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The two-dimensional Ising model is used to calculate the dependence, at the transition point, of 
the thermodynamic potential on the number of particles for the case where the latter is 
finite. The potential, together with all its derivatives, is found to be continuous but is not additive. 
The results obtained are shown to be related to the critical exponent and the effective 
Hamiltonian of the continuous model. O 1994 American Institute of Physics. 

A second-order phase transition (and any phase transi- 
tion in general) is sometimes said to be possible only in 
unbounded systems.'.2 The partition function and the re- 
lated quantities are regarded as a result of the transition to 
the thermodynamic limit V + m (NIV=const). On the 
other hand, the more physical case involving a finite number 
of particles is the one realized in practice. In this situation, 
however, thermodynamic functions must have no singulari- 
ties at any finite temperature.2 True singularities must there- 
fore manifest themselves in the transition to the limit 
N + ca. Thus, near the transition temperature1) the thermo- 
dynamic potential of a system with a finite number of par- 
ticles N must have a component as a function of the number 
of particles and temperature (which depends parametrically 
on N) that is regular for N finite but has a singularity at the 
transition point as N + m. We will establish the form of this 
function for the two-dimensional Ising model and will at- 
tempt to generalize the result obtained. 

Clearly, this cannot be a linear function. Hence, we can 
assert that in a system with a finite number of particles in- 
volved in a second-order phase transition the thermodynamic 
quantities are not additive. The physics of this rests in the 
fact that near the transition temperature the fluctuations are 
large, so that small parts of the system3 are not statistically 
independent.4 For instance, the mean square of the fluctua- 
tions of an "additive" quantity f ,  that is, ((Af12), is deter- 
mined not only by the N terms of the sum c.:= ,((A fi)2) but 
also, generally speaking, by nonzero terms (A fiA fk ) i+k .  If 
the correlation radius proves to be of the order of the system 
size, we have ((A f ) 2 - ~ 1 + E )  ( E > O ) ,  and the contribution 
of fluctuations to the thermodynamic quantities becomes 
nonadditive. 

We now carry out direct calculations for the Ising model 
by using Onsager's solution following Ref. 5 (see also Ref. 
2). It is immediately clear that for finite values of N the 
thermodynamic quantities in the Ising model can have no 
singularities since the partition function is reduced here to a 
finite (but large) number of terms that are continuous with all 
their derivatives (in this connection see the statements con- 
cerning a lattice which is infinite in the direction parallel to 
one of its axes6-'). We now examine the partition function 
of a square lattice ( n 2 = ~ ) .  Its calculation reduces2 to find- 
ing the quantity 

where the yk are the positive solutions of the equations 
( k =  1,3, ..., 2n - 1 )  

where J is the spin-spin coupling constant, and T the tem- 
perature. It is found that y1 < y3< ... < y2n-1. The usual way 
to write the sum in the parentheses in Eq. (1) is 

n 2 n  '77 
lim i: y ( a )  d a  (; (2k- l )*a  

n - m  k= 1 1 
(3) 

or, since Eqs. (2) imply y ( a )  = y(2 '77- a ) ,  

Under such a transition the singularity in the thermodynamic 
functions (at n = m) originates in the lower limit of integra- 
tion in (4). But for n finite instead of (3) we have (from the 
Euler-Maclaurin formula) 

since the first and last terms in the sum are, respectively, 
y k  = y(.rrln) and y2,_ = y ( r ( 2 k -  1) ln) .  That we can ap- 
ply the Euler-Maclaurin formula follows directly from the 
fact that all the derivatives of the functions y ( a )  exist and 
are continuous for 0 < a< 2 T ,  while the terms left out and 
denoted by three dots, 

and 

k=1 ,2 ,  ... 

(the Bk are Bernoulli numbers), vanish in view of (2). As for 
the form of the Euler-Maclaurin formula proper in this case 
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(without the remainder term), it is justified by the fact that all 
the even-order derivatives of the function y(a)  are of the 
same sign.9 Indeed, for the most "risky" value 
cosh 2q~ coth 2g= 1 Eq. (2) yields 

sin a sin a a 

If we now recall the well-known expansion 

we can easily see that all the even-order derivatives of 
y(a)  for small values of a are negative. 

Thus, for n finite Eq. (3) implies 

where 

cosh y(a)=cosh 2 q  coth 29-cos a. 

