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We analyze the phenomenon of induction of first-order phase transitions (PT1) by large-scale 
critical fluctuations from the viewpoint of the kinetics of the nucleation process. We 
show that although the local density of the free energy functional of the system is such that, in 
accordance with the Landau theory, the system should undergo a continuous phase 
transition (a second-order phase transition, or PT2), under certain conditions the interaction of 
fluctuations gives rise to ordered-phase nuclei typical of PT1. We reveal how the 
separatrices isolating the PT1 and PT2 regions on the phase portrait of the renormalization-group 
equations correlate with the different versionss of the ordering kinetics. O 1994 American 
Institute of Physics. 

1. INTRODUCTION 

The problem of the critical behavior of systems near the 
points and curves of second-order phase transitions (PT2) 
has been in the foreground for a long time. The main diffi- 
culty in studying such systems is that in this region the fluc- 
tuations of the order parameter not only are small in com- 
parison with the average value of the order parameter but 
also interact strongly with one another, so that at the critical 
point proper their correlation range tends to infinity. 
Kadanoff's idea,' motivated by this, of using scaling trans- 
formations and the renormalization-group (RG) method, 
based on these transformations and developed by ~ i l s o n , ~ ' ~  
have made it possible to move far ahead in describing critical 
behavior. Especially impressive achievements have been 
made in calculating critical exponents, which characterize 
the degree to which thermodynamic quantities diverge at the 
critical point.3-5 A secondary and somewhat unexpected re- 
sult of the fluctuation theory of critical phenomena was the 
discovery that fluctuations may greatly affect the way in 
which phase transitions occur. We discuss this possibility in 
greater detail. 

The hypothesis of the scaling invariance of a system at 
the PT2 point, employed within the RG method, assumes 
that the parameters of the Ginzburg-Landau-Wilson (GLW) 
functional renormalized owing to the fluctuation interaction, 
reach the stable fixed point of the RG equations in the limit. 
This is indeed the case when we are dealing with a model 
problem with a fluctuating scalar field cp or an isotropic 
model with a vector n-component field cp = {cpi}. But as soon 
as the system becomes slightly more complicated (i.e., when 
there appear various invariants composed of the cpi or when 
there is interaction between order parameters of disparate 
nature), the phase portrait of the RG equations separates into 
regions in which the phase trajectories starting at some of 
them do not end at the stable fixed point but leave the limits 
of positive definiteness of the quaternary form in the GLW 
functional. Occasionally there is no stable fixed point, and no 
matter where the trajectories begin they leave the region of 
stability of the partition function calculated with the given 
form of GLW. These properties of RG equations were dis- 
covered early in the application of the method and then were 
repeatedly corroborated in attempts to apply the RG method 

to various physical systems (see, e.g., Refs. 6-14 and the 
literature cited in the review articles of Refs. 15-17). 

The fact that the phase trajectories leave the stability 
region explicitly contradicted the initial hypothesis of the RG 
method and required stepping outside the limits of the 
method. The first obvious idea is that terms of the form cp6 
should be kept when the quaternary form changes sign. This 
ensures that the partition function again becomes convergent 
and the phase transition is of the PT1 type. Such augmenting 
of the GLW functional makes the functional unrenormaliz- 
able in the sense of the theory of fields,l8 where the RG 
method actually originated in its traditional form, so that it 
seemed that the standard approach was not applicable. How- 
ever, the RG equations can be left unchanged, while the ef- 
fective functional of the system free energy near the stability 
limits is calculated in a more meaningful way, retaining its 
positive definiteness as I cpl + a. Various researchers have 
performed such computations using the ring approximation 
and by employing models that allow for an exact calculation 
of the partition function (see, e.g., Refs. 19-23), and con- 
firmed the hypothesis of induction of PT1. A fundamental 
drawback of such approaches is that calculations of the ef- 
fective GLW functional rest on "small" parameters that ac- 
tually are not small or on entirely unmanageable approxima- 
tions. 

