
Physics of a two-temperature thermonuclear burning wave in an inertially confined 
plasma 

S. Yu. Gus'kov, D. V. Il'in, A. A. Levkovskii, and V. E. Sherman 

Leningrad Machine-Building Institute, I95108 St. Petersburg, Russia 

N. V. Zmitrenko 

Institute of Mathematical Modeling, RAS, 125047 Moscow, Russia 

V. B. Rozanov 

l? N. Lebedev Physics Institute, 11 7924 Moscow, Russia 
(Submitted 19 May 1994) 
Zh. Eksp. Teor. Fiz. 106, 1069-1088 (October 1994) 

Results are presented from numerical and analytical simulation of the propagation of a spherical 
thermonuclear burning wave in a plasma target used in laser thermonuclear fusion. The 
numerical simulation of the fast-particle kinetics was done using the Monte Carlo method. 
Estimates are found for the relative contributions of the different energy transport mechanisms for 
various plasma parameters. In the stage of a fully-developed burning wave, when numerical 
calculations reveal that ion-electron exchange is small, self-similar solutions are found for the 
thermonuclear burning wave in a dense spherical two-temperature plasma. The different self- 
similar burning regimes are classified and conditions are found for them to occur as a function of 
the plasma parameters behind the wave front. 63 1994 American Institute of Physics. 

1. INTRODUCTION 

The efficiency of an inertially confined fusion (ICF) tar- 
get is characterized by the gain coefficient K = E d E d ,  where 
E f  is the energy produced in the target as a result of thermo- 
nuclear reactions and Ed is the energy of the external source 
(driver) acting on the target. A high value of K  can be 
achieved by initiating a self-sustaining thermonuclear burn- 
ing wave propagating from the hot central region of the 
plasma through the surrounding cold fuel. In fact, in spatially 
uniform burning of a DT plasma the gain coefficient does not 
exceed -20-50. But if a burning wave develops in a non- 
uniform plasma this can enhance K  by a factor equal to the 
ratio of the mass of the cold fuel to that of the hot region in 
which the burn originally occurs. Such nonuniform burning 
regimes have been found repeatedly in numerical simulation 
of laser targets.'-3 In these calculations values K 2  100 were 
achieved with laser radiation of wavelength A S 1  pm for 
energies exceeding a few megajoules (2-7 MJ, depending on 
A). 

Thus, the development of a thermonuclear burning wave 
is one of the most important and interesting problems in the 
physics of ICF targets. To study this problem requires a self- 
consistent solution of the system of equations for the plasma 
hydrodynamics and the Kinetic equations for the thermo- 
nuclear particles. The mathematical complexity of the prob- 
lem, on the one hand, and the need to determine the func- 
tional dependence of the thermonuclear burning process on 
the target parameters on the other make it useful to employ a 
combined numerical-analytical approach. The numerical cal- 
culations of the thermonuclear burning wave in the present 
wave were performed using the TERA code,'-6 designed for 
the simultaneous solution of the equations of two- 

temperature plasma hydrodynamics with electron thermal 
conductivity and the kinetic equations for neutral and 
charged thermonuclear particles. The numerical solution of 
the kinetic equations for the thermonuclear particles in the 
TERA code is based on the use of a Monte Carlo technique. 

Our numerical calculations reveal that two characteristic 
stages can be distinguished in the development of a thermo- 
nuclear burning wave. The first stage is that in which the 
wave forms; it is characterized by a low propagation speed 
and a temperature which falls off or grows slowly behind the 
front. The second stage is that in which the wave is fully 
developed; it is characterized by a rapid rise in temperature 
and a fast rate of propagation, greater than the speed at which 
the target expands and the speed of sound behind the front. 
In this stage the intensity of ion-electron energy exchange is 
reduced, and a two-temperature plasma develops. 

The analytical solutions of the problem found in the lit- 
erature for a thermonuclear burning wave in a bounded 
plasma apply to the description of the initial one-temperature 
stage of the process. In Refs. 7-14 approximate solutions for 
different energy transport mechanisms, such as electron ther- 
mal cond~ct ion ,~-~  conduction by a particles,8-" and 
detonation12 were constructed in the case of a partially non- 
uniform plasma (one in which the temperature varied spa- 
tially). In Refs. 8 and 9 self-similar solutions of the problem 
were derived for the general case of a nonuniform plasma 
(variable temperature and density). Some self-similar solu- 
tions for two regimes in which thermonuclear burning waves 
propagate (sub- and supersonic) were treated in Refs. 13 and 
14. We note also the treatment in Ref. 15, in which the self- 
similar solutions of the quasilinear thermal conduction equa- 
tion were classified. 