Next, as is common practice, we use the well-known repre- 
sentation 

and, proceeding with the calculation of the thermodynamic 
potential, we arrive at the following expression for its singu- 
lar part: 

F .  =-- d 
slng a\)ar ln(cosh 2 g  coth 2 9  

-cos a'-cos a ) .  (7) 

As with the zero lower limit in the inner integral in (7), we 
must assume that the phase transition occurs when the argu- 
ment of the logarithm is at its minimum; because the lower 
limit of integration is S this minimum is now nonzero and 
equal to $3' for small values of S (to within the sum of the 
terms of the next even orders). Thus, expanding the argument 
of the logarithm in (7) near the minimum in a series of pow- 
ers of t =  T- T,, a ,  and a', we obtain 

where c is a constant. Integrating in (8), we arrive at the final 
expression for FSi ,  in the form (a and b are constants) 

From (9) it follows that the singular part of the potential is 
not additive, is continuous along with all its derivatives (as it 
should be), and assumes the conventional form as N+m. It 
can also be seen that the very form of the argument of the 
logarithm in (9) immediately relates this result to the theory 
based on critical exponents. Indeed, bearing in mind that 
N-L2 (here L is the linear size of the system) and the fact 

that as t+O and rc+m we can assume that r,-L, for a 
certain value of z we can write the following: 

( t 2 ) z ~ t - Y ,  L + CQ, t#O, 
(10) 

(L-~)'KL, L # m, t+O, 

so that by excluding z we immediately get v =  1, as expected. 
We could have also used Eq. (9) directly to find the scaling 
size A, (Ref. 3) from the condition that both terms in the 
argument of the logarithm get multiplied by the same num- 
ber under the scaling transformation r -+ rlu. This yields 
A,= 1, that IS, agaln V =  1. 

Returning to Eq. (9), we note that the dependence on the 
number of particles contained in it could be obtained much 
more simply if we were to use the method of solution of the 
two-dimensional Ising model employed by ~dovichenko'~ 
(see also Ref. 3). According to that solution, the expression 
for the thermodynamic potential incorporates the following 
quantity as a separate term (here x =  tanh(JI7)): 

so that for n finite in passing to integration the variables 
p,q=O, 2.rr should be excluded because the spins at the 
edges of the lattice are not of the same status as the other 
spins. In this case, however, the result could be considered 
only as a not-too-rigorous estimate because the boundary 
effects are ignored, which is characteristic of the given 
method.2) It can easily be verified that in such a calculation 
the critical temperature (which corresponds, as it did earlier, 
to the minimum of the argument of the logarithm) is shifted 
to the left relative to T ,  (N=cQ) by a quantity of order 1lN 
(assuming, obviously, its usual value for N -+ 03). The first 
to notice the presence of this shift were Fisher and 
~erdinand," who in order to estimate it also did calculations 
that ignored lattice edges. 

Finite-size effects in connection with critical behavior in 
thin films have been discovered both t h e ~ r e t i c a l l ~ ' ~ ~ ' ~  and 
e ~ ~ e r i r n e n t a l l ~ . ' ~ ~ ~ ~  The main result is reduced to the state- 
ment about the finiteness of specific heat at the transition 
point (thanks to the small thickness of films this statement 
can be verified directly by experiments). 

More important, however, is the fact (briefly noted 
above) that the very form of Eq. (9) allows for certain gen- 
eral assumptions about critical phenomena in general and 
about relations linking critical exponents in particular. 
Indeed, we can assume that in a system with the 
effective Hamiltonian (not necessarily one-parameter) 
H( q;a,b, ..., T) a phase transition corresponds to a certain 
"summation" with a function F{G(a,b, ..., T) + K(V)} pos- 
sessing the following properties: it has a singularity when the 
argument is zero, the function G is regular, and K(V), as in 
Eq. (9), has the form K cc L-& (here, generally, it is not 
required that A be equal to d). Then the transition tempera- 
ture is such that at T=T, the function G has a minimum 
equal to zero (it is specifically to find such values of the 
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parameters, a *, b*, etc., at which this is possible that the 
method of the renormalization group is used, as is done in 
Ref. 16 for the s4-model). The expansion of G in a series 
near the minimum must not contain odd powers of t, since 
otherwise the argument of F vanishes even for finite dimen- 
sions of the system. Thus, we must expect all the respective 
physical quantities near T =  T ,  to have the form 

It is now clear that Eq. (11) is not only a means for 
finding the scaling sizes but also a source for obtaining the 
well-known relations linking the critical exponents. Indeed, 
bearing in mind the power-like nature of the singularities of 
physical quantities near the transition temperature, we obtain 
from Eq. (11) and, say, the fact that (l;l)-tS the following: 

Similarly, assuming that the dependence on an external field 
at t=O of the respective quantities is also given by an ex- 
pression of the form (11) with h instead of t and with, obvi- 
ously, another value of A, say A', we can easily (allowing 
for the fact that re-h-' holds in the case of "strong" fields) 
arrive at the equation 

Now, since for small values of t and h we can assume that 
re-L, we have 

which immediately results in the well-known relations 

It is important to note that these relations, as well as those 
obtained below that incorporate critical exponents, are en- 
tirely independent of the exponents in (11) and in the similar 
formulas for the field h. 