Another possibility that cannot be discarded offhand is 
that this behavior of the trajectories (their leaving the stabil- 
ity region) originates in the mathematically improper expan- 
sion in powers of the quantity E = 4 - d, which is actually not 
small at all, where d is the dimensionality of the space (here 
E = 1 for d = 3).2,3 However, calculations based on the exact 
RG equation24-27 have shown that the assumption that the 
vertices of the GLW functional are small, used in the 
&-expansion, can be supported by the real smallness of the 
respective quantities for the physical branch of the solution 
of this equation.25 More than that, applying the exact RG 
equation to anisotropic systems yields the same arrangement 
of the separatrices in the phase portrait as using the 
E - e ~ ~ a n s i o n . * ~ ' ~ ~  

To clarify the phenomenology of fluctuation induction of 
PT1, an assumption about the specific spatial structure of the 
cp-field in the critical region was made. More precisely, it 
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was assumed that the system contains large-scale (mesos- 
copic) nonlinear excitations that in appropriate conditions 
may act as critical (and supercritical) nuclei of the new 

which is typical of PT1 phenomenology (see Ref. 
29). Although in itself the qualitative picture of the struc- 
tured nature of the 9-field in the vicinity (and in the process) 
of the trahsition is, apparently, true and is corroborated by 
numerical modelling of both PT2 and PT1 (see Refs. 30-32), 
calculations of the effective form of the GLW functional 
again required approximations that are not properly justified 
and cannot be considered completely satisfactory. 

The approach based on the model calculation of the ef- 
fective free energy is actually a compromise because it is 
equivalent to the statement that the effective "renormalized" 
energy is what it should be in the mean-field theory for PT1. 
The true mechanism of the effect of fluctuations is masked 
and practically remains an enigma. Indeed, if in PT1 the 
main reason for nucleation is the presence of an energy bar- 
rier in the local GLW-functional density that separates the 
disordered state from the ordered, then how does nucleation 
emerge in the critical region where there is no such barrier? 
This paper is devoted to finding an answer to this question. 

For the sake of definiteness we restrict our discussion to 
the case of two interacting order parameters. Besides being 
simple from the standpoint of mathematics and relatively 
transparent, this case is interesting because it can be used to 
describe the situation, fairly often encountered, in which two 
transition curves on the phase diagram inter~ect.~ In addition, 
at certain values of the parameters the respective GLW func- 
tional describes the behavior of a system with tetragonal 
symmetry and a two-component order parameter. Finally, 
similar behavior is observed in the phase transition to super- 
conductivity, which because of the interaction of the two- 
component superconducting order parameter and the fluctua- 
tions of the gauge electromagnetic field is a fluctuation- 
induced PT1 (Ref. 33). 

Since understanding the content of the present paper re- 
quires information contained in previous studies within the 
RG method, for the sake of coherence of exposition we 
briefly survey the pertinent equations and results, after which 
we compare them with the results obtained within the kinetic 
approach. 

2. THE GLW FUNCTIONAL, THE MEAN-FIELD THEORY, AND 
THE RG EQUATIONS 

The simplest GLW functional for two interacting fluctu- 
ating fields is 

Before investigating fluctuation effects, we give the main 
results of the Landau theory. Actually, analysis within this 
theory amounts to studying the shape of the surface 
F(q1;q2)  as a function of the system parameters. To this 
end it has proved convenient to introduce new parameters: 
T= rl+ 72 and e= 71- 72. The transition to the ordered 
phase corresponds to the appearance of nontrivial minima, 
which occur on the lines T= 2 8 in the 7 3 0  range. If the 
ri are below these lines, the structure of the surface 
F(cpl ; cp2) depends largely on the relationship between the 
constants in functional (1.1). When there is strong coupling 
between the fields, with v2>ulu2, the minima of 
F(cp, ;q2) are located at the points with (cpl # 0,q2=0) and 
(p1 = 0,q2 # 0), SO that here the Landau theory predicts two 
possible phases, the transition between which is a PT1 and 
takes place on the straight line 

When v2<u1u2, a mixed phase with cp2 # 0 and cpl # 0 is 
possible, and transitions between ordered phases are continu- 
ous and take place on the straight lines 

We are interested in the situation in which both tempera- 
tures, and 72, are close to critical, so that both fields, cpl 
and q2, strongly fluctuate. In accordance with the convention 
of the RG method, the parameters of the functional (1.1) 
become renormalized in the critical region, described, re- 
spectively, by the RG equations. Since the qualitative effects 
of interest appear even in the local approximation of RG, that 
is, in the approximation that ignores the generation of non- 
local corrections to the GLW functional, we can limit our- 
selves to the appropriate version of the exact RG equation 
for F ( q l  ; cp2) (Ref. 25): 

where 1 is the renormalization-group time, and d the dimen- 
sionality of the space. The equation is nonlinear and can be 
solved only numerically. Here renormalization involves not 
only the fourth-order vertices in (1.1) but also the higher- 
order vertices generated in the RG transformations. Having 
in mind comparison of the results of various approaches and 
the fact that numerical solution of Eq. (1.4) and the standard 
approach15-17 yield similar results,25 we reduce this equation, 
following Ref.17, to a system of equations for 71,2, u and 
v. In the first &-approximation the system can be written as 
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FIG. 1. The phase portrait of the RG equa- 
tions: (a) in normalized units x = u, l v  and 
y = u , / u ,  and (b) in the u,=u,=u plane. 