The present work is devoted to the analytical investiga- 
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tion of the processes by which thermonuclear burning waves 
propagate in a dense spherical two-temperature plasma in the 
stage in which intense energy production occurs, using self- 
similar solutions. The problem was formulated and the ap- 
proximate mathematical physics of the thermonuclear burn- 
ing wave was chosen on the basis of a set of numerical 
calculations of the ICF target burning dynamics carried out 
using the TERA code. 

2. NUMERICAL CALCULATIONS OF THE BURNING WAVE IN 
A LASER THERMONUCLEAR TARGET 

2.1. Choosing the approximate model 

The mathematical model of the thermonuclear burning 
problem in a spherical target employed in the TERA code is 
described by the equations of energy balance and motion, 
together with the equations of state, continuity, and the qua- 
sisteady kinetic equations for fast thermonuclear 
In the Lagrangian coordinate system dm = p(r)r2dr  [here 
p(r)  is the plasma density] the Euler equation for two- 
temperature one-fluid hydrodynamics can be written in the 
form 

Here u(r, t)  is the local material velocity, V(r,t) = l lp ( r , t )  
is the plasma specific volume, P( r , t )  =Pi+Pe is the total of 
the ion and electron pressures, and F ( r , t )  is the pressure 
force due to fast thermonuclear particles. 

We describe mass transport by means of the continuity 
equation, taking into account burnup, losses, and thermaliza- 
tion of the reaction products:5 

Here S(r, t)  is the source, describing loss of material due to 
burnup due to thermalization of fast particles: 

where uik is the cross section for the reaction between 
plasma nuclei of species i and k, and N, is the number of fast 
particles of species j thermalized per unit volume. 

The equations for ion and electron energy balance in the 
one-fluid two-temperature hydrodynamic approximation take 
the form5 

Here C, and C, are the specific heats of the electrons and 
ions, Te and Ti are the electron and ion temperatures, 

4 qe= - Kepr 6T,/dm, qi= - ~ ~ ~ r ~ d ~ , l d m  are the electron and 
ion thermal conduction fluxes, QRe, QRi(p,Te ,Ti) is the spe- 
cific energy imparted to the ions and electrons of the plasma 
by fast reaction products, and 7,(p,Te) is the characteristic 
time for energy exchange between ions and electrons. 

The dissipation rates (divergences of fluxes) for energy, 
momentum, and particle number are QRe, Q R i ,  F,  and N, ; 
they are given in terms of the known particle distribution 
functions fj(v,  r , p )  by the relations 

where p is the cosine of the angle between the radius vector 
and the particle velocity, ae=dvldtl,, a i=dvldt l i  are the 
Coulomb drag terms for a fast particle due to electrons and 
ions respectively, and mi is a particle mass. 

The quasisteady kinetic equations for the distribution 
functions f, of the fast ions and f n  of the neutrons take the 
f ~ r m ~ . ~  

Here W,(p,T,v), W, ,Wn,(r,v ,p,{fn ,f,)) are the sources of 
initial thermonuclear particles and recoil nuclei from elastic 
scattering of thermonuclear neutrons, uk(r ,v)  and unk(r,v) 
are the cross sections for secondary thermonuclear reactions 
between fast particles and plasma nucleons and for elastic 
scattering of neutrons on plasma nuclei, nk is the density of 
nuclei of species k, and aj(p,T,v)=aje+aji  is the Coulomb 
slowing-down rate. 

Equations (5) describe the kinetics of charged and neu- 
tral thermonuclear reaction products, taking into account 
their Coulomb slowing down, elastic scattering, and second- 
ary reactions with nuclei of the background plasma. Equa- 
tions (1)-(5) constitute a closed system, the solution of 
which yields a model description of the dynamics of the 
thermonuclear burning of the plasma. 

2.2. Choosing an object to study 

As shown in Ref. 1, targets in which the mass in the 
active region is M , > ~ o - ~  g, for which a value pR>2 g/cm2 
can be achieved, are promising for experiments with laser 
energies EL > 1 MJ. A high burning efficiency K- 200 -5 0 0  
can be achieved if the temperature of the central burning 
region (igniter) is Tf=lO-20 keV and the mass is 
mf-10-1-10-2~,. In addition, as can be seen from calcu- 
lations for direct compression of balloon targets,1'2'16-19 the 
pressure in the core of the target at maximum compression is 
approximately constant. 

