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A dynamical theory of a heteronuclear magnetic spin system on a large lattice is developed. 
Nonlinear integral equations are derived for the time-dependent spin autocorrelation functions. The 
closest singularities of these functions on the imaginary time axis are studied, and it is 
shown that their parameters depend on the ratio of the homo- and heteronuclear contributions to 
the dipole-dipole interaction, which is a function of the orientation of the crystal in a 
magnetic field. Simple analytic expressions are derived both for the rate of different cross- 
relaxation processes as functions of the detuning, for large detunings, and for the wings of the 
spectra of other correlation functions. The theoretical results are in good agreement with 
the published experimental results. O 1994 American Institute of Physics. 

1. INTRODUCTION resonance line was very fruitful, and it was later used suc- 

Since the publication of the first work on cross relax- 
ation by Bloembergen, Shapiro, et al.,' a great deal of atten- 
tion has been devoted to the problem of energy transfer be- 
tween subsystems in magnetic spin systems consisting of 
different types of nuclei. On the one hand, cross relaxation is 
of great interest as a particular manifestation of the central 
problem of nonequilibrium statistical physics-the establish- 
ment of equilibrium in systems of many interacting bodies. 
The advantages of nuclear spin systems are that the well- 
known interaction laws in the system are simple, the cou- 
pling with the crystal lattice is weak, and accurate measure- 
ments can be performed by the methods of nuclear magnetic 
resonance. On the other hand, cross-relaxation processes 
form the foundation of the nuclear double resonance method, 
which is a uniquely sensitive method for studying the local 
properties of solids. 

The basic laws of cross-relaxation processes have been 
explained within the thermodynamic Kinetic equa- 
tions have been derived, in which the kinetic coefficients are 
actually empirical constants for the temperatures of different 
reservoirs. The problem of calculating the rates of different 
cross-relaxation processes has still not been solved satisfac- 
torily. 

In the present work our objective is to construct a theory 
that makes it possible to find quite simply the dependences 
of different cross relaxation processes on the energy unbal- 
ance or detuning of the processes for large detunings-the 
range of greatest interest. The theory is constructed in the 
approximation of a Gaussian self-consistent fluctuating local 
field, an elaboration of the well-known Anderson-Weiss 
approximation.5 The crux of the Anderson-Weiss approach 
is that the real motion of a spin interacting with many sur- 
rounding spins is replaced by the rotation of the spin in a 
fluctuating, one-component, local magnetic field described 
by a Gaussian random process. The approach proposed ini- 
tially to explain the exchange-narrowing of the magnetic- 

cessfully to describe many effects in spin dynamics. The 
important role played by the fluctuating local field in cross- 
relaxation processes was pointed out in Ref. 6. For an el- 
ementary cross-relaxation event between spins in a Gaussian 
local field, the high-frequency asymptotic behavior of the 
cross-relaxation rate is exponential, which agrees with 
experiment.7 Application of this popular approach are limited 
by the fact that the Gaussian random field was introduced 
phenomenologically. In the present paper, the  condition^"^ 
that lead to such a field are imposed on the motion of the 
spins themselves, and a microscopic model theory of hetero- 
nuclear spin systems is constructed on this basis. 

2. CROSS-RELAXATION RATE 

Consider a system consisting of nuclei of different types 
distinguished by their gyromagnetic ratios (yp)  and, there- 
fore, by their precession frequencies in a constant magnetic 
field H o .  For clarity, we consider a system with two types of 
nuclei with spins I and S. The extension to the case of a large 
number of subsystems is obvious. In the thermodynamic 

the cross-relaxation rate obtained by means of per- 
turbation theory, whose applicability improves with increas- 
ing detuning, is 

where 

The secular part of the dipole-dipole interaction Hamil- 
tonian 
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consists of the homonuclear parts SII and BsS and the het- 
eronuclear part XIS,  consisting of the interactions between 
the projections of the spins on the field Ho.  The coefficients 
in these three parts are b,,  , bap ,  and b , ,  , respectively, where 
the Roman subscripts refer to the lattice sites occupied by the 
I spins and the Greek subscripts refer to the lattice sites 
occupied by S spins. The perturbation V= V+ + V -  flips the 
spins. For one-, two-, and three-spin cross-relaxation, V can 
be written in the following forms: 

The right-hand column gives the detuning corresponding to a 
given process. Expressions for the coefficients in Eqs. (1)- 
(7) are given in the literature cited below for each specific 
case. The shape function f (o) is normalized so that the area 
under the curve equals 1; it reflects the capability of the spin 
system to emit or absorb energy o @=I). The form of this 
function is determined by the interactions of the spins par- 
ticipating in an elementary event and all other spins in the 
system, as a result of which the calculation of this function is 
a very difficult problem. 