Equation (1.5) separates from the other equations and deter- 
mines the renormalization of T1,2, while the system of equa- 
tions (1.6) can be solved independently. Since the physically 
essential quantities are not the quantities U I , ~  and v them- 
selves but their  ratio^,^ this system can be simplified further 
by reducing it to two equations for the ratios ul  lv = x  and 
u2/u=y:  

The phase portrait of this system of equations is depicted in 
Fig. la,  where plY2 stand for the fixed points, 

and the broken trace represents the separatrix isolating the 
region where the phase trajectories arrive at the stable fixed 
point p1 from the region where they leave the limits of posi- 
tive definiteness of the quaternary form (ul=O and u 2 = 0 ,  
respectively). Clearly, in both cases the phase trajectories 
usually approach the curve ul = u,, and at the stable point 
p, the symmetry of the system grows to 02. The phenom- 
enon is known as asymptotic symmetry,16 and in the next 
section we discuss its kinetic manifestations. The equality 
ul  = u2 also raises the symmetry of the problem, reducing the 
GLW functional to the respective functional for a tetrahe- 
drally symmetric system with a two-component order param- 
eter cp={cpl ,cp2). Since the plane u, = u2=u is an obvious 
integral of the initial system (1.6), on it the number of equa- 
tions decreases still further:15 

The phase portrait of this system is depicted in Fig. lb.  In 
addition to the two points p1 (u = v = 3 )  and fixed points are 

clearly visible: the Ising point p3(u = $,v = 0 )  and the 

Gaussian point po(u = u = 0) .  Points p2 and p3 belong to 
the obvious separatrices v = 3u and v = 0, respectively. Since 
at U ,  = u 2 = u  the system possesses an additional symmetry 
under rotations of the vector cp by $n-, these two separatrices 

are symmetry-coupled.'7 Indeed, the introduction of new 
variables = cpl + cp2 and t2 = cpl - cp2 maps the function 
F(cpl ; p 2 )  into a similar form in these variables, with the 
new parameters u l  and v l  related to the initial u and u as 
follows: 

Under the transformations (1 .10) the separatrices v = 3u and 
v = O  change places; this is accompanied by a change in 
places of the minima and saddle points of the function, 
which lie on the axes of coordinates cp, and cp2 and the 
diagonals cp, = cp2. This transformation provides additional 
freedom in studying the system, which we use in what fol- 
lows. 

3. EVOLUTION OF THE FLUCTUATING ORDER 
PARAMETERS 

As noted in the Introduction, the fact that phase trajec- 
tories leave the stability region is usually interpreted as a 
fluctuation-induced "collapse" of PT2 to PT1. It is well 
known, however, that PT1 is accompanied by nucleation and 
steady growth of the nuclei. Mathematically, the reason is the 
presence of a hump in the local free-energy density, a hump 
that separates energy-distinct local minima. But in the 
present case there is no such maximum. An approximate cal- 
culation of the partition function Z and the effective free 
energy having the desired m a x i m ~ m ' ~ - ~ ~  does little to clarify 
the physics of the process, since in the final analysis the 
coarsening of the description because of the scaling RG 
transformations is also a distinctive method of calculating Z. 
At the same time we believe that, just as in the case of 
ordinary PT1 (see Ref. 29), nuclei emerge "by themselves" 
solely from fluctuation noise as soon as the parameters of the 
system are taken from the respective sector of the RG phase 
portrait. 
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To prove this, we write the equations for the relaxation 
of the fluctuating fields in the form 

where li%,8pi is the variational derivative of %, f i(r;t) is 
the delta-correlated white noise,. 

and the kinetic coefficients are hidden in the renormalization 
of time and the parameters K. Solving Eq. (2.1) numerically, 
we discovered that the RG method predicts such transition 
kinetics. The relevant results are given at the end of this 
section. We believe, however, that it is expedient first to 
discuss some qualitative (analytical) ideas concerning the 
structure of the expected solutions. 