Based on these ideas, we choose as the object of our 
investigation a model target with the following parameters at 
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FIG. 1. Radial ion temperature profiles Ti(r,t) at various times in ns, re- 
vealing the propagation of the thermonuclear burn in a model shell-free DT 
target with an isobaric igniter at the time of maximum compression. 

maximum compression, employed as initial  condition^:^ the 
radii of the active zone and igniter are R,=200 pm, Rm=20 
pm, the temperature and density of the igniter are Tf=15 
keV, pf=25 g'cm3, and of the cold DT plasma are T,=2 key  
pa = 200 g/cm3. 

The radial profiles of the electron and ion temperatures 
and the plasma density at various times are plotted in Figs. 
1-3, displaying the process by which the thermonuclear 
burning wave and the expansion of the cell-free DT target 
take place.5 Figure 4 shows the time dependence of the ion 
scale temperature Ti(O,t), the electron scale temperature 
T,(O,t), and the burning wave front radius RXt ) .  

By analyzing Figs. 1-4 we can distinguish two main 
stages in the development of the burning wave with isobaric 
initial conditions. 

FIG. 2. Radial electron temperature profiles T,(r,t) at various times in ns, 
revealing the propagation of the thermonuclear turn in a model DT target 
with an isobaric ignitor at the time of maximum compression. 

FIG. 3. Radial density profiles p(r,t) at various times in ns, revealing the 
disassembly of a model shell-free target with an isobaric igniter at the time 
of maximum compression. 

The first stage is that in which the wave formation is 
characterized by a low propagation speed ii(,<5.107 cmls 
and a temperature which falls off or grows slowly behind the 
front. Essentially there is no self-sustaining burn. 

The second stage is the one in which the fully developed 
wave or "flare" develops, when pRf and Tf attain values 
such that the energy release in the burning zone exceeds the 
energy losses due to thermal conduction. This stage is char- 
acterized by the violation of the isobaric conditions, a rapid 
rise in temperature, and a high speed of propagation 
~ , - 5 . 1 0 ~ - 1 0 ~  cm/s of the front, exceeding the velocity R, 
at which the target expands and the sound speed behind the 
front. 

FIG. 4. Time dependence of the ion and electron temperatures Ti(O,t) and 
T,(O,t) at the target center (solid trace) and also of the total radius R,(t) of 
the model target (broken trace) in the burning stage and in the expansion, 
starting at the time of maximum compression. 
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FIG. 5. Radial profiles of the ion-electron energy exchange intensity factor 
S(p,Ti ,T,) at various times in nanoseconds, corresponding to the develop 
ment of a burn wave in the model target. 

After the wave passes the target continues to bum for 
some time, but because of the sharp increase in the velocity 
R0 the burning quickly quenches, and a stage of cooling and 
target expansion sets in. 

2.3. Analysis of the numerical calculations 

The principal advantage of the Monte Carlo method em- 
ployed in the TERA code is the possibility of making a de- 
tailed study of the local properties of energy and momentum 
transport for the products of the thermonuclear reactions. 

Let us consider the ion-electron energy exchange in the 
target. As a measure of the intensity of the energy exchange 
we introduce the factor 

S ( ~ , T e , T i ) = ~ - e ~ p ( - ~ ~ , l C i e p ~ ~ )  (6) 

where At,-0.5 min(CeTAQRe,CiTiIQRi) is the typical time 
on which the plasma temperature changes, Ci,prT is the char- 
acteristic time for energy exchange between ions and elec- 
trons, and Cie= CiC$(Ci+Ce). 

Radial profiles of the energy exchange factor S at times 
corresponding to the numerical experiment described above 
are shown in Fig. 5. Active energy exchange (S- 1) occurs 
in the wave formation stage for Tf<15 keV. When the wave 
is fully developed energy exchange can be neglected ( S 4  1 )  
and the ion and temperature profiles develop relatively inde- 
pendently. 

Let us consider energy transport by thermonuclear par- 
ticles and plasma electrons. Radial profiles of the energy loss 
rate of the thermonuclear particles in the calculation per par- 
ticle of the background plasma, QR=(QRe + QRi)l(Ce+ Ci), 
and the divergence of the thermal conduction flux 
Qe-ilCi+ Ce6'q,Jdm are displayed in Fig. 6. From Fig. 6 it 
follows that in the initial stage energy transport at the front 
(r-Rf) and consequently the wave propagation speed, are 
determined mainly by energy losses of the charged particles, 
QR>Qe. When the wave is fully developed the primary 
mechanism at the front is thermal conduction: QR<Qe, and 
the energy loss by fast particles outside the burning region 
can be disregarded. 

FIG. 6. Radial profiles of the energy dissipation (divergence of the fluxes) 
per particle in the medium in the calculation due to the mechanisms of 
electron thermal conduction Q,  nanoseconds (broken trace) and fast-particle 
energy losses Q ,  (solid trace) at various times in ns, corresponding to a bum 
wave in the model target. 