We begin our analysis with two-spin cross-relaxation. 
Substituting Eq. (6) into Eq. (3) we obtain 

where in the residual sum at least one pair of site indices is 
different. Here and below r m i j ( t )  and Tmap( t ) ,  where m = x ,  
y ,  and z, are the two-spin correlation functions, which are 
determined by the expression (3) after the operators of the 
corresponding spin components (Sz, SI;; or IF, 17) are sub- 
stituted for v'. On account of the axial symmetry of the 
Hamiltonian (4), r x k l ( t )  = r y k l ( t )  = r + - k l ( t ) .  The functions 
r m I ( t )  = r m i i ( t )  and r m s ( t )  = r m a a ( t )  are autocorrelation 
functions (ACFs). 

We now compare the two parts of Eq. (8). For this, we 
consider their power series as functions of the time. The 
zeroth term equals 1 for the first part and 0 for the second 
part. The ratio of the quadratic terms is determined by the 
ratio of the lattice sums of the following form1' 

For NaF and LiF lattices and a constant magnetic field ori- 
ented along the crystallographic axes [loo], [110], and [ I l l ]  
this ratio is 0.069, 0.085, and 0.28, respectively.10 In higher 
orders, the lattice sums are more complicated. The structure 
of the second part of Eq. (8) is such that the lattice sums of 

its series necessarily contain loops from the couplings, while 
the lattice sums of the first part of Eq. (8) contain sums with 
a tree structure and no loops. Numerical calculations of lat- 
tice sums which are more complicated than in Eq. (9)"'12 
and the estimates made in Appendix A show that as the size 
of a loop or the number of loops increases, the differences of 
the magnitudes of these two classes of lattice sums increase. 

The smallness of the lattice sums containing loops sug- 
gests that discarding these sums does not change the shape 
function f(w). Without such sums, however, the theory is 
much simpler. First, the second term in Eq. (8) vanishes, so 
that 

In the same fashion, in the case of one-spin cross-relaxation 
we find, after substituting Eq. (5) into Eq. (3) and dropping 
terms containing lattice sums with loops, that 

Similarly, even in more complicated cases the correlation 
function F ( t )  can be expressed in terms of a product of the 
autocorrelation functions of the spins participating in an el- 
ementary cross-relaxation event. 

3. EQUATIONS FOR THE AUTOCORRELATION FUNCTIONS 

The autocorrelation function can be determined by aver- 
aging the rotation of a spin in the local field generated by the 
surrounding The transverse components of the lo- 
cal field are determined by the interaction with spins of the 
same type 

while the longitudinal components acquire a contribution 
from the interaction .XIS with spins of different type 

We shall now find the correlation functions of the field 
components. Just as in the case of Eq. (8), after dropping 
terms containing lattice sums with loops, we obtain 

where 

are the mean squares of the two contributions to the longitu- 
dinal local field at an I spin. (Similar formulas are obtained 
for the field at the S spins by interchanging the indices (i,j) 
and (a$).) Moreover, just as in the homonuclear the 
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average of the product of a large number of variables h l ( t )  
decomposes into a sum of products of all possible pair aver- 
ages (14) and (15). 

The latter property is a definition of a Gaussian random 
process.14 Therefore, in the approximation under consider- 
ation, the local field is a three-dimensional (three- 
component) Gaussian random field. It should be noted that 
the large number of contributions to Eqs. (12) and (13) is in 
itself not sufficient for this. The contributions must vary in 
time independently of one another. Under conditions when 
the temporal fluctuations are caused by spin-spin interac- 
tions, independence requires that an additional condition be 
imposed on the motion of the spins. The terms containing 
lattice sums with loops from the couplings must be dropped. 
As shown in Appendix A, in model spin systems on infinite 
lattices the required condition is satisfied automatically, 
while increasing the interaction radius does not in itself en- 
sure satisfaction of the condition. In Refs. 5, 13, and 15 a 
Gaussian random field was introduced on the basis of the 
fact that the number of neighbors is large, irrespective of the 
independence condition. On the other hand, the condition 
derived above implies that Eqs. (14) and (15) are self- 
consistent, which in the previous works Refs. 13 and 16-18 
had to be introduced explicitly. 

The equations for the autocorrelation functions of a spin 
rotating in a general Gaussian random field were derived in 
Ref. 9. In the heteronuclear case these equations must be 
written out for each type of spin, and we obtain the system of 
integral equations 

where the index m enumerates the spin projections x ,  y ,  and 
z and the index p enumerates the spin subsystems I and S .  
The memory function Gmp(t) is expressed as an infinite se- 
ries. These terms are described in Appendix B. The hetero- 
nuclear function G,,(t) is different from the homonuclear 
case in that the form of the correlation function (15) of the 
longitudinal component of the local field changes. This com- 
ponent of the field couples the spins of the subsystems, and 
as a result of this coupling, a coupled system of equations is 
obtained instead of independent equations for nuclei of dif- 
ferent types. 

Equations of the general form (17) are intended for 
Hamiltonians with arbitrary magnetic anisotropy. In our case 
of an axisymmetric Hamiltonian, the longitudinal and trans- 
verse components of the spin vary differently,19'20 the longi- 
tudinal local fields (13) being mainly responsible for the 
change in the transverse spin components. 