The fluctuations generated by the noise f relax, remain- 
ing for different amounts of time in different spatial configu- 
rations of cpi(t;r). They remain longest near attractor distri- 
butions, which correspond to some of the solutions of the 
static equations 8%/ 8pi = 0: 

In such configurations the energy density in the GLW func- 
tional is uniquely related to the local form F(cpl;cp2). The 
validity of this statement can be demonstrated for an arbi- 
trary nonlocal operator cpi(r) Vij(r- rr ) cpj(rr ) replacing 
(gradcpi)2 in the GLW functional, but the simplest way to do 
so is to use the one-dimensional version of Eq. (2.3a): 

Aside from its simplicity, this version is very useful for un- 
derstanding, since it actually describes one-dimensional sec- 
tions, d =  1, of the three-dimensional distribution of cp in 
those regions of space {r} in which all the components of the 
gradients are small except one. Numerical studies show that 
such configurations of the nonlinear excitations are typical 
for the majority of the points of {r}. Employing Eq. (2.3b), 
we immediately get 

whence 

Here selection of the constant is determined by the magni- 
tude and sign of parameters K, primarily Ti. The fixed-sign 
gradient terms in the energy density yield a positive correc- 
tion to this density. This effectively renormalizes r i ,  in ac- 
cordance with the known RG result. Thus, if we wish to 
observe the ordering process (even in the incomplete form, 
i.e., in the critical region), we must take r i<O.  Since noise 
intensity is determined by the absolute temperature, D a T 

(here T s l ) ,  to study the system behavior in the fluctuation 
region one must select - ri=D a 1. The parameters can be 
chosen more precisely by direct numerical experiments. 

When the ri are negative, the typical excitations in the 
system are inhomogeneities of the domain-wall type. For 
such excitations the constant in (2.4) should be chosen equal 
to the value of - F(cpl ; cp2) taken at the minima of this func- 
tion: F(cpl ; cp2) = F('). As a result the energy correction re- 
lated to the excitations and measured with respect to the 
equilibrium energy E(')= Jdx F(') has the form 

An approximate minimum of this energy is provided by the 
solutions of Eq. (2.3), or the configurations of cp close to 
these solutions, that minimize F(cpl ;q2)  (for cp # const). 
Such configurations may be expected to be, for one thing, the 
curves connecting the minimum points and passing either 
through the saddle point or through the maximum of 
F(cpl;cp2). Direct modeling (Fig. 2a) shows that the distri- 
butions actually selected by the system are indeed close to 
such configurations (and practically only to such). 

Further investigation requires fixing the range of the pa- 
rameters ui and v. For analytical calculations it is convenient 
to select a range of parameters corresponding to an advanta- 
geous mixed state, whereas for a graphic representation of 
the results of numerical calculations the situation involving 
only one ordered field is preferable. The possibility described 
above of inverting these two situations enables one to chose 
the cases without introducing further restrictions. Selecting 
u1u2>v2, we use the following form of the approximate 
relationship between the cpi fields: 

which is a good approximation of the desired domain walls. 
Equation (2.6) defines a family of second-order curves that 
are fragments of ellipses or hyperbolas, depending on the 
sign of v. Note that the curve v = 0 is a separatrix of the RG 
equations. We wish to show now that this curve also sepa- 
rates the respective nonlinear excitations into two levels ad- 
vantageousness. Using (2.6) as an equality, we solve it for 
cp1, 

and integrate the equation for cp2. We have 

Bearing in mind that u1r2-vrl<O and ulu2-v2>0, we 
obtain 
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FIG. 2. One-dimensional sections of the 
distributions of the fields cp, (dotted 
curve) and cp, (solid curve) (u,  =0.2, 
u,= 1, and v=5) .  The arrows point in 
the direction of the movement of the 

-2 -2 1 
0 0 

new-phase domain walls. The insets de- 
- 1  1 - 1 1 -1.6 pict the following: (a) the phase portrait 

a b C as projected on the (cp, ,cp,) (hyper- 

)plane and showed against the back- 
ground of the level curves of surface 
F(cpl ;cpz), (b) the same as projected on 
the (gradcp,,cp,) plane, and (c) the en- 
ergy density F in the GLW functional as 
a function of cp, (the projection on the 
( F ,  cpz) plane). 

0 5 0  100 150 200 250 300 350 400 450 500 

In the vicinity of the bisector u 1 = ~ 2  = u and, respectively, 
TI a r2= T this solution degenerates into 

The solutions (2.9) coincide with the well-known domain 
walls for a one-component order parameter, provided that the 
quantities are properly renormalized, while the nontrivial (in 
this sense) variation of the second component is determined 
by Eq. (2.7). 

