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Transition radiation in particles of arbitrary energy in studied is an isotropic plasma with random 
inhomogeneities in the electron density. The angular distribution of the radiation is found as 
a function of particle energy. The transition radiation spectra are found, valid for arbitrary 
frequencies for particles of arbitrary energy. Convenient analytical approximations to the 
exact expressions are suggested. It is shown that near the plasma frequency the spectra contain a 
large narrow peak (the resonant transition radiation) whose height is larger by a factor of 
clv than was previously assumed in analyzing the polarization radiation. The emission spectra 
are also calculated for an ensemble of particles with a power-law momentum distribution. 
The important role of these results in applications is discussed. O 1994 American Institute of 
Physics. 

1. INTRODUCTION 

The emission from charged particles of various energies 
in a medium differs in the variety of emission 
 mechanism^.'-^ One of these mechanisms in media with 
inhomogeneities4 is transition radiation (TR).~,' Interest in 
the effects accompanying the generation of TR in a magne- 
tized plasma6,7 arises because in certain frequency intervals it 
can dominate over all other radiation in astrophysical 
sources, and in particular, in solar  flare^.^ Up to now the TR 
spectra of ultrarelativistic particles in an isotropic in 
a magnetized plasma including the curvature of the particle 
trajectories: and in a gyrotropic plasma7 have been calcu- 
lated. In Ref. 6 it was shown that TR is produced efficiently 
even by relatively low-energy particles with 

where y=Elmc2 is the Lorentz factor of the particle, o, is 
the plasma frequency, and oge=eBlmc is the electron gy- 
rofrequency. Under natural conditions there is usually an ex- 
tended charged-particle spectrum falling off with energy, 
e.g., ~ N , N N $ - ~ ~ E .  In this case the emission from moder- 
ately relativistic and nonrelativistic charges can turn out to 
be important. However, at present there are no rigorously 
calculated TR spectra for a particle of arbitrary energy. 

Our work is devoted to calculating the TR of charged 
electrons (or ions) of arbitrary energy [subject to Eq. (I)] in 
a plasma containing an extended spectrum of random density 
variations: 

where v is the index of the spectrum of inhomogeneities and 
we have written ko= 2?rlLo, where Lo and  AN^) are the 

characteristic size and mean square density of the inhomoge- 
neities. In this work we derive the spectral and angular dis- 
tribution of the radiation intensity from a charge of arbitrary 
energy, the exact expression for the TR spectrum and its 
approximation, rigorously describing the exact expression 
for o> w,, and also the emissivity of an ensemble of par- 
ticles with a power-law spectrum. 

2. DIFFERENTIAL TRANSITION-RADIATION SPECTRUM OF 
A SINGLE MOVING CHARGE 

As shown by Ginzburg and ~ s ~ t o v i c h ~  (see also Ref. 5), 
the source of the TR in the plasma electron current excited 
by the quasisteady field of a fast charged particle: 

where e and m are the electron charge and mass, SNkl is the 
variation in the electron density of the medium, and 
E:,,-,, is the quasisteady electric field of the radiating par- 
ticle. The field of the particle is related to its current by 

q v 
j:,k-kr=----S q w -  (k- kl)v], 

( 2 ~ )  

(q is the particle charge and v is its velocity) through the 
Green's function. In the present instance, in contrast to the 
ultrarelativistic limit: we must take into account not only the 
transverse but also the longitudinal Green's function. As a 
result the quasisteady field Eq takes the form 
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FIG. 1. The coordinate system. 

- 4.rriqqw-(k- kl)v] w[vi-(k- k')iwlk2] - 
c2[(k- k2] . 

(5) 

The energy radiated by the current (3) at frequency w in the 
direction n is described by the expression'-6 

where E = 1 - w;/w2 is the plasma dielectric function. It 
is necessary to include the quantity & in (6), since we are 
trying to describe TR rigorously at all frequencies 0 2 w p ,  
including also o = o P ,  where E differs substantially from 
unity. The ultrarelativistic description6 is valid for relativistic 
particles y>l at high frequencies O& wp, where E-1. 