The sign of the total energy dissipation rate behind the 
wave front (r<Rf) determines the condition for self-ignition 
of the target. For QR>(Qe( the burning wave is self- 
sustaining and the temperature Tf grows behind the front; for 
QR< lQel it damps. Thus, in the wave-formation stage in the 
region behind the front we usually have QR< lQel and Tf<O. 

We introduce the parameters f R(pRf, Tf) 
= QR/Qelr=R,, fo(pRf,Tf)=QR/IQeIIr=o, which depend on 
the dimension pRf of the front and the temperature Tf behind 
the front. The parameter f R  shows which energy transport 
mechanism determines the velocity of the burning wave for 
given values of pRf and Tf. For fR>l the main transport 
mechanism is via particles; for fR<l it is through thermal 
conduction. The parameter f o  determines the condition for 
self-ignition of the target for given values of pRf and Tf. For 
fo>l the wave is characterized by a temperature that in- 
creases behind the front, while for fo< 1 it falls off. 

The conditions fR(pRf ,Tf)=l, fo(pRf ,Tf)= 1 divide the 
(pRf ,Tf) plane into regions in which a burning wave is pos- 
sible with the corresponding properties. These regions, 
which were obtained as a result of the numerical simulation 
using the TERA code in a series of uniform-density model 
targets in Ref. 6, are shown in Fig. 7. 

As a result we can draw the following conclusions about 
the typical behavior of the thermonuclear burning wave in 
the various stages of its development, needed in order to 
choose an approximate physical model of the thermonuclear 
bum of a laser target when the laser energy is <10 MJ, and 
in the subsequent analysis carried out analytically: 

1. When the burning is fully developed the velocity of 
the wave front is considerably greater than the average hy- 
drodynamic speed (u) behind the front, dA(l(u) - 5 -7. When 
the wave is forming we have ~d(u)--1-2.  The plasma re- 
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FIG. 7. Range of temperature T and pR within which burning occurs, where 
one of the energy transport mechanisms dominates: above trace I ( f , > l )  
fast-particle energy losses dominate at the boundary of the burning region, 
determining the thermonuclear wave velocity; below the trace ( f , < l )  elec- 
tron thermal conduction dominates. Above trace 2 ( f o > l )  in the burning 
region fast-particle heating dominates; below the trace ( f o <  1 )  cooling due 
to thermal conduction dominates. 

mains approximately isobaric and the motion of the material 
has a substantial effect on the duration of this stage. Thus, an 
adequate description of energy transport in the target in the 
initial stage of the thermonuclear burning wave requires ex- 
act treatment of the motion of the material. When the wave is 
fully developed the motion of the target material can be dis- 
regarded and the wave propagates through the target with a 
velocity which is approximately constant. 

Note that the conditions imposed on the parameters of 
the burning zone, shown in Fig. 7, apply specifically to the 
stage in which the wave is fully developed, when the stage of 
the target can be regarded as isochoric (p=const); they can- 
not be employed to analyze the isobaric stage of wave for- 
mation. 

2. In the formation stage the burning wave velocity de- 
termines the particle transport (cf. Fig. 6), and in the stage of 
fully developed burning at high temperatures the main con- 
tribution to the energy transport at the front comes from the 
electron thermal conduction (see Fig. 7). The effect of the 
fast particles on the wave velocity becomes averaged out 
through heating of the active zone of the target and nonlinear 
effects in the thermal conduction mechanism. 

This means that in the stage when the wave is fully 
developed we can assume that the sources satisfy Q,,, 
Q,-0 for r>Rf in the energy balance equations. 

3. As can be deduced from Fig. 5, we can disregard 
energy exchange between ions and electrons in the plasma 
when the wave is fully developed. 

It is evident that the duration of both the first and second 
stages is determined by the initial conditions at the instant of 
maximum compression. If the formation stage is prolonged, 
then the target may not ignite because of quenching of the 
heat or because the target blows apart. 

Note also that, as shown by the numerical calculations 
using the TERA code, the fully-developed-wave stage con- 
tributes up to 80-90% to the total gain K. Consequently, the 
calculation can reasonably be continued only until the wave 

reaches the target boundary and the maximum target tem- 
perature is achieved, since the expansion stage yields only 
about 10-20% of the total energy release. 

3. SELF-SIMILAR DESCRIPTION OF A FULLY DEVELOPED 
THERMONUCLEAR BURNING WAVE IN A SPHERICAL 
TARGET 

3.1. Formulation of the problem 

Having in mind the main properties of a fully developed 
thermonuclear burning wave, we disregard the motion of the 
material, ion-electron energy exchange, and ion thermal con- 
duction. As a result the system of energy balance equations 
(3) of an isochoric (p=const) plasma can be written in the 
form 

where Qi and Q, are the rates of energy production from the 
thermonuclear particles and K,T: is the thermal conduction 
coefficient; in an ideal Maxwellian plasma we set n = 512. 