Now we compare the contributions to the energy from 
the various sequences of signs of both fields, cp, and cp2: 
when they both flip (case a), that is, in the (9 ,  ,cp2) plane 
the domain wall passes through the point cpl = cp2=0, and 
when each rotates successively (case P), that is, for two 
walls of the (2.9b) type. Direct substitution and simple alge- 
braic transformations yield, respectively, 

with c p ~ = - ~ / ( u + v )  and cp=cp(xJ-7/2), and 

where we have allowed for the fact that the functional de- 
pendence of the cpi on the spatial coordinates coincide for the 
two cases to within the substitution x - - + i J m ,  for 
which we have introduced the change of variables 
Jdx--+Jd?J- in case P. Equation (2.10b) clearly 
shows that for v>O the total energy of a pair of respective 
excitations is higher than the energy of each excitation, while 
for v<O the situation is the opposite. In other words, the 
separatrix that on the phase portrait isolates different types of 
critical behavior also distinguishes nonlinear excitations of 
different levels of advantageousness in the system. In the 
final analysis it is the disadvantageousness of excitations of 
the 90-degree domain-wall type that makes nucleation inevi- 
table when the system becomes ordered in the v<O region. 

To illustrate the phenomenology of this process numeri- 
cally, it is convenient, as mentioned earlier, to use the region 

v >3u instead of v <O. Qualitatively the picture is as fol- 
lows. In an early stage of the evolution, when only terms 
linear in pi operate in Eqs. (2.1), both fields fluctuate 
correlation-free and on an equal basis. The spikes of the field 
cpl reach the vicinity of their minimum points 2 cplo before 
those of cp2 reach -+ cpzo (for the sake of definiteness, here 
and in what follows ul>u2, i.e., cplo<cp20). But as cp grows, 
the correlation between the fluctuations of each of the fields 
and between different fields comes into play. Since final or- 
dering of field cp2 is more advantageous, the system tends to 
broaden the regions with cp2 # 0 at the expense of cp, . But the 
spikes of cp, are very close to the points -t cplo and are 
pinned, so to say, to the local minima in their vicinity. At the 
same time, the compromise walls, making contact with cpl 
during flips of cp2, are not advantageous and the system tends 
to completely eradicate regions with p1 f 0. As a result in 
the intermediate kinetic stage of the evolution to equilibrium 
there appears a state with nuclei of phase cp2 that "vis- 
cously" expand in the field of fluctuations of cp,. For a one- 
dimensional section of cp,,, along x this process is illustrated 
by Fig. 2. Here the insets (a) and (b) show the projections of 
the phase portrait of the system on the (cpl,cp2) and 
(gradcp2, cp2) hyperplanes, respectively. The pinning regions 
of cpl are clearly seen in Fig. 2a, as well as the attractor 
structure in Fig. 2b typical of PT1 and corresponding to the 
moving new-phase domain walls, a result recently obtained 
in Ref. 29. We note once more that, in contrast to the stan- 
dard case:9 the situation here is such that the formation of 
steadily moving domain walls occurs in the absence of bar- 
riers in the local density F(cpl ;cp,). More precisely, in reality 
such barriers emerge because of the specific route that the 
system takes to equilibrium in the four-dimensional space 
{cpl ,cp2,gradcpl ,grad}cp2. The barriers can be visualized by 
formally projecting the GLW-functional density 
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FIG. 3. As in Fig. 2 for v < 3  ( - 
a b c u,=0.2, u,=0.4, and v=0.4). The inset 

2 (c) depicts the temporal evolution of the 
mean squares of the fields cpi . 
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at each point of array x on the (F, cp2) plane, as is done in the 
inset (c) to Fig. 2. 

For the sake of comparison, a similar picture of a fairly 
late stage in the ordering process for the case where v < 3u is 
depicted in Fig. 3 and the insets (a) and (b) to it. Clearly, 
there are no steadily moving walls, and to each flip of p2  
there corresponds a local spike in 9 , .  Inset (c) in Fig. 3 
depicts the temporal evolution of the mean squares of the 
p,  . Clearly visible is the stage of their regular growth, which 
is the longer the deeper the system is fixed in the critical 
region of parameters T and D. In this stage their correlation 
functions (Fig. 4a) have practically the same halfwidth r that 
increases with time as r 6 (Fig. 4b), which corresponds, 
on the one hand, to the growth of the characteristic size of 
on-the-average ordered regions and, on the other, to the 
growth of the correlation range r ,  in accordance with the 
Ornstein-Zernike equation. In Refs. 31 and 32 this stage has 
been studied in greater detail for the cases of a scalar order 
parameter and a PT2 or spinodal decomposition. 

If the parameters are such that the system never freezes 
in the ordered state, then regular fluctuations, apparently, cor- 
respond to the case of asymptotic symmetry described in the 
previous section. But if the system becomes ordered, at a 
fairly late stage the < cp?> and < p; > split. The same is true 
of the areas occupied by regions with order of basically the 
cp, or cp, type. Since, however, 90-degree walls here are 
advantageous, the ordering regions are usually redistributed 
via temporal flattening-out of the respective sections of the 
boundaries, that is, through minimum gradient contributions 
to the energy. As a result, no effective barriers appear and the 
transition remains of the PT2 type, as predicted by the mean- 
field theory. 