Moreover, since this approach makes it possible to ex- 
press the dependence of C, (q), etc. on the size of the sys- 
tem, it must also yield the finite-size scaling relations. 
12,17 Indeed, for, say, ( 77) we have 

If we now take the susceptibility of the system, 

and allow for the fact that ( V ) L ~  and Xi12~d" have the same 
scaling size: from (14) and (15) we obtain 

or, bearing in mind that a+ 2P+ y= 2, we have 

the well-known relation of scaling invariance. 
The formula 

for the Ising model determines how the total magnetization 
of a system depends on the system size at t=O. Since D is 
smaller than d and is not an integer, it is customary to speak 
of what has become known as fractal dimensioni7 and link it 
with certain geometric properties in the distribution of the 
order parameter (see also Ref. 18). Determining this quantity 
actually gives one more relation linking critical exponents. 
If, in addition, both exponents in (11) were known, we could 
find all the critical exponents in general. A numerical experi- 
ment to determine D is described in Ref. 19. For d =  2 it 
appears that D =  1.875, in complete accordance with the 
known values of the exponents. For d = 3  it appears that 
D-2.46. If for this case we put A = d  in ( l l ) ,  we immedi- 
ately find that v=2/3 and a = O .  For the other exponents we 
have the following: P= 0.36, y= 1.28, S= 4.56, E = 0, 
p= 0.41, and l= 0.08. 

We also note that the exponent A in (11) is probably 
close to d. Indeed, if addition to this assumption we assume 
that remtCV, we immediately get v=d/2, which agrees with 
the well-known theoretical and experimental results not only 
for d = 2 and d = 3 but also for v =  112 when d = 4 (see Refs. 
16 and 20). 

Another fact worth noting is that obtaining the above 
results, say (15), by employing expressions of the form (11) 
may be preferable to employing standard finite-size scaling 
expressions, which are used in conducting many computer 
experiments for various discrete models; see Refs 21 and 22 
(the Ising model; see also the many sources cited in Ref. 21) 
and Ref. 23 (the Gross-Neveu and Higgs-Yukawa models). 
For one thing, the common expression for susceptibility is 

where g(x) is a universal function whose argument is cho- 
sen, obviously, from the requirement that its scaling size van- 
ish (of course, g(x) is regular in the neighborhood of x = 0). 
qpically, however, it is extremely difficult to select a similar 
expression for the free energy, which, in addition, would 
agree with the exact solution of the two-dimensional Ising 
model. ~ r i v m a n ~ ~  took the expression for the free energy per 
unit volume from Refs. 11 and 12 and modified it in the 
following manner: 

Clearly, this expression cannot be considered satisfactory be- 
cause then f is not regular at finite values of L, which is 
impossible. (Fisher and ~ a r b e r ' ~  were the first to point out 
the need to include additional terms to remove the singulari- 
ties in expressions of this type for finite values of L .) Hence, 
the merits of using expressions of the form (11) to describe 
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finite-size effects, expressions that also correspond to the ex- 
act solution of the two-dimensional Ising model, appear ob- 
vious. 

The latter is also stressed by the following important 
fact. The Gaussian model with the ~ a m i l t o n i a n ~  

leads, as is known, to a true singularity in the thermody- 
namic quantities even for a system with finite V ;  the trivial 
dependence of the quantities on the volume here is a conse- 
quence of the homogeneity of the Hamiltonian density in 
7. On the other hand, the model with the effective Landau 
Hamiltonian 

HIE= [ ~ t ~ ~ + b + + g ( ~ ~ ) ~ ]  d V  

exhibits no such homogeneity. Since for positive values of b 
the corresponding functional integral is finite (in the Gauss- 
ian model the infinity appears as a result of summing over 
the variable 77 at t = 0 and k =  0), the singularity should ap- 
pear not as pronounced when the dimensions of the system 
are finite. After we pass to the Fourier transform vk and 
replace 7 7 k ~ 1 ' 2  with vk (this last transformation results in the 
appearance in the expressions for the thermodynamic quan- 
tities of an inessential volume-dependent additive term), the 
coefficient of the fourth-order terms is found to be equal to 
blV, so that all corrections caused by such terms are reduced 
to a series expansion in powers of 1/V (and, of course, are 
also functions oft) .  It seems quite plausible that the result of 
such calculations will closely resemble (11). This is also a 
direct indication of the merits of describing a critical singu- 
larity by employing the effective Landau Hamiltonian (in 
this approach at least the presence of a transition is obvious) 
in comparison to Wilson's approach, in which the Hamil- 
tonian density contains the term a v2 with a # 0 and the 
very existence of T ,  is a corollary of the fixed-point hypoth- 
esis and other far-reaching assumptions. The results of the 
present work show that here, too, the calculations of the type 

done in Ref. 16 must be modified by considering relations 
containing the finite size of the system explicitly. 
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"In this sense, the initial solution of Onsager is exact under the "toroidal" 
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Translated by Eugene Yankovsky 

This article was translated in Russia. It is reproduced here the way it was 
submitted by the translator, except for stylistic changes by the Translation 
Editor. 
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