After transforming the equations for the transverse spin 
components (see Appendix B), the point of the transforma- 
tion being to take into account predominantly the longitudi- 
nal local fields, we obtain integral equations in a different 
form 

where 

is the autocorrelation function for a spin rotating in a longi- 
tudinal local field, and which can be obtained from the 
Anderson-Weiss formula5 for the case of the resonance fre- 
quency, described by a Gaussian random process, by substi- 
tuting Eq. (15) into it; Gop(t) is the memory function of an 
integral equation of the form (17) for rOp(t). We leave the 
equations for Tzp(t) unchanged. 

Retaining only the leading terms of the series for the 
memory functions, we obtain 

which together with Eq. (19) form a closed system. 

4. SlNGULARlTlES OF THE CORRELATION FUNCTIONS ON 
THE IMAGINARY TIME AXIS 

A complicated system of nonlinear integral equations 
that is difficult to solve is obtained even in the lowest-order 
approximation for the memory function. Fortunately, large 
detunings are most important for describing cross-relaxation 
processes. According to the well-known property of the Fou- 
rier transf~rm,~' the function f(w) in this region will be de- 
termined by the form of F( t )  near the singularities closest to 
the real axis in the plane of the complex time variable. If the 
principal part of F(t) in this neighborhood has the form 

then for the Fourier components in the wings we have 

where r (p)  is the gamma function. To determine the param- 
eters in Eq. (22) it is sufficient to find the form of the solu- 
tion of the system of equations (19)-(21) near the closest 
singularities. The existence of singularities in the nonlinear 
integral equations (17) on the imaginary axis at a finite dis- 
tance was proved in Refs. 8 and 9 for the homonuclear case, 
i.e., for p=Z. This property of the equations under study 
remains as the number of equations increases, though the 
characteristics of the singularities will change, as we shall 
now show. 

Let the principal parts of the ACFs near the singularity 
closest to the origin have the forms 
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TABLE I. Mean-squared homo- and heteronuclear contributions to the longitu- 
dinal local fields in LiF. 

We call attention to the fact that in Eq. (24) we assumed that 
the singularities for all types of spins occur at the same point. 
This result is a consequence of the existence of a coupling, 
realized in Eqs. (20) and (21) through TOp(t), between the 
spin subsystems. In the opposite case, when A;,=O, the co- 
ordinates of the singularities of the different subsystems 
would be different. We shall seek the parameters in Eq. (24) 
by the same method as in the homonuclear case,8,9320 similar 
to the Painlevi analysis22 of moving singularities of nonlin- 
ear differential equations. To this end, we substitute Eq. (24) 
into Eqs. (19)-(21) and equate the most highly divergent 
terms of both parts of each equation. From the equations for 
T,,(t) and T,,(t) we obtain the simple relations 

C,pxp(xp+l)=CopSp(Sp+l) for xp=Sp>xP+Cp-2, 

for xp= Sp=xp+Sp-2. (25) 

In the equations for Top(t), obtained by differentiating 
Eq. (19) with respect to the time, the terms containing the 
square of the small quantity should be retained in the de- 
nominator. We obtain for the coefficients of these terms a 
system of algebraic equations that can be written in the con- 
ventional form 

anticipating that the term with Lq<2 vanishes in the limit 
t+ i rw 

As a specific example, we consider an LiF crystal, in 
which the shape functions of interest to us were measured for 
large d e t ~ n i n ~ s . ~ ~ - ~ ~  The quantities A;, (16), where p and q 
denote the 7 ~ i  or 1 9 ~  nuclei, were calculated for three orien- 
tations of the constant magnetic field relative to the crystal- 
lographic axes on the basis of the lattice sums from Ref. 25; 
the results are presented in Table I. The calculation was per- 
formed neglecting the rare isotopes 6 ~ i . 2 8  

The system (26) with t = i T, has a solution in two cases: 
1) If lF=tLiii=2, then 

2) If 5,=2, CLi<2, then 

The choice between these two cases is determined by the 
ratio of the mean squared fields Atip The first case obtains 
when 

According to the data in Table I, this case is realized in LiF 
for the [loo] orientation of the crystal. For other ratios of 
A;,, for example, in LiF with [I101 and [Ill] orientations, 
the second case is realized. The difference of the formulas 
(27) and (28) is a consequence of the fact that the lithium 
spins play different roles in the spin dynamics. In the second 
case the interaction of the fluorine spins with one another is 
stronger than all other interactions. It is the fluorine spin 
subsystem that plays the leading role (driving spins) in the 
dynamics, while the lithium spins play a secondary role 
(driven spins). In the first case this is not so and both spin 
systems play an equivalent role: both are driving spins. 