We performed computer simulations of the evolution of 
two-dimensional sections of the fluctuating fields for both 
cases, v > 3u and u < 3u, using 140X 140 arrays. Figures 5 
and 6 each depict two typical stages in the evolution. The 
various levels of cp, and cp2 normalized to their maximum 
values for each instantaneous distribution and time (insets (a. 
i) and (b. i)) are shown by gradations of gray. A uniformly 
gray color corresponds to p,-0, while dark and light spots 

correspond to positive and negative values of the p, . Figs. 
5.a.l and 6.b.2 are the most characteristic here. The first 
shows for v>3u  the distribution of circular ("spherical") 
nuclei cp2 Z 0 of both signs, whose growth is damped by the 
presence of fluctuations of the second field. Figure 6.b.2 il- 
lustrates the final stage in the evolution of the system for 

FIG. 4. The correlation function G(x) of fluctuations of cp,: (a) the depen- 
dence of G(x) on the spatial coordinate, and (b) the temporal evolution of 
the halfwidth T. 
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a . I  b . I  FIG. 5. Distributions of the densities of 
q1 and q2 ((a) and (b), respectiv 
different times ((a.1,2) and (b.1,2), 
tively) for v > 3 6. 

ely) for 
respec- 

u<3u, when initially equitable domains with cpl f 0 form 
"thick" structured walls between the domains with cp2=0. 
These walls partially repeat the initial corrugated structure of 
the fluctuating field q1 depicted in Fig. 6.b.l. It is clear that 
the respective stage in the evolution with u >3u depicted in 
Figs. 5.a.2 and 5.b.2 differs from this picture in that the 
strongly pronounced nuclei of field cp2 coalesce and com- 
pletely expel the regions with q l  f 0. 

Normalizing the gradations of gray to the peak values of 
cp, reveals the fine structure of the densities but somewhat 
masks the dramatic difference between the two cases. In 
view of this, for the stages depicted in the portions a.1 and 
b.1, Figs. 7a and 7b depict, respectively, the distributions of 
the sum of squares, cp2= cp:+ cp:, for v >3u and v <3u, re- 
spectively. Clearly, for v>3u there are well-developed 
single spikes in the density of cp2, while for v<3u there are 
spread-out regions (dark spots) where cp2 is quite uniformly 
nonzero, separated by comparatively narrow boundaries 
cp2- 0 (light regions). 

Concluding this section, we make some comments con- 
cerning Fig. 6.b.2. The structured boundaries in this figure 
are glso the domains + cpl (black and white, respectively). 
Their walls, intersecting the boundaries cp2=0, form punc- 
tures in which the total cp2= cp:+ cp; vanishes. If 
ul = u2=v, the difference between the two types of domains 
vanishes and the respective punctures become isolated sin- 
gularity points of the absolute value of the two-component 

order parameter cp= ( q l  ,q2). For the isotropic O2 model, 
both the RG method and the kinetic approach employed here 
predict trivial behavior in the ordering process. Usually, 
however, one does not encounter behavior of the O2 univer- 
sality class in real systems. For instance, in the classical ex- 
ample of this type of GLW functionals, which describes the 
transition to superconductivity, there is a relation between 
the order parameter q and the indestructible fluctuations of 
the (gauge) electromagnetic field. The fact that the two are 
related leads to fluctuation-induced PT1, which we discuss in 
the next section. 

4. NUCLEATION IN THE TRANSITION TO 
SUPERCONDUCTIVITY 

The punctures in the absolute value of the order param- 
eter, situated at the intersections of the lines on which the 
separate components of the order parameter vanish, act as 
nonlinear vortex excitations. In the final analysis, the origin 
of such excitations lies in the statistically independent fluc- 
tuation of the components of the order parameter. Such ex- 
citations can easily be visualized, for instance, by forming 
the combination qlgradq2-q2gradpl, the analog of the 
quantum current for the complex-valued function 
@= cpl + icp,. In a superconductor with its complex-valued 
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FIG. 6. As in Fig. 5 for u < 3 6. 

order parameter, such a construction acquires physical mean- The GLW functional for a superconductor has the form 
ing, and these nonlinear excitations affect the thermo- 
dynamics of the entire system. 