The use of expressions (3)-(6) enables us to derive the 
frequency and angular distribution of the radiation intensity: 

The integrand in Eq. (7) depends on all three dummy vari- 
ables (including the azimuthal angle cp' of the vector k'). In 
performing the integration of Eq. (7) it is convenient to as- 
sume that the particle moves in the direction parallel to the z 
axis, while the vector k is in the (x,z) plane. Then the azi- 
muthal angle cp' is equal to the angle between the projection 
of the vector k' on the (x7y) plane and the x axis (the pro- 
jection of the vector n on the same plane); cf. Fig. 1. The 
radiation intensity (7) is given in the form 

where 

FIG. 2. Normalized angular distributions of the TR for different values of 
the parameter v/vpb=O.l, 0.4, 0.7, 0.99. Here v=1.5. 

cos 6 ' S ( u s  6 ' - u s  6,) 

- 2  cos 6 cos 6' sin 6 sin 6' cos cp' 

2vwk' + k (cos 6' sin2 6 

- u s  6 sin 6 sin 6' cos c p ' )  , I (9) 

with cos6r=-(o-kvcos6)/k'u, a=kr2-2kkr  
cos 6 cos a', b =  - 2kk' sin 6 sin 6'. The integration over 
d cos 6' is performed trivially using the S function and gives 
rise to a 6 function @I--cos2 ar), associated with the obvi- 
ous requirement cos2 6,Sl. Replacing cos 6' by cos 6, in 
Eq. (9) and expanding the resulting expression in partial 
fractions, we find 

X 
( a + b  cos cp') I1 ' 

(10) 

Performing the integrals with respect to cpr in (10) (which are 
tabulated) and simplifying the results in terms of their power 
in u s  6 in the last term and combining common terms, we 
find the following: 
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vo2 
@ = -  

p-2 c0s2 a+p-l cos 6+(1 -p -2 ) (1 -y2 /2+y4 /4 )+y2 /2  
2k2 8(1- cos2 6.) +/4 

where p= olkv,  y = k'lk. Thus, the frequency and angular 
distribution of the TR intensity reduces to a single integra- 
tion over the spectrum of the plasma density inhomogene- 
ities: 

(12) 

where F(y,p,cos 6)=2k2@/7r028(1 -cos2 6,). However, it 
is impossible to integrate (12) analytically with the power- 
law spectrum (2). Figure 2 displays the normalized angular 
distribution of the TR intensity at different values of the 
parameter kvlw, obtained by numerical integration of (12). 
In the nonrelativistic region the radiation is similar to that 
from a dipole and its maximum occurs at angles of order 90" 
with respect to the particle velocity. As k v l o  increases the 
radiation maximum approaches the direction in which the 
particle is moving, and in the ultrarelativistic limit a strong 
directionality is observed for the radiation in the direction of 
the velocity vector. Note that in the calculating the TR in the 
ultrarelativistic limit6 the radiation intensity in the forward 
direction 6 = 0  vanishes. In Fig. 2 we see 1 ( 6 = 0 ) > 0 ,  which 
is related to the inclusion of the longitudinal self-field of the 
relativistic particle; this was discarded in Ref. 6. 

3. INTEGRATED SPECTRUM OF THE TRANSITION 
RADIATION FROM A SINGLE MOVING CHARGE 

We proceed now to the evaluation of the TR intensity 
over the full solid angle: 

1 
I,=27r I , , d  cos 6 I- 1 

Changing the order of integration with respect to y and 
cos 6 we find 

Since the quantity ) S N ) ~ ,  does not depend on the angle 6 for 
isotropically distributed inhomogeneities, we need only inte- 
grate the function F over angle. We introduce two new func- 
tions F, and F2 : 

1 1 

F, = I P P r F d  cos 19; F2= I _ I ~ d  cos 3 

Taking into account the variation of y in each of the integrals, 
we find by evaluating (15) 

If we substitute the spectrum of the equilibrium thermal 
fluctuations I S N I ~ ,  in (14) and use (16) and (17), we obtain 
as a result the intensity of the polarized bremsstrahlung. This 
problem has been analyzed by Akapyan and ~ s ~ t o v i c h . ~  Un- 
fortunately, the integration cannot be completely carried out 
in terms of elementary functions. 

Consider the emission that occurs when superthermal 
noise is present in the plasma. After expressing the spectrum 
(2) of the inhomogeneities in terms of the dimensionless 
variable y, 

we can represent the radiation intensity in the form 

Expression (19) is evaluated by expanding the functions F1 
and F2 in partial fractions and integrating by parts the terms 
which contain logarithms. After applying some identities we 
find 
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The summation over a= t- 1 has been introduced in Eq. (20) 
to make it more compact; the integral that remains can be 
expressed in terms of hypergeometric functions.1° For a 
charged particle of arbitrary energy moving rectilinearly Eq. 
(20) is valid at frequencies w> w , ,  except for a small region 
near op , w 5  o p ( l  + v; /u2) .  In order to describe the inten- 
sity I ,  rigorously in this region we must take into account 
the spatial dispersion of the plasma. The analysis presented 
in the Appendix shows that the role of spatial dispersion 
reduces to the substitution 

where 

and we have written ~ = ( E / ~ ) ( u / u ~ ) ~ ,  where V T  is the ther- 
mal velocity of the plasma electrons and 