Substituting Eq. (27) or (28) into Eq. (25) we find for the 
driving spins 

For the driven spins only the exponents can be found from 
the relations (28) and (25): 

The foregoing analysis says nothing about the coordinate 
7, of the singularity. It can be found from the power series 
for the AFC: 
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TABLE 11. Computed values of the parameters determining the form of the 
principal parts of the correlation functions (24) for LiF. 

whose convergence radius is 7,. This approach is used in the 
physics of critical phenomena for determining the critical 
exponents from high-temperature expansions.29 We shall em- 
ploy the formulas for the convergence radius with known 
exponent a of the singularity (in Eq. (24) a=1;,(,) ,x,(,)) 

The series (31) can be used to find the missing coefficients 
for the driven nuclei, using the formula 

We obtain a system of recurrence relations for the coef- 
ficients of the series (31) (moments) by substituting the se- 
ries into the system (19)-(21) and equating coefficients with 
like powers of the time: 

Parameter 

Yp = bp 
(P 

c , ) , ( A ~ ~ ) ~ J ,  

C,,(AFF)X~' 
c , ~ ( A ~ ~ ) ~ Y  

T?*? 1 11 FF , ~ , H K C  

Hu I [I001 

Moments up to 50th order were calculated, and the param- 
eters r0 and CmLi were calculated from the moments using 
Eqs. (32) and (33). The values of these and other parameters, 
determined above by Eqs. (27)-(30), are presented in Table 
11. 

We now estimate by how much the parameters of the 
principal parts of the ACFs change when the terms in the 
series for Gmp(t) which were dropped in Eqs. (20) and (21) 
are taken into account. Consider GfLi(t) (Appendix B). Sub- 
stituting into its integrand the expression for the principal 
parts (24) of the ACFs we obtain 

Ho I I  [I101 

F 
2 
2 

3.3516 
3.5006 
1.0212 

For the [ I l l ]  and [I101 orientations, the exponent of the 
small quantity in Eq. (35), after the double integration is 
performed and taking into account Eq. (30), will be 4xLi-2. 
The first term retained in Eq. (21), ~!2L)i(t), will have the 
larger exponent 2xLi+2, since xLi<2 in these orientations. In 
each successive term in the series GzLi(t) two additional 
time integrations and a factor ( r0+i tn) - (~ i  or 
( r O +  itn)-XLi appear in the integrand. As a result, premulti- 
plication by a small quantity raised to a positive power ap- 
pears. All terms beyond the first term in the series for 
GzLi(t) can therefore be dropped near the singularity. The 
same result is also obtained in these orientations for the se- 
ries GxLi(t) - GOLi(t). 

For the [loo] orientation xLi=CLi=2, and we find for the 
principal part of the integral (35) 

F 

2 
2 

1 1 / &  
2& 

2 

HO / I  [ I l l ]  I 
LI 

2 
2 

2.881 1 
2.8818 
0.1007 

Substituting numerical values we obtain 5zLi-5.10-4. For 
G$(t) - GbYi(t) we find 

Li 

0.7838 
-0.4324 
0.6198 
0.6195 
-0.1205 

F 

2 
2 

1 1 / &  
2 6  

2 
1.27 
27 

For the fluorine ACF the singularit exponents equal 2 in all 6) orientations, and for this reason GmF(t) near a singularity is 
determined by the relation (36) with the coefficients tZF and 
txF,  where tzF=0.033 in the [loo] orientation and 0.065 in 
the other two orientations, and txF = 0.3 9 in all three orien- 

3.397 
36 

Li 

0.1226 
-1.7548 

1.637 
1.638 
0.157 

tations. 
It is not so obvious that the terms omitted from the series 

for Gxp(t) are small. The subsequent terms in the series must 
indeed be taken into account when equations of the form 
(17) are used. Switching to the form (18), however, we al- 
ready took into account via Go,([) a large part of the series 
for Gxp(t), associated with the zz interaction. For example, 
in the homonuclear ca~e"~*~O an estimate gives a 2.5% 
change in r0 after such terms are dropped in Eq. (18), as 
opposed to a 15% change in the case of Eq. (17). In the 
heteronuclear case, the interaction .KIs enhances the role of 
the zz interaction, increasing the accuracy of the first- 
approximation equations (19)-(21). 

5.626 
45 

5. HIGH-FREQUENCY ASYMPTOTIC BEHAVIOR OF THE 
SHAPE FUNCTION f (w) 

We are now in a position to determine the form of the 
desired function f (w)  for the rates of different cross- 
relaxation processes for large detunings. Since the coordi- 
nates of the singularities are the same in all correlation func- 
tions, in Eqs. (22) and (23) f i  is the sum of the exponents of 
the singularities, and C is the product of the coefficients of 
the principal parts (24) for the ACFs of the spins participat- 
ing in an elementary event of the corresponding cross- 
relaxation process. For two-spin cross-relaxation (10) 

599 JETP 79 (4), October 1994 V. E. Zobov and A. A. Lundin 599 



and for one-spin cross-relaxation (11) 

