antiferromagnetic interactions be- (J1=O) the spin system takes the form of two superimposed 
tween first-nearest neighbors (g=+g, kg,,) and between noninteracting Niel lattices (Fig. lb), for each of which a 
second-nearest neighbors (d= t-g,-fgy) on a square lattice situation analogous to the case for phase I at p =0 is realized. 
(see Fig. la). For convenience, J ,  and J2 can be expressed in In the quantum limit S=1/2 at T=O we may regard it as 
terms of the frustration parameter p :  established that the system possesses long-range order of 

627 JETP 79 (4), October 1994 1063-776119411 00627-0751 0.00 O 1994 American Institute of Physics 627 



a @ 8 @ 0 @ E l @ 8  b FIG. 1. Classical states of the spin 
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responding correlation functions C, 

E l 0 0 0 0 0 0 0 8  are indicated); (b) the "stripe" phase 
0  11, with two mutually penetrating 
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square sublattices, represented by 
circles and squares. 

type I and type I1 in the limiting cases at p =O and p = 1 (Ref. 
5). In this paper we are interested in the properties of the 
system and the phase transition between these states in the 
parameter p. 

We shall discuss the results given by different ap- 
proaches for the frustrated model with the Hamiltonian (1). 

In Refs. 6-8 this model was considered in terms of the 
theory of linear spin waves. For p<1/3 in this approach the 
operators of the spin-wave excitations are constructed rela- 
tive to the N6el state, and for p>1/3 they are constructed 
relative to the stripe state. From the theory of linear spin 
waves it follows that for p<plL=0.274 the phase I with 
sublattice magnetization mlL ( - l)"x+"y is realized, while 
for p>p2, = 113 the phase I1 with r n 2 ~  a ( - 1 ) " ~  is realized. 
At the points plL and p , ~  the corresponding sublattice mag- 
netizations mlL and rn,, vanish. On this basis it was postu- 
lated in Ref. 6 that in the interval plL<p<p2L the system 
loses its long-range order and goes over into a spin-liquid 
state. However, the theory of linear spin waves does not 
permit one to describe the state of the system at T=O for this 
range of values of p. In the framework of this theory, for any 
value of p ,  it is also not possible to consider the case of 
nonzero temperatures (because of the well known divergence 
for m with T#O in the two-dimensional case). We note that 
in Ref. 7 correlation functions C ,  for both phases were found 
with allowance for biquadratic terms in the Dyson-Maleev 
transf~rmation.~ Values of C ,  over the whole range of p ,  
obtained by numerical calculations on finite blocks of up to 
20 spins, are also given in Ref. 7. 

In Ref. 10 the frustrated model was studied on the 
phase-I side in the framework of the theory of linear spin 
waves with the additional condition that the sublattice mag- 
netization be equal to zero (a detailed account of a sublattice- 
symmetric theory of linear spin waves can be found in Refs. 
11 and 12). In the case T=O it was shown that forp<pIl the 
spin-wave spectrum o(q) is gapless at q=O, i.e., there exists 
long-range order determined by Bose condensation of the 
spin waves with q=O. Here and below, by Bose condensa- 
tion we understand the anomalous (as T+O) contribution to 
the expression for the spin correlators from a small region of 
wave-vector values in the neighborhoods of the points qi at 
which w(qi)=O. For p>plL a gap appears in the spin-wave 
spectrum. This implies that the system loses its long-range 
order and goes over into a spin-liquid state, in which the spin 
excitations have nonzero mass. The sublattice-symmetric 
theory of linear spin waves permits generalization to the case 

TZO. However, for p>0.275 the correlation functions C ,  
found on the basis of this theory over short distances differ 
strongly from the corresponding values of C ,  from numerical 
calculations of finite blocks.1° 

The theory of modified spin  wave^,'^,'^*'^ which takes 
into account terms proportional to S O  in the Dyson-Maleev 
or Holstein-Primakoff transformations, leads to different re- 
sults. In Refs. 15-17 it was shown that phase I possesses 
long-range order in the interval 0 <p <plM (p l M  =0.38), 
while phase I1 possesses long-range order for p2,<p< 1 
(pZM=0.35). Here, the average spin (Si) per site is zero, 
while long-range order corresponds to a nonzero effective 
spin m, defined in terms of the spin correlation functions at 
large distances by m2 = ( C,,,( . In phases I and 11, C,,, has 
a form analogous to (3). Thus, in the theory of modified spin 
waves the long-range order is preserved for all values of p ,  
and in the region p2M<p<plM a transition should occur 
between two phases with different long-range order. We em- 
phasize that in the theory of modified spin waves, as in the 
theory of linear spin waves, the spin-excitation operators in 
the different phases are constructed relative to different clas- 
sical states. As a consequence, in the framework of these 
theories the transition in the parameter p between phases I 
and I1 should be a first-order transition. 