Equations (7) in general constitute an integrodifferential 
set, since the sources Q, and Qi depend on time through the 
nonlinear functionals (4) of the temperature profile, 
Q(r,t)=Q({T(r1,t)),r). Here it is understood that we inte- 
grate over the primed variables. 

Note that, as mentioned above, when the wave is fully 
developed the dominance of the divergence of the thermal 
conduction flux at the front implies that the region where the 
sources Q, and Qi act can be regarded as bounded by the 
wave front Rf .  This condition is a prerequisite for using a 
self-similar approach to solve the system of energy balance 
equations (7). 

To transform to the self-similar description we represent 
the space-time dependence of the wave temperature T(r,t) 
and the source Q(r,t)  as separable functions: 

where T= rIR(t). 
The question regarding the physical conditions under 

which the approximate factorization of the source is justified 
will be treated below in Sec. 3.4. 

Here we assume that the ion and electron temperature 
fronts have radii that are equal or proportional: 
Re(t)lRi(t)=const. The reason for this is that, since the ve- 
locity of the front is determined by the electron thermal con- 
ductivity, the region in which the fast particles move is 
bounded by the electron temperature front. On the other 
hand, the energy losses of the thermonuclear particles on the 
ions, which determine the rate at which the ion temperature 
increases and consequently the rate of thermonuclear energy 
release, do not depend on temperature. 
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Hence, as noted above, if the wave front velocity is less 
than the speed of the fast particles, then the burning region 
which is determined by the ion temperature front should be 
the same as the electron temperature front. 

If we assume that there exists a self-similar solution of 
the form ( l o ) ,  we can write the system of partial differential 
equation (7 )  as a system of ordinary differential equations: 

d T i  ai- - Q i  
4; =- q , .  

R T ,  Ti 

A necessary condition for the existence of a self-similar 
solution is that the coefficients of the functions @ ( r )  and 
q ( r )  be constant: 

Q ~ / T , = s , ,  e i / T i = s i ,  (14) 

where A , ,  Ai  , B, S ,  , Si=const. When conditions (12)-(14) 
hold the system (11) assumes the form 

with boundary conditions 

3.2. Self-similar solution for a two-temperature wave 

The parameter S i ,  which satisfies condition (17), as- 
sumes the value Si=@i(0) /q i (O)=l ,  and Eq. (16) admits the 
solution 

For a uniform source q i ( r ) = l  the function a i ( r )  takes the 
simple form 

We obtain the numerical solution of Eq. (15) by integrat- 
ing (15) twice, taking into account the boundary conditions 
(17) and (18): 

Here F ( { @ ) , { ~ ) , A , )  = ~ / ( I T I ~ / I ~  - C I ~ )  is a functional of the 
wave profile @ ( r )  and the source q ( r ) ,  and we have written 
q ( r ) ,  C =  (2Ae+ 1)l(3Ae+ 1 )  and I ; { f )=  $ i f ( s ) s n d s .  For a 
uniform source ( q -  1)  expressions (21) simplify: 

@:+' ( r )"+  '= 1 - F  - I : +  @ , ( s )  - - C  sds  , 1: I: [: ) 1 

FIG. 8. Wave temperature profiles @,( t )  in the self-similar variables for 
different values of the parameter A , ,  calculated by the method of successive 
approximations. 

s , = 3 ( 2 A e +  1 )1 : ,  

where F = 1 / ( 1  . ~ I T - c I ~ ) .  
From Eq. (22) we find asymptotic forms for the self- 

similar wave profile @,(r) at the boundary and in the center 
of the burning zone: 

From (23) it follows that for a solution to exist the con- 
dition F ( l -  C)>O must hold; this is satisfied in the range of 
the parameter A ,  given by: 

The solution of Eq. (22) by iteration for different values 
of the parameter A ,  is shown in Fig. 8.  Table I gives values 
of the parameters F, S , ,  I : ,  and I T  and of the parameter 
B = ( 3 A e + l ) ( n  + l ) / A P  from condition (13);  these are 
functionals of the profile a,. For O<Aei<0.2 the iterations 
fail to converge, which follows from (25) .  

3.3 Conditions for self-similarity 

Consider the self-similarity conditions (12)-(14), which 
establish a relation between the wave scales R ( t ) ,  T ( t )  and 
that of the source Q ( t ) .  