%o-spin cross-relaxation is more difficult to observe 
experimentally than one-spin relaxation. For this reason, 
one-spin relaxation, usually termed cross-polarization, has 
been studied in greatest detai1.11'24'25730-32 To observe it, a 
strong rf field at the resonant frequency of the I spins is 
applied to the system and the rate of change of the tempera- 
ture of the Zeeman reservoir, which is produced by the rf 
field in a rotating coordinate system, and the temperature of 
the dipole-dipole-interaction reservoir are measured. The I 
subsystem consists of the nuclei of the rare isotopes11,24,25930 
or nuclei with a small gyromagnetic r a t i~ .~ l .~*  In either case 
the interaction BIl can be neglected, compared to the inter- 
action Xss. After this, we return to the dynamics of the 
homonuclear system2' in all of the cases listed above, except 
Ref. 24. In Ref. 24 the rf field also acts on the nuclei of the 
rare isotopes 6 ~ i ,  but in the LiF crystal under study, cross- 
polarization now occurs in a system which consists of two 
types of n~clei-~l i  and 19~-and is described by Eqs. (19)- 
(20). In this case we find 

In Eq. (39) we replaced A;, for 6 ~ i  nuclei with 7 ~ i 7  and 1 9 ~  

nuclei by the expressions for 7 ~ i  nuclei, since both nuclei 
occupy the same sites and the differences hiq reduce to pre- 
multiplication by the constant y ZLd y :Li. The shape function 
f(o) will consist of two terms of the form (23) with the 
parameters lF, CzF and lti, CrLi presented in Table I1 for 
three orientations of the field. In particular, in the [Ill] ori- 
entation chosen for the experiment, we have 

In Eq. (40) and in the similar formulas (44) and (46) the 
frequency v is given in kHz. As a result of this substitution, 
f ( ~ ) = 2 ~ -  1 0 3 f ( ~ ) .  

As a more complicated example, we consider three-spin 
cross-relaxation in LiF between the Zeeman reservoirs of the 
7 ~ i  and 1917 nuclei in a constant field H,. pershanU measured 
the field dependence of this relaxation rate. In an elementary 
event, the z projections of two lithium spins and one fluorine 
spin undergo changes of opposite sign. The effective pertur- 
bation operator (7) for such harmonic cross-relaxation is ob- 
tained in second-order perturbation t h e ~ r y . ~ , ~  We now sub- 
stitute Eq. (7) into Eq. (3). First, we drop terms containing 
lattice sums with loops from the couplings. Second, the term 
with j = 1, responsible for the change in the projection of one 
lithium spin by two units, is dropped, since the summation 
over the lattice indices in this term is smaller than in the 
retained term, and its value will be Z times smaller (Z is the 
number of neighbors). 

The result is obtained in the form of a series. This series 
appears as a result of the presence of two lithium spin op- 
erators in the perturbation for the same reasons as the series 

for the kernel of the memory function of the integral equa- 
tion (17). The first term in the series has the simple form 

The second term in the series is 

Here we have introduced a coefficient k<l.  The point is that 
the perturbation V ;  contains terms in which two lithium nu- 
clei interact only with a fluorine nucleus. Their contribution 
to the terms (42) contains a loop from the couplings, which 
is why the coefficient in front of the formula decreases. For 
high-order terms in the series, the factor in front of r z d t )  in 
Eq. (42) has the same structure as G:z)(t), but it is not 
identical. From the fact, proved above, that for G!:)(t) is 
smaller than G!:!(') n> l ,  it follows that the correction terms 
to the leading contribution Fil)(t) (41) are small, so that in 
subsequent calculations we retain only this contribution. 

Substituting into Eq. (41) the principal parts of the AFC 
(24) which were determined above, we find in Eq. (22) and 
(23) 

In particular, from Table 11 we find for the [Ill] orientation 

f3(v)=9.59- 10-21v(1.25 exp(- ~ ~ 1 ~ 1 2 ~ .  lo3). (44) 

Finally, we consider the results of the interesting experi- 
ment of Refs. (26) and (27), performed in the same hetero- 
nuclear system of a LiF crystal. In these papers it is not the 
cross-relaxation rate that is studied, but rather the AFCs 
which according to the theory developed here, determine 
these rates. The spectrum of the AFC (19) of the 'Li nuclei 
was determined from the dependence of the asymmetry of 
the pemission from these nuclei on the frequency of the rf 
field. The 'Li nuclei occupy the same lattice sites as the 7 ~ i  
nuclei, and for this reason the ratios of the quantities A;, 
(16) for them is 

2 2 p= y nfily7,=0.14. 

The ratio of the exponents of the AFCs (19) of these nuclei 
will be equal to the same number. Hence there follows a 
simple relation between the functions themselves: 

r @ ~ i ( t )  = [ r 0 7 ~ i ( t ) l ~ -  (45) 

Substituting Eq. (24) into Eq. (43,  we obtain the principal 
part and the wings of the spectrum in the form (22) and (23) 
with the parameters 

P= YXL~ C =  (CXfi)'. 

In particular, for the [ I l l ]  orientation 

6. DISCUSSION AND COMPARISON WITH EXPERIMENT 

The theoretical frequency dependences, calculated using 
the formulas (40), (44), and (46), for the three cases consid- 
ered are displayed in Fig. 1 together with the corresponding 
experimental data from Refs. 23-27. 