The approaches listed above are not spherically symmet- 
ric, in the sense that there is no spherical symmetry of the 
spin correlation functions in them, i.e., CZ, # C: = C: . In Ref. 
18 the model (1) was studied in terms of a spherically sym- 
metric theory based on a mean-field approximation for 
Schwinger b o ~ o n s . ~ ~  For S = 112 the results are the same as in 
the theory of modified spin waves. It is easy to see that in the 
approach of Ref. 19 the way in which the mean field is 
introduced for the two phases can only yield a first-order 
transition, analogously to the theory of modified spin waves. 
We note also that at nonzero temperatures both theories lead 
to a nonphysical first-order phase transition at values of T-J 
(Refs. 20, 21). 

The possibility of a first-order transition from a state 
with long-range order to a spin-liquid state at the compara- 
tively small value p-0.2 was pointed out in Refs. 3 and 22. 
There a variational approach was used, and for the spheri- 
cally symmetric ground state of the spin-liquid phase a state 
of the resonance-valence-bond type was constructed. A 
second-order transition from the state with long-range order 
to the spin-liquid state at p-0.2 was obtained assuming 
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spherically symmetric spin correlation functions in Ref. 23, 
in which the spin excitations were considered on the basis of 
four-spin blocks covering an infinite lattice. However, a de- 
tailed analysis turns out to be complicated in the region p > l /  
3, when inversion of the energy levels of a block sets in. 

Finally, we also mention a number of theoretical ap- 
proaches that predict the absence of long-range order in a 
certain interval near p =1/3. These are the numerous papers 
on exact diagonalization on finite the 
renormalization-group method combined with the mean-field 
approximation for Schwinger b o ~ o n s ~ ~  (this approach gives a 
transition from the state with long-range order to the spin- 
liquid state at p=0.13), a self-consistent spin-wave approach 
on the basis of the dimer classical state,26 and, finally, analy- 
sis based on the technique of the l / ~ - e x ~ a n s i o n . ~ ~  As can be 
seen, different analytical approaches give contradictory re- 
sults for the frustrated model. 

In the present paper the model is investigated in the ap- 
proximation of spherically symmetric spin correlations for 
two-time temperature retarded spin Green's 
Unlike most of the analytical approaches mentioned above, 
this treatment makes it possible to describe both the two 
phases with long-range order and the intermediate spin- 
liquid phase over the whole range of p in a single approxi- 
mation. 

In Sec. 2 we obtain the equations of motion for the 
Green's functions, which make it possible to express the 
spin-excitation spectrum w(q) and the correlation functions. 
Closed expressions for the Green's functions, and a self- 
consistent system of equations for the correlation functions 
C,, are found by a decoupling procedure with effective al- 
lowance for vertex  correction^.^^ In Sec. 3 we give the re- 
sults of solving the self-consistent system of equations at 
T=O in the entire range of the frustration parameter p, 
namely, the value of the effective spin m,  the energy of the 
ground state, the magnitude of the gap in the spin-excitation 
spectrum at the points q,=(.rr,.rr) and q,,=(.rr,O), and the cor- 
relation functions C ,  for the first five nearest neighbors. It is 
found that as the frustration increases a continuous transition 
occurs in the system, from a phase with long-range order (the 
analog of phase I) to a spin-liquid phase, and then to a phase 
with long-range order (the analog of phase 11). Also in Sec. 
3, we calculate the temperature dependence of the static uni- 
form susceptibility x ( T ) .  Section 4 is devoted to a brief dis- 
cussion of the results. 