The fact that the vortex configurations of the order pa- X=.BO+ ddr{~I(~- ig~)I ,b12+alI ,b12+$~II ,b14  I 
rameter play an important role in the kinetics of the phase 
transition to superconductivity is well known. An especially + 6 ( c u r l ~ ) ~ ) ,  

large number of studies of such configurations were carried 
out with flat and quasi-two-dimensional systems of finite 
thickness. For instance, for a flat superconductor, to which 
the Mermin-Wagner-Hohenberg theorem on the inhibition 
of long-range order by strong  fluctuation^^^ can be applied, 
the presence of a phase transition is related to the formation 
of vortex-antivortex pairs and their possible unpairing in 
certain  condition^.^^-^' The concept of vortex pairs, brought 
into the picture to explain the phase transition in two- 
dimensional superconductors, has been corroborated in many 
experiments. Also well-known are analytical vortex-like so- 
lutions for a superconductor in an external field (Abrikosov 
vortices).38 Such solutions cannot be obtained by analytical 
means in the absence of an external field. The main difficulty 
is that from the very beginning the coordinated evolution of 
the order parameter and the vector potential in a vortex pair 
have to be considered. Here, since the vortices forming a pair 
attract each other, such a solution can exist only dynamically, 
so that to obtain the solution one cannot, in principle, resort 

where I,b= cp, + icp2 is the complex-valued order parameter, 
A is the (gauge) vector potential, d is the dimensionality of 
the space, c=h2/4m, g = 2 e / h c ,  6=:.rr, and a-(T-T,)  

and p are phenomenological constants. 
It is customary to assume that the fields cp,, cp2, and A 

fluctuate independently. In other words, the partition function 
Z with the functional (3.1) must be integrated independently 
with respect to each field. Following Ref. 33, we show that 
integration of Z over the fluctuations of the gauge electro- 
magnetic field (i.e., with respect to A) leads to an effective 
GL functional characteristic of a PT1. 

If the Ginzburg parameter for the given system is ex- 
tremely small and we can ignore the interaction of fluctua- 
tions of field cC, (as is the case with a good type I supercon- 
ductor), integrating Z with respect to A directly, we get an 
effective GLW functional determined by the following rela- 
tion: 

only to an equation resulting from setting the-variation of the 
free energy to zero. exp {-Fed,))= I D A  exp {-%(+;A)}. (3.2) 
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FIG. 7. (a) and (b): Distributions of the density of q?= cp:+ cp; for the 
configurations depicted in Figs. S.(a,b).l and 6.(a,b).l, respectively. 

This leads to a change in the coefficient a of the term qua- 
dratic in @ in Eq. (3.1): 

a+a+cg2(A2)+.  (3.3) 

The average can easily be calculated by perturbation theory 
in @, and in the lowest orders has the form 

Here the first term simply renormalizes the critical tempera- 
ture, while the second adds the correction I @ I 3  to the GLW 
function, whose presence signals that we are dealing with a 
PT1 in the system. 

But if the fluctuations of field @ are considerable in a 
broader region, as is the case for high-T, systems, we must 
study the RG equations for the vertices of functional (3.1). 
Usually in such systems the order parameter @ has (n>2) 
components. Halperin, Lubensky, and ~a~~ set up and stud- 
ied the RG equation for such an isotropic functional and 
showed that for a finite charge (g f 0) these equations have 
a fixed point only for a clearly unphysical value of n greater 

than 731.8. Here we do not write these equations, since for 
real systems with a broad fluctuation region the situation is, 
possibly, still more complicated owing to nontrivial pairing. 
The latter leads to the appearance in the GLW functional of 
anisotropic invariants, and the continuous phase transition 
irrevocably collapses to a PT1, irrespective of such a subtle 
effect as the interaction with the fluctuations of the gauge 
electromagnetic field (see, e.g., Ref. 39 for a review). But the 
objective of this section is, after all, to establish the vortex 
nature of nuclei for the transition in an isotropic system. 

The equations of motion for the components of the order 
parameter follow from the generalized GL equation and in 
the general case have the form 

Here yl = y2 are relaxation constants, and fi(r, t)  is noise. In 
order to clarify the physical meaning of the additional equa- 
tion (3.5c), we note that the total current density J  in the 
superconductor is J ,  + J ,  = (c/4~)curlcurlA. The supercur- 
rent density J S  is defined as 
J ,  = cg(cplgradq2 - cp2gradcpl) - C ~ ~ A ' ( ~ ;  + and the 
normal-current density J ,  is UE = - c~(dA/dt). Thus, Eq. 
(3.5~) determines the normal current in a superconductor, 
and the constant y; is physically the normal electrical con- 
ductivity ( y; - T,T, ,  with 7, the relaxation time).40'41 

Calculations were carried out on a flat grid of 
110X 110 cells. The results obtained in this manner, as well 
as those of Sec. 2, should be interpreted as mere two- 
dimensional sections of three-dimensional distributions of 
the quantities in those regions of space where the depen- 
dence of these quantities on the z-coordinate is fairly weak. 
The initial conditions were chosen in different ways depend- 
ing on the modeling scenario. Since the main idea of this 
section is to demonstrate the spontaneous creation of vortex 
pairs in the event of relaxation of the order parameter, the 
most striking within this context are the results obtained at 
zero initial conditions for cplY2. 