TABLE I. Numerical values of functionals I ; ,  S,  , F, and B [Eqs. (15) and 
(16)] as functions of the temperature profile @, for different values of the 
similarity parameter A ,  . 
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Condition (12) corresponds to the statement that the ra- 
dius of the front is a power-law function of the temperature 
behind the front: 

where R,=R(O),  T,,=T,(O,O), Tio=Ti(O,O). 
Conditions (12) and (13) yield an explicit form for the 

dependences R ( t )  and T,(t): 

where b=Ael (2Ae-n) ,  a=b lAe=1 / (2Ae-n) ,  ~ , = B R ; / K ,  
v n  

eo. 
It follows from (27) that two kinds of solution are pos- 

sible: an algebraic regime for b>O, and also a hyperbolic 
regime or "intensified regime" for b<O in which the wave 
scales T ( t )  and R ( t )  diverge over a finite time interval I bit,. 
A detailed classification of the enhanced regimes is given in 
Ref. 15. 

Condition (14) imposes a restriction on the form of the 
temperature dependence of the source scale for the electron 
temperature Q,(T,): 

where Q,o=SeTe,IAeto, s = n + 1 - 2 A e .  
If the function Q,(T,) is taken to be of the form (28),  

then the self-similar parameters A , ,  b, a ,  and to  can be ex- 
pressed in terms of the source parameters s and Q,,: 

At the same time the parameter s determines the behav- 
ior of the power-law dependence of the front radius and tem- 
perature of the self-similar burning wave, Qeo provides a 
connection between the coefficients Ro and T,,, which deter- 
mine the set of possible self-similar wave trajectories R(T,)  
consistent with the given source intensity Qeo: 

where D = S , K , , I A J ~ .  
Note that, in contrast to A , ,  the parameter Ai that deter- 

mines the ion temperature profile Qi(r)  cannot be derived 
from the form of the source Q i .  ~ e n c e  in order to find A i  we 
need to establish a relation between the electron and ion 
temperatures, Ti= Ti(Te) .  Then the condition for the fronts 
(26) to be equal determines the relation between A ,  and A i .  

For this purpose we consider in more detail the behavior 
of the sources Q ,  and Q i  as functions of T ,  and T i .  Using (8 )  
and (9)  we express the total rate of energy losses of the 
thermonuclear particles per unit volume Q =  Q e + Q i  in the 
form 

We approximate the temperature dependence of the particle 
mean free path as 

where hi = const, and A,(T,) = A , ~ ( T , / T , ~ ) ~ / ~  are the particle 
mean free paths when ion or electron energy losses alone are 
present. Then the sources Q i  and Q ,  can be represented ap- 
proximately in the form 

Using relation (14) together with (33) we write 

Hence, using the temperature dependence Ae(Te) we find 

where g = 2SeAed5Ai. 
From (35) it follows that for a wave with increasing 

electron temperature (A,>O,g>O) the ion and electron tem- 
peratures will be related after a certain time t ,  by a simple 
power-law dependence, T ~ - T ~ / ~ .  This time can be estimated 
from the relation 

Using (27) and taking into account that in the plasma when 
the temperature is sufficiently high we have g>  1 ,  we find 
for the power-law regime ( b > O )  that t , -bto holds, while 
for the enhanced regime ( b  < 0 )  we have t,- I bl t 0 / 2 .  

When the electron temperature is damping 
( A  ,< O,g< 0 )  the ion temperature varies over the range 
Tio< Ti< Tio+ l g l  T,,. Here there is no power-law depen- 
dence in TAT,), but if I g l ~  1 holds (e.g., at high tempera- 
tures when we have A e o 9 A i ) ,  then over finite ranges of T ,  we 
can assume approximately T,-T;,  - 512 <k<O. 

3.4. Self-similar regimes of burning wave propagation 

Condition (28) requires a power-law dependence Q ,  
- TS,. Hence for the self-similar burning regime to hold it is 
rigorously necessary that all quantities entering into the defi- 
nition (31),  (33) depend algebraically on T ,  : 

As noted previously, the occurrence of the power-law 
dependence Ti (Te)  is possible after a time interval t ,  which is 
the characteristic time for the self-similar regime to be estab- 
lished. 