600 JETP 79 (4), October 1994 V. E. Zobov and A. A. Lundin 600 



LiF 

0 10 20 

FIG. 1. Normalized shape functions of the frequency dependences of the 
cross-oolarization rate of 6 ~ i  nuclei (I), the three-spin cross-relaxation rate 0 10 20 30 w 

(2), &d the spectrum of the autocokelation function of ' ~ i  nuclei (3) in a 
LiF crystal with EI&lll]. The dots represent the experimental results of 
Refs. 24, 23, and 26, respectively. The solid lines represent the theoretical 
curves with r0=45 p and the dashed curves represent the theoretical curves FIG. 2. Normalized shape function of the frequency dependence of three- 
for r0=55 p. The frequencies on the frequency scale at the top are mul- spin cross-relaxation for a LiF crystal for three orientations of the field &. 
tiples of 7,' with 7,=45 p. The frequencies are multiples of 117, with &l[111]. 

The theory correctly conveys the relationship among the 
shape functions observed in the three different experiments. 
This also confirms the important result of the theory that the 
high-frequency asymptotic behavior is universal. According 
to this result, the rates of any cross-relaxation processes with 
large detunings and the wings of the spectra of other corre- 
lation functions, referring to different spins of the same spin 
system, have the same exponential factor, and the diversity 
of shapes is determined completely by the difference of the 
preexponential factors in Eq. (23). For /3= 1 the plot of f  (o) 
in semilogarithmic coordinates will be a straight line, for 
/3>1 the plot bends and shifts upward relative to the straight 
line, and for /3<l it shifts downward, becoming, correspond- 
ingly, "Gaussian-like" or "Lorentz-like." 

As another illustration of the role of the preexponential 
factor, the frequency dependences of three-spin cross- 
relaxation for three orientations of the magnetic field relative 
to the crystallographic axes, as calculated from the formula 
(23) with parameters (43) taken from Table I1 are displayed 
in Fig. 2. In contrast to Fig. 1, the exponentials for the curves 
in this figure have differing exponents. The ratio of the rates 
in the three orientations in Fig. 2 agree qualitatively with 
Pershan's experiment,23 the strong bending of the [I001 
curve being explained by the high power of the frequency 
(us) in the preexponential factor, which, in turn, was ex- 
plained above by the change in the role played by the lithium 
nuclei in the spin dynamics. 

In contrast to the last example, the frequency depen- 
dences of the cross-polarization rate of 4 3 ~ a  in the homo- 
nuclear system CaF2 (Ref. 30) in the [110] and [Ill] orien- 
tations have the same form and differ only by the scale of the 
characteristic frequencies, which is determined by the change 
in M2. The theory expounded above makes it possible to 

explain the large differences in the observed anisotropy in 
the two types of systems. In homonuclear systems, the expo- 
nents of the singularities of the ACFs and the relation 4 M2 
for their coordinates remain the same when the crystal is 
rotated in a magnetic field, while in heteronuclear systems 
both the coordinate of the singularities 4 M2 of the AFC and 
the exponents of the singularities of the guided spins change 
when the ratio of the homo- and heteronuclear contributions 
to the dipole-dipole interaction changes. The exponents be- 
come fractional and can even change sign, as a result of 
which qualitative changes occur in the frequency depen- 
dences of the observed quantities. 

As is evident in Fig. 1, there are quantitative discrepan- 
cies between theory and experiment. These discrepancies 
probably result not only from the fact that the real system is 
not big enough but also because the number of neighbors in 
it is limited. Estimates made in Ref. 33 for Bethe lattices 
showed that as the coordination number Z decreases, 70 will 
increase and the parameters p and C in Eq. (23) will also 
change. Increasing r ,  from 45 ps to 55 ps indeed decreases 
the discrepancy observed in Fig. 1 in the case of three-spin 
cross-relaxation. The greatest difference in this case is deter- 
mined, first, by the highest detunings and, second, by the fact 
that in an elementary event, the spin flip occurs in opposite 
directions. The form of the function F 3 ( t )  is therefore deter- 
mined by the difference between the local fields, which de- 
creases more rapidly with distance than the local field itself, 
which determines the form of the one-spin correlation func- 
tions in the other two cases. 

Better agreement between the theoretical and experimen- 
tal curves can be obtained by varying the parameters 70, /3, 
and C. One can hope to obtain ultimately the true values of 
the parameters. In the present work we shall not do this, 
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since, on the one hand, to extract reliable values of these 
parameters, experiments in which the spin-lattice relaxation 
times of the participating reservoirs are measured simulta- 
neously must be performed. On the other hand, the integral 
equations (19)-(21) must be solved numerically to obtain 
not only the wings but also the central part of the shape 
function f(w), since any deviations from the asymptotic be- 
havior in the mathematical sense can be large, as, for ex- 
ample, in the cross-polarization experiments24 (curve 1 in 
Fig. 1). We performed such a calculation for a homonuclear 
system2', and the discrepancy between theory and experi- 
ment did indeed decrease. The correctness of the calculation 
of the central part of the shape function f(w) from the for- 
mulas obtained above requires explanation. The point is that 
if the detunings are too small, the perturbation theory may no 
longer be applicable, and in deriving the equations for the 
correlation functions all parts of the Hamiltonian would have 
to be retained.17>'' Such restrictions exist for the three-spin 
cross-relaxation in Fig. 1, whereas in the two other cases 
(curves 1 and 3) the difference between the resonance fre- 
quencies of the main I and S spins remains constant and 
large, and the varying frequency refers to the 6 ~ i  or ' ~ i  im- 
purity spins, which act as probes of the I-S system. 