A typical intermediate configuration obtained in the pro- 
cess of ordering of a type I1 superconductor ( K >  &?) is 
depicted in Fig. 8. Gradations of brightness in the separate 
parts of this figure ((a)-(d)) represent the values of the com- 
ponents of the order parameter (with medium gray represent- 
ing the lines on which these components vanish), the distri- 
bution of the current density J ,  , and the local magnetic field. 
Since we experimented with a system describing the transi- 
tion both with an external magnetic field H and without one 
(H # 0) and intended to comment on the processes taking 
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place in both cases, Fig. 8 depicts the densities of the respec- 
tive quantities at low but finite H (the field is expelled from 
the sample in the transition). 

There is convincing evidence that the cause of creation 
of vortex pairs is the statistically independent fluctuation of 
the components of the order parameter, as a result of which 
the regions in which these components are essentially non- 
zero do not overlap completely. Because of a phase differ- 
ence, a (quantum) supercurrent, which generates a magnetic 
field, is created in such configurations. Interacting with the 
order parameter, this field, in turn, both makes the order pa- 
rameter smaller and facilitates penetration of the sample by 
the (gauge) magnetic field where the order parameter is al- 
ready small, that is, at the intersections of the lines of zero 
cp, and cp,. Figure 8c shows that the distribution of the total 
current density about the lines of magnetic flux is truly of a 
vortex type and corresponds to the intuitive idea of current 
distribution in vortex-antivortex pairs. Further evolution of 
these formations also agrees with accepted ideas: vortices 
attract each other and, in the process, merge and finally dis- 
appear. What is interesting is that ordinary terms "annihila- 
tion" and "collapse" do not quite convey the proper mean- 
ing. Most likely we are dealing simply with the damping of 
vortex- antivortex pair currents in a region with a reduced 
order parameter in the final stage of the merging of vortices. 
If the transition occurs in a field H f 0, in the course of the 
process an imbalance develops towards retaining a greater 

FIG. 8. Distributions of the densities of cp, 
and cp, obtained from Eqs. (3.5) ((a) and (b), 
respectively), and the distributions, corre- 
lated with the intersections of the lines of 
zero cp, and cp,, of the current density J ,  (c) 
and the magnetic field (d) of the vortices di- 
rected along (bright spikes) and against 
(dark spikes) the external magnetic field ( 
H =  0.015 in dimensionless units). 

number of vortices that are directed along the external field 
(as Fig. 8d clearly shows) and contain magnetic flux. Taking 
into account the same brightness, size, and stability of devel- 
opment of such formations in Fig. 8d, we note the universal- 
ity and the attractor nature of the respective vortices of the 
superconductivity current. It is easy to incorporate inhomo- 
geneities (of the "random-temperature" type, for instance) in 
the system of equations (3.5) and "pin" the resulting vorti- 
ces. This offers broad possibilities for modeling mixed states, 
which, however, lies outside the scope of the present inves- 
tigation. 

When all three measurements have an equal status, the 
pair of volume globules of the uncorrelated components of 
the order parameter leads to the formation of a toroidal mag- 
netic flux and has an effect on the thermodynamics of the 
system, determining the critical sizes of nuclei. Mutual at- 
traction of the vortices and antivortices in pairs generated by 
order-parameter fluctuations (or compression of the toroidal 
magnetic flux at d = 3 )  creates an energy barrier leading to 
threshold nucleation. Since the interaction of vortices falls 
off as the distance between them increases (m l l ra ,  where 
a>O) and the gain in the nucleus energy grows in propor- 
tion to the nucleus volume ( m  rd ) ,  a nucleus has a certain 
critical size from which the nucleus inflates in space without 
limit. Smaller formations are certain to collapse. The relation 
between order-parameter fluctuations and vortex excitations 
gives the sought phenomenological explanation of the state- 

614 JETP 79 (4), October 1994 A. S. Zel'tser and A. E. Filippov 614 



ment that the phase transition to superconductivity always 
occurs as a first-order phase transition. 
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