2. SELF-CONSISTENT EQUATIONS ASSUMING 
SPHERICALLY SYMMETRIC SPIN CORRELATIONS 

To determine the spin correlation functions we shall con- 
sider the two-time retarded Green's functions (and their Fou- 
rier transforms with respect to time) for the spin operators: 

u = t ,  6 = - u .  
For the operators S u  we introduce the site correlation 

functions Cz ,  and also the spatial Fourier transforms of 
these functions and of the Green's functions Gi(w): 

The functions C g  and Gu(q,w) are connected by the relation 

where n (w) =[exp(wl~) - 11-'. 
The first-order and second-order equations of motion for 

the Green's functions Gg(w) have the form 

where J,=J, and Jd=J2 .  
For the Green's functions that arise in the right-hand side 

of (7.2) we use a decoupling procedure analogous to that 
performed in Ref. 28. This decoupling has the following fea- 
tures. 

First, it preserves the local correlation on a single site. 
This is expressed in the fact that for the Green's functions the 
decoupling is performed only when the three site spin opera- 
tors in the left part of the bracket pertain to different sites. 

Second, when identifying averages of the form 
(S;S;+,) and (S:S?+') (r ZO) we introduce extra factors a , ,  
a2, and a3 that have the meaning of vertex corrections. The 
factor al is introduced if the sites i and i + r  are nearest 
neighbors, i.e., r =g; a2 is introduced if r corresponds to a 
third-, fourth-, or fifth-nearest neighbor (r>d); 
a3=(l - p ) a 2 + p a l  is used in the intermediate case when 
r = d .  

We shall explain how our method of taking vertex cor- 
rections into account makes it possible to pass correctly from 
the limiting case p=O to the limiting case p = l .  As noted 
above, for p = 1 we have two noninteracting superposed an- 
tiferromagnetic sublattices, each of which is physically 
equivalent to the complete lattice for p=O. We shall show 
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that our decoupling scheme satisfies this equivalence. For the 
case p = O  (i.e., in the absence of frustration) we take the very 
simple scheme that was discussed in detail in Ref. 28: If 
correlation functions with operators on nearest neighbors 
arise in the decoupling, we introduce a , ,  while for more 
distant neighbors we introduce a2.  For p=O we have a3=a2, 
and our scheme coincides with that adopted above. For p = 1 
we have a3=a1, and it is easily verified that for each of the 
sublattices our scheme goes over exactly into the scheme of 
Ref. 28. In particular, it leads to the result that the effective 
spins m found below for p =O and p = 1 coincide. 

Furthermore, by virtue of the assumption that the corre- 
lation functions are spherically symmetric, we assume 

and also (S f )  = 0. 
Then, after the decoupling, Eq. (7.2) takes the following 

form: 

where 

An expression for the Green's function Gu(q,w) can be 
obtained by going over to Fourier components in Eqs. (7) 
and (9). As a result, we have 

GU(q,w)= -(16/3)(Jl( l -  y,)Cg+J2 

x ( l - r a ) C a ) ( ~ ~ - w ~ ( q ) ) - ~ ,  (10) 

where the excitation spectrum w(q) has the form 

FIG. 2. Dependence of the effective spin rn on the frustration parameter p. 

Using the expression (10) for the Green's functions, and 
also Eqs. (5)  and (6), we can obtain a self-consistent system 
of equations for the five correlation functions C,, Cd,  
C2g, Cf ,  and C2d in terms of which the spectrum (11) is 
determined: 

P(q)=(-8) (J l ( l -  ygq)Cg+J2(1 - 3/dq)Cd). (I2) 

The sum rule Co=(SiSi)=3/4 gives an additional condition 
for the determination of a,. Thus, putting a2 aside, we have 
six self-consistent equations for the six unknowns C, (r=g, 
d, 2g, f, 2d) and al(f=2gx+gy). 

The last unknown-the decoupling parameter a2-is 
found from the following condition: In the absence of frus- 
tration at T=O it is well known that the effective spin has the 
value m-0.3, and we require that the quantity m calculated 
for p=O and T=O coincide with this value. In the problem 
without frustrations a phenomenological choice of this type 
for the parameter a2 was used in Ref. 28. Also in Ref. 28 it 
was noted that as T increases the vertex corrections tend to 
unity, and for TZO it was suggested that one fix the value of 
the parameter 

obtained from the additional condition 

Analogously, for arbitrary frustrations and temperatures, 
we also determine cu, from the condition (13.1): The param- 
eter r, remains equal to the value given by Eq. (13.2). This 
scheme for the determination of a2 not only satisfies the 
requirement that the vertex corrections become equal to 
unity with increase of T, but also permits us to obtain at T=O 
the correct values of m in the two limiting cases p=O and 
p=l.  