In a uniform plasma the burning velocity W and propa- 
gation distance A depend only on temperature, while the en- 
ergy fraction 7 also depends on the size of the front. In the 
general case v ( R ,  T,) is not an algebraic function of T,  . The 
self-similar description of burning is possible in the follow- 
ing asymptotic cases: 

1. The burning region is transparent for fast waves 
( R  4 A) 

2. The burning region is opaque for fast waves ( R  > A) 
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Finally, using (29) and (33) we find expressions for the 
parameters a, b, s ,  and A ,  which determine the temperature 
and time dependence of the scale quantities R, T , ,  and Ti  of 
the burning wave in accordance with (27): 

q<1:  s = ( 2 / 3 ) ( k m + n / 2 -  I ) ,  

Here, corresponding to (32), we have 0 < d <  312. 
As follows from the numerical calculations, in the tem- 

perature range Te<15 keV the ion-electron energy exchange 
increases sharply, and the plasma becomes one-temperature: 
Ae=Ai=A, k=  1 .  When energy losses from fast 
thermonuclear particles on electrons dominate ( A = ~ , - T : ' ~ )  
the @(r) profile is determined by Eqs. (15) and (22).  Thus, if 
we set k = 1,  d = 312 then relations (38) and (39) also hold 
for the case of a one-temperature plasma. 

Finally, we write down the behavior of the self-similar 
parameters s, b, a, and A ,  as functions of the power-law 
index m in the temperature dependence of the thermonuclear 
reaction rate for an ideal ( n  = 512) plasma. 

1. One-temperature plasma (k= 1, d = 312, Ae=Ai=A):  

2. Two-temperature plasma (k = 512, O<d< 312, 
Ai=A,lk): 

FIG. 9. Temperature dependence of the power-law indices m(T) and d ( T )  
in the approximate power-law functions for the thermonuclear reaction rate 
(u,,V)- Tm and the fast a-particle path length to thermalization A - T ~ .  

Note that the special case described by relations (41) was 
derived previously in Refs. 8 and 9.  

3.5. Conditions for the development of a self-similar 
burning regime in deuterium-tritium plasma 

In a real plasma the parameters m and d are functions of 
temperature, m = m(Ti )  and d = d(Te) .  In an ideal Maxwell- 
ian DT plasma in the temperature range 1 < T <  100 keV the 
parameters m and d vary over the range 4 > m  > 0 and 1.5 
> d >  0 .  The temperature dependence of these parameters for 
a DT plasma is shown in Fig. 9.  

Using (40)-(43) and the function m = m ( T ) ,  we can es- 
timate the temperature limits of the various self-similar burn- 
ing regimes. 

The condition for the propagation of a self-similar burn- 
ing wave with increasing temperature, i.e., A,>O, is satisfied 
in the region 

( T i T e ) :  (T i#  T, ) :  

Since the one-temperature and two-temperature plasmas 
become distinct for T -  1 0 - 15 keV, which corresponds to 
m - 1.5 - 2  in a DT plasma, in a two-temperature DT plasma 
when the self-similar combustion regime holds only the re- 
gime with increasing temperature is possible. In a one- 
temperature isochoric plasma the self-similar regime with 
quenched burning is possible only at temperatures T <  5 keV, 
for which there is no combustion in a real thermonuclear 
situation, and the wave propagation in accordance with Refs. 
9 and 12 is determined by detonation. 

The condition for the occurrence of the hyperbolic burn- 
ing regime (the "enhanced regime") is satisfied for the range 
of values of the parameter b<O, which is determined by the 
boundaries of the parameter m: 
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The condition for dividing the regions in which the re- 
strictions 7,-1 and @l hold is given by 

FIG. 10. Regions of temperature and pR for the burning zone in which 
different self-similar burning waves are possible. These self-similar solu- 
tions of the system of energy balance equations refer to the region below 
trace I,  where energy transport at the boundary of the burning zone is 
determined by thermal conduction. To the right of trace 2 in the burning 
zone Ti j T ,  holds, while to the left T,=T,  holds. Above trace 3 the radius of 
the burning zone is larger than the a-particle mean free path (17-1); below 
it the burning region is transparent to a-particles ( 6 1 ) .  In the region with 
dashed cross-hatching, the "enhanced region," to the left of the broken trace 
is the region where the self-similar wave is damped. In the region of solid 
cross-hatching no self-similar regime develops. 

Note that the presence of the enhanced regime still does 
not imply fast burning. Thus, in the low-temperature regime 
when the energy release rate Q ( t )  is weak the time interval 
bt,=aS,T,/Q, of the enhancement can be too large for the 
hyperbolic nature of the burning to manifest itself. 

Let us consider the restrictions on the temperature and 
the dimensions of the front under which the self-similar 
burning regime (40)-(43) is possible. We will assume that 
the scales are the same, Te(t)=Ti( t ) ,  although the two- 
temperature nature of the burning is retained and the tem- 
perature profiles of the wave differ: <Pe(7)f a i ( r ) .  