A theoretical interpretation has been given for each ex- 
perimental curve presented in Fig. 1. ~ e r s h a n ~ ~  proposed that 
the shape function f(w) is a Gaussian function and he de- 
scribed successfully the experimental field dependences in 
the [Ill] and [I101 orientations but not the [loo] orientation. 
To reproduce the latter field dependence,  rant^^ formed the 
convolution of a Gaussian curve with a broadening function 
of the interaction between the spins participating in an el- 
ementary cross-relaxation event. Both authors employed the 
second moment of the Gaussian function as an adjustable 
parameter. Stokes and ~ i l i o n ~ '  represented the function f (w) 
as a sum of two exponential functions of the frequency from 
fluorine and lithium nuclei with theoretical second moments. 
Finally, Bulgakov et aL2' successfully described the spec- 
trum of the AFC of the ' ~ i  spin by means of the Anderson- 
Weiss formula5 with the correlation function of the z com- 
ponent of the local field chosen on physical grounds. 

Among other theoretical approaches to the calculation of 
cross-relaxation rates, we call attention to Refs. 17 and 18, 
where nonlinear integral equations of the type (17) are de- 
rived, but with a more complicated series for the memory 
function, since the authors retain the contributions with loops 
from the couplings and they also retain nonsecular terms in 
the Hamiltonian. Inclusion of the nonsecular parts is justified 
for small detunings, while for large detunings the result ob- 
tained is the same as with the perturbation theory (1)-(3). 
The authors do not use their complicated equations to calcu- 
late the correlation functions when finding the cross- 
relaxation rate, but rather they replace them with a Gaussian 
function. 

The fundamental difference from our theory is that the 
results required to explain the experimental frequency depen- 
dences, both the frequency dependences considered above 
and any other, similar dependences, follow from the theory 
without any additional assumptions after restrictions on the 
motion of the interacting spins were imposed from the out- 

set. The theory then makes it possible to understand better 
the dynamics of the spin system considered and to under- 
stand more clearly the meaning of some of the assumptions 
made in other works. First, it was shown that for a local 
Gaussian field in dense systems of interacting spins, the 
shape of the spectra of the correlation functions is not nec- 
essarily Gaussian, but rather the central part can be either 
narrow or broad, with the wings necessarily being exponen- 
tial. Second, it is now understandable why Lorentzian corre- 
lation functions 

give a good description of in which 
exponential frequency dependences were observed, even 
though experimentally different dependences, most often ex- 
ponential, are observed for long times.35 The equations (17)- 
(21) lead to solutions with an exponential time dependence 
in the limit t--+a on the real axis. On the imaginary axis this 
solution has singularities (22), which are symmetrically dis- 
posed with respect to the origin and whose sum can indeed 
give a Lorentzian function for the principal part in the spe- 
cial case P = l  To obtain exponential wings in the spectra, 
however, it is not at all necessary, as shown above, that this 
function have the same form over the entire complex-time 
plane. Third, the theory corrects the results of Ref. 25 for 
cross-polarization: it shows that instead of the sum of two 
exponentials with different exponents for lithium and fluo- 
rine nuclei, it is more accurate to use two terms in the pre- 
exponential factor (40). 

In summary, a dynamical theory which makes it possible 
to calculate from a unified standpoint the detuning depen- 
dences of the rates of different cross-relaxation processes, as 
well as the spectra of other correlation functions in a hetero- 
nuclear spin system, has been constructed. For model infinite 
lattices the theory is strictly microscopic. For real systems it 
serves as an approximation of the self-consistent Gaussian 
fluctuating local field, and it has a number of advantages 
over existing theories for calculating the temporal correlation 
functions and primarily the far wings of their spectra, for 
which simple analytical expressions have been obtained. An 
important result of the theory is that the exponential cofactor 
in such expressions, which describe the frequency depen- 
dences of the rates of different cross-relaxation processes and 
the spectra of the correlation functions of different spins in a 
single system, is universal. This result agrees with experi- 
ment. The preexponential factor determines the observed di- 
versity of the shapes. The form of the frequency dependence 
of this factor changes not only from process to process, but 
also when the crystal is rotated in a magnetic field. 

APPENDIX A 

In this appendix we estimate the lattice sum on a 
d-dimensional simple cubic lattice for a loop with m nodes 

1 
S,rn=- m . .  Z . bili2bi2i3.*.bimi,, 

11 .'2,...lm 

where N is the number of nodes and bii=O. Switching in Eq. 
(Al) to the reciprocal lattice vectors k we obtain 
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where 

ri is the coordinate of the ith node, lengths are given as 
multiples of the lattice constant, and the integration extends 
over the volume of a d-dimensional hypercube with edge 
length 2rr. 