3. PHASE TRANSITIONS AT T=O AND PROPERTIES OF A 
SYSTEM WITH FRUSTRATION 

At T=O, depending on the value of the frustration pa- 
rameter p, for the self-consistent system of equations (12) 
two types of solutions are possible. The first type corre- 
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FIG. 3. Spectrum o(q) at the Bose-condensation points, as a function of the 
frustration parameter p: The solid curve shows d q = ( ~ , ~ r ) ] ,  and the dashed 
curve shows o[q=(O,~)]. 

sponds to the case when the spectrum contains no gap at 
q#O. The second type of solution corresponds to w(q)>O for 
all q#O. 

A solution of the first type occurs in two intervals of 
values of the frustration. For p < p ,  (pl =0.1) the spectrum is 
found to be gapless at the point q I ,  while for p > p 2  
(p2=0.62) it is found to be gapless at the point q I I .  In these 
cases, in Eqs. (12) we can separate out the condensate part 
m2 corresponding to Bose condensation on the correspond- 

Q 
ing antiferromagnetic vector qo, equal to qI or 91,: 

The new unknown m: is determined from the equation 

w(qo)=O. From the expression (11) for w2(q) we can see that 
u * ( ~ , )  is proportional to A , ,  and w2(qII) is proportional to the 
sum of the first three terms in the right-hand side of Eq. (11). 
A nonzero value of m% is the effective spin, since 

FIG. 4. Energy per bond (EIJ )  as a function of the frustration parameter p, 
and results from a calculation in Ref. 7 on blocks of 20 spins. 

FIG. 5. Correlation functions C, as functions of the frustration parameter p. 
The points are the results from a calculation in Ref, 24 on blocks of 20 
spins: (a) C ,  ; (b) Cd ; (c) Czg ; (dl CI; (e) C2d. 

~ ~ ~ , = ( 1 / 2 ) m : , ( ( -  I)".+(- l ) " ~ ) ,  p > p 2 .  (15.2) 

Thus, in two different intervals of values of the frustra- 
tion parameter we are describing two different states with 
long-range order, analogous to the Ntel phase I and stripe 
phase 11. We draw attention to the fact that the long-range 
order (15.2) in the phase I1 preserves the square symmetry, in 
contrast to the approaches mentioned in the Introduction, 
which lead to long-range order of the form (3.2). In addition, 
unlike the theories of modified spin waves and the mean- 
field approximation for Schwinger bosons, in our approach 
Bose condensation at q=O is absent. The dependence of the 
effective spin on the frustration parameter is presented in 
Fig. 2. 

Solutions of the second type, when w(q)>O holds for all 
q#O, are found in the interval p l  < p < p 2 .  In this region of 
values of p the effective spin is equal to zero, the correlation 
functions fall off exponentially at large distances, and the 
system is in the spin-liquid state. 

We shall explain how the system of equations (12), 
(13.1) is solved for T=O. In the cases p=O and p = l  this 
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HG. 6. Temperature dependence of the uniform static susceptibility AT) 
for different values of the frustration parameter: p=O (the solid curve), 
p=0.09 (the dotted curve), p=0.16 (the dashed curve), and p=0.23 (the 
dashed-dotted curve). 

system [with allowance for (14)] is solved analytically. The 
values obtained for the spin correlation functions, r,, and al 
are used as the starting point for a numerical iterative method 
of solution of the system of equations for p #O and p # 1. 
After each step in p we first solve the truncated self- 
consistent system (12), (13.1) for a,, the correlator C,, and 
also m or the gap in the spectrum (11) (in the case when a 
solution with a gap arises). Here we first use the values ob- 
tained for the long-range correlators Cd , C2,, CI, and CZd in 
the previous step in p. The resulting self-consistent values of 
4, C,, and m (or the gap) are used to find new values of the 
long-range correlators, and with the latter we again imple- 
ment self-consistency for the truncated system. This proce- 
dure leads to rapid convergence of the results. 

In Fig. 3 we show the dependences of the gaps o ( ~ )  and 
o(qIl) on the frustration, which determine the properties of 
the system. At p=pl a gap opens up at the point Q. With 
further increase of p the gap o(ql) remains nonzero, but 
behaves nonmonotonically. The gap o(ql,) decreases mono- 
tonically with increase of p, and vanishes at the point p2. At 
the points pl and p2 a continuous transition is realized be- 
tween a phase with long-range order and the spin-liquid 
phase. 