The main requirement for this problem to be physically 
well-posed is that the principal energy transport mechanism 
at the wave front, which determines its propagation speed, be 
electron thermal conducting. A curve analogous to Fig. 7 ,  
dividing the (pR,T)  plane to regions in which electron and 
a-particle thermal conduction dominates, is shown in Fig. 
10. 

The criterion for one- or two-temperature plasmas to ex- 
ist can be derived by equating the fast-particle energy losses 
to the energy produced as a result of ion-electron energy 
exchange: 

The curves in the (pR,T)  plane given by relations (46) 
and (47) are shown in Fig. 10. 

Let us consider in more detail the condition for the self- 
similar burning regime to be established, and also for when it 
is possible to describe the propagation of the thermonuclear 
burn wave in the adiabatic approximation according to (27) 
with variable self-similar parameters a ( T )  and b ( T ) .  For this 
it is necessary that the parameters a ( T )  and b ( T )  change 
little over the time t ,  during which the regime is established. 

In accordance with Figs. 9 and 10, the region in which 
the burning parameter m ( T )  varies rapidly extends to the 
region where the enhanced regime occurs, for which 
t,-lbltd2 holds. Thus, using (14) we can write 

1 da 1 db  1 2Se -- --.g-= ------ 
a d T 7  b dT T t ,  Qelblto' 

(48) 

Using (29) we can write condition (48) in the form 

We can make condition (49) more specific by using re- 
lations (40)-(43) for the various self-similar burning regimes 
of a DT plasma: 

( T i  T,): (T i#  Te) :  

where x=m+0.4d, m l=dm/dT ,  x l=dx/dT .  
Using the functions m ( T )  and d ( T )  for a DT plasma 

shown in Fig. 9, we find the temperature range in which the 
self-similar burning regime cannot develop because the self- 
similar parameters change too rapidly: 

The region in the ( pR ,T )  plane in which the burning 
regime is not self-similar, corresponding to conditions (51), 
and also the regions where the "enhanced regime" occurs 
and the region where self-sustained burning occurs with a 
temperature that increases behind the front in accordance 
with Eqs. (44)-(47) are shown in Fig. 10. 

4. CONCLUSION 

The foregoing analysis enables us to draw general con- 
clusions about the behavior of self-similar thermonuclear 
burning waves in a two-temperature ideal DT plasma with 
uniform density. 

These self-similar regimes correspond to the conditions 
such that the energy transport at the front is determined by 
thermal conduction. 
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The self-similar burning tegime is possible either when 
the burning regime is relatively transparent for thermo- 
nuclear particles, 7;1--R/X4 1 ,  or on the other hand when 
particles undergo considerable deceleration, 7- 1, R  > X . 

The self-similar regime is possible either in the form of 
a one-temperature wave or in the form of waves of ion and 
electron temperature coupled only by the overall dimensions 
of the front and the fractions of energy lost by the charged 
particles to ions and electrons. 

In the one-temperature regime in the region of realistic 
burning for a DT mixture, T>5  keV, and in the two- 
temperature regime the self-similar burning wave is charac- 
terized by a temperature that increases behind the front. 

-In the region 5  < T <  4 0  keV in a DT plasma an "en- 
hanced regime" is possible with T - l / ( t o - t ) a ,  
R - l / ( t o - t ) b ,  t < t O .  In this regime the front velocity R is 
usually larger than in the power-law regime with T - t a ,  
R  - t b .  However, the behavior of the enhanced regime where 
T+ w for t  -t to is not seen, since for T< 4 0  keV the burning 
goes over to the power-law regime. 

The self-similar regime of thermonuclear burning de- 
velops when the self-similar parameters vary little over the 
characteristic time t ,  . 

Then it is possible to describe the burning wave using 
Eq. (27) in the adiabatic approximation for the variables 
a ( T )  and b ( T ) .  In the opposite limit a self-similar regime 
cannot develop. 

The regions in the ( p R , T )  plane in which the various 
burning regimes are possible, as well as the region in which 
the self-similar regime is unstable, are shown in Fig. 10. In 
the region of instability and close to the boundary where the 
different regimes are separated numerical simulation of the 
energy transport is necessary. 

The most stable self-similar burning regime of a DT 
plasma forms in the region Ti>40 keV (m = 0 )  with param- 
eters 

- 1  A , = 5 / 2 ,  A i = l ,  

a e = 2 / 5 ,  a i = l ,  b = l ,  S e = 6 .  

The time scale b t ,  in a DT plasma for T o - 4 0  keV and the 
energy of the thermonuclear particles E0 = 3 .5  MeV have the 
values 

bto=aSeToXelEoW7;1A"1 . 5 / p q  [ns], 

where p  is the plasma density in units of g.cm-2. 
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