We consider two cases: 
1) nearest-neighbor interaction 

d 

b(k)=2b 2 cos k,; 
a= 1 

tions over the lattice indices have n +l nodes connected by 
double bonds b;j. In the leading order in the number of near- 
est neighbors such lattice sums can be expressed as 

Thus, in the limit Z--+w the lattice sums for a loop equal 
z ( "+ ' ) /~  if the number of nearest neighbors increases as a 
result of the dimension of the space and Zn if the number of 
nearest neighbors increases as a result of the interaction ra- 
dius in a space of finite dimension, and in both cases sums 
without loops equal Zn. Therefore, the lattice sums with 
loops are negligible in the case of the first method of increas- 
ing Z and they must be retained in the second method. 

APPENDIX B 

2) same interaction inside a d-dimensional hypercube 
with edge 2ro (ro91) 

d 

b(k) = 2db sin(karo)lka. 644) 
a= 1 

In the first case we find for even rn 

d(d- l ) (d-2)  ... d-C.  p,+l rn! 
sdm= b m x  

i 1 
pl!p2! ... p1!(2!)2p2(3!)2p3 . . . ( z ! ) ~ P ~  ' 

(AS) 

where the summation extends over all possible partitions of 
the integer rn = 2 ~ : = , ~ , ~  into p, pairs, p2 quartets, and so 
on, under the constraint Z,p,Sd. The formula (A5) can be 
simplified in limiting cases: 

where Z = 2d. 
In the second case we find 

where now z=(2r0 ld .  To high accuracy, the upper limit of 
the integral can be extended to infinity. Then 

~ ~ ~ = ~ ~ b ~ ( 3 / 4 ) ~ ,  ~ ~ ~ = ~ ~ b ~ ( 2 / 3 ) ~ ,  (As) 

and for rn9d 

sdm=zm-l b [6/rr(rn + l ) ldJ2.  

We note that in the real lattice sums appearing in the 
expression for the moment of order 2n, the maximum value 
of m will be m = n + 1, and some of the couplings bij in Eq. 
(Al) will be raised to the second power. For the types of 
distance dependences of bij which we have chosen, this 
leads only to bm being replaced by b2("-')= b2" in the co- 
efficients of the formulas (A5)-(A9). 

We now estimate the lattice sums without loops, i.e., 
sums for diagrams with a tree topology. For the 2nth mo- 
ment, trees with the maximum possible number of summa- 

The kernel or the memory function of the integral equa- 
tion (17) can be represented by a series9 

m 

Gm(t)=  2 ~:") ( t ) ,  (B1) 
n=l 

where cCn)(t)  is a sum of integrals of the products of (2n 
- 1) autocorrelation functions Tm,(t) and n correlation func- 
tions gmk(t) of the local Gaussian field (14) and (15) of the 
following form: 

A separate term in the diagrammatic representation cor- 
responds to an irreducible dressed skeleton diagram16-l8 
with 2n vertices, and ~:")( t )  is the sum of all such dia- 
grams. As an illustration, we present the diagrams for the 
first two terms of the series for G,(t) :  

The time variables appearing in the expression (B2) 
to = t,tl ,tZ , . . . , t2n - 2,tZn - = 0 are arranged left to right 
along the 2n vertices of the corresponding diagram. Each 
segment between successive vertices tl  and t l +  corresponds 
to a factor in the first product and each arc connecting the 
vertices tlk and tll corresponds to a factor in the second prod- 

uct. The value of the indices rn, and mk is determined by the 
form of the lines in the diagram: x for solid lines, y for 
dashed lines, and z for dot-dashed lines. The rules for con- 
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strutting the diagrams and all diagrams with n = 3  and n = 4  
were derived in Ref. 9. The diagrams for Gx(t) and G,(t) 
are obtained from Eq. (B3) by cyclically permuting the indi- 
ces x ,  y ,  and z of the lines. 

We do not give the index for the type of nucleus (I, S, 
etc.). The result for nuclei of each type is obtained from the 
general formulas (B2) by substituting expressions for the 
correlation functions of the local field (14) and (15) corre- 
sponding to a given nucleus. 

In a local Gaussian field, we retain only the z projection. 
In this case the first few diagrams of the diagrammatic series 
for the memory function Go(t) are as follows: 

The solution of Eq. (17) with such a memory function will 
be the function ro(t). Laplace transforming Eqs. (17) for 
rx(t)  and ro(t), we obtain the system of algebraic equations 

where s is the Laplace transform variable. Dividing one 
equation by the other, we obtain 

Transforming Eq. (B4) back to the time domain, we obtain 
Eq. (18). 

We note that the formal transformation, described above, 
remains valid for any other pair functions rh(t) and GA(t) 
satisfying Eq. (17). The desired form of Eq. (18) can be 
achieved by making appropriate choices of such functions. 
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