The energy per site and the first five correlation func- 
tions are presented as functions of p in Figs. 4 and 5. There 
too, for comparison, we give results of calculations on finite 

of up to 20 sites. As can be seen, our results agree 
qualitatively with the results of exact diagonalization on fi- 
nite systems. It is difficult to speak of quantitative agree- 
ment, especially for p>1/3. This is because, as p increases, 
the system approaches two noninteracting square sublattices. 
For example, a block of 16 sites decomposes into two non- 
interacting blocks of 8 sites. Consequently, in calculations on 
finite lattices the correlators are calculated in different ap- 
proximations for small and large p. In particular, this leads to 
the result that relations of the form Cd(p=l)=C,(p=O) are 
not fulfilled. Our results, however, satisfy this condition. 

In the case of finite temperatures (TZO), for all values of 
the frustration parameter p, in the spectrum o(q) there is a 
nonzero gap everywhere except q=O. Solving the system of 

equations (12) makes it possible to determine the uniform 
static susceptibility dT,p) .  The latter is the Green's function 
GU(q,o) at q=O and o = O .  

Figure 6 shows the temperature dependences d T )  for 
values of the frustration parameter p that correspond to the 
ordered phase I and the spin liquid. It can be seen that for 
small p the susceptibility X(T) has a broad maximum at 
T-J. With increase of the frustration this maximum is 
shifted in the direction of lower T. We shall regard the frus- 
tration parameter p as the analog of the doping x for 
La,-,Sr,CuO,. It can then be seen that the dependence 
&,T) in Fig. 6 coincides qualitatively with the experimen- 
tal dependence dx ,T)  in Ref. 30. 

4. CONCLUSION 

In conclusion we shall formulate the principal results 
and note the essential difference between our method and 
previous treatments. 

Using Green functions and approximations of spheri- 
cally symmetric spin correlations we have succeeded in de- 
scribing within the framework of a single theory two phases 
with different long-range order and the spin-liquid phase 
separating them, and also the continuous transitions between 
them in the frustration parameter. For small values p<0.1 
the system is in a state with long-range order, analogous to 
the Ndel state, and the spin-excitation spectrum is gapless at 
the point qI=(t.rr,?.rr), at which Bose condensation of the 
spin waves occurs. At pl=O.l a gap opens up at the point q,, 
the system loses its long-range order, and the ground state is 
the spin-liquid state. With increase of p the gap at the points 
~l~=(?m,O), (O,?T) decreases, and vanishes at p2=0.62. For 
p>0.62 Bose condensation occurs at the point qII, and the 
system is in a state with long-range order, analogous to the 
stripe phase but without loss of the square symmetry. At the 
points p, and p2 second-order transitions occur in the system 
between the phases described above. We draw attention to 
the fact that the parameter value p =0.1 for the first transition 
between a phase with long-range order and the spin-liquid 
phase differs greatly from the results obtained by other ap- 
proaches (0.274 in Refs. 6 and 10, 0.2 in Refs. 22 and 23, 
and 0.38 in Refs. 15-17). A close value p=0.13 was ob- 
tained in Ref. 25. 

Finally, we note that the temperature dependence ob- 
tained in this work for the static uniform susceptibility 
X(T,p) for different frustrations p agrees qualitatively with 
X(T,x) for high-temperature superconductors (x is the pa- 
rameter specifying the doping of the Cu02 plane by holes), if 
we assume that the frustration is the analog of the doping. At 
the same time, the temperature behavior found for X(T) for 
the spin-liquid state (p>0.1) differs fundamentally from the 
results of the theory based on the mean-field approximation 
for Schwinger bo~ons , '~  in which, in the spin-liquid state, 
X(T)+O as T+O. The reason for the discrepancy could be 
the fact that, in contrast to our approach, in this theory (and 
in the others listed in the Introduction), the spin-excitation 
spectrum is found to be symmetric with respect to the bound- 
aries of the magnetic Brillouin zone both in the Niel phase 
and in the stripe phase. The point qo=(O,O) is identical to the 
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corresponding Bose-condensation points q, and qII in these 
phases. Therefore, in the mean-field approximation for 
Schwinger bosons, when long-range order is lost as T+O a 
gap simultaneously opens up at the points q, and qo, and, as 
a consequence, x(T) a ( llT)exp(- AlT)-+O as T-+O 
[A = 4qo)l. 
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