The function (22) describes a strong narrow peak in a spec- 
trum near the frequencies q2. We will refer to this part of 
the emission as resonant TR and label it with the subscript 
"R." Under the condition ( w - w ~ ) I o ~ + ( u ~ I u ) ~  we have 
F ( ~ ) - E - ~ ' ~  and expression (20) is valid. In the opposite 
limit w - +  w, ,  a41 we have 

Similar asymptotic expressions in the neighborhood of 
the plasma frequency were given in Ref. 3 (p. 59) for the 
polarized emission in a plasma. For w- wO= (wl + w2)/2 both 
asymptotic forms (20) and (24) give rise to quantities of the 
same magnitude for the radiation intensity. On this basis 
Amus'ya et aL3 reached the conclusion that the height of the 
peak at the frequency w0 was equal to ( v / v ~ ) ~ .  However, as 
can be seen from (22), the peak is higher by approximately a 
factor of c / v T ,  which is related to the complicated shape of 
the spectrum for w-wo. Resonant polarized bremsstrahlung 
is discussed in Ref. 11. 

We proceed to find asymptotic representations of the ex- 
pression 

which depends on p, for small and large values of P-  1. For 
P - 1 6 1  we take P=1 everywhere except in terms of the 
form P-1, and in the denominator of the integrand we ne- 
glect y in comparison with 2. Then we find 

Substituting (25) in (20) and setting v = c ,  & = 1  in the coef- 
ficient, we find the ultrarelativistic limit of TR, which agrees 
with the familiar result6 

and is correct in the limit y>l ,  w % w p .  
In the opposite limiting case P -  1 s  1 the quantities 

( P I ) - "  must be expanded in powers of 1/P, where the first 
nonvanishing terms of this expansion arise only in fourth 
order. Evaluating the integrals to the same accuracy in 1/P 
we find 

As a result, for P-1+1 we have 

Note that expression (28) is valid also for the TR of relativ- 
istic particles in the limit w+ w, ,  since in this case we have 
p-1s-1. 

Using the asymptotic forms (25) and (27) and carrying 
out the usual procedure for approximating the results of a 
numerical calculation of the function S by an analytical for- 
mula we arrive at the result: 

If we note that P+1 holds here we find 
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FIG. 3. Set of TR spectra for different values of the dimensionless charged- 
particle momentum x =plmc = 0.1,1,10. The broken traces represent spec- 
tra calculated using the relativistic asymptotic forms; ~ 1 . 7 .  

Retaining only the quantities A, [consisting of the asymp- 
totic forms (25) and (26)] in (29) yields the correct order of 
magnitude (the error is less than loo%), and the correction 
A, has an average accuracy -10% and a maximum emor 
-20%. Thus, the intensity of the transition radiation of a 
charged particle of arbitrary energy at all frequencies oa op 
is given by the expression 

Spectra of TR calculated according to Eq. (32) and the 
relativistic asymptotic forms for various values of the par- 
ticle momentum are displayed in Fig. 3. It can be seen that at 
high frequencies the relativistic expressions provide a good 
description of the emission from high-energy particles, while 
near the plasma frequency a strong narrow peak develops 
which exceeds the level of the "substrate7' by several orders 
of magnitude. Figure 4 shows this peak in more detail. Note 
that the spectrum has two local maxima: the small declivity 
on the right slope is related to "impoverishment" of the qua- 
sisteady field of the charge with respect to harmonics due to 
the emission of protons at the corresponding frequencies 
(these frequencies correspond to propagating Cherenkov 
plasmons, not the quasisteady field). However, this declivity 
plays a minor energetic role; for example, it disappears en- 

FIG. 4. Spectnun of resonant transition radiation near the plasma frequency. 
Parameters: x =  10, vTlc=0.032, ~ 1 . 7 .  

tirely when we integrate over the spectrum of the emitting 
particles or over the volume of the nonuniform plasma. 

Now let us find the total energy emitted by the resonant 
transition mechanism. Integrating the spectrum (28) over fre- 
quency, which is valid near oP for particles of arbitrary en- 
ergy, we find 

Comparing (33) with the energy emitted in the ultrarelativis- 
tic region: we find that for particles with y<c2/u$ the reso- 
nant TR is more substantial than ordinary TR. For y>c2/u$ 
most of the energy is emitted at frequencies 

2 2 
om,-Op y> wpc /up  

If the charged particle is moving in a plasma of continu- 
ously varying density [with some distribution a ( ~ ~ )  over 
the plasma frequencies], then the principal contribution to 
the observed emission at frequency w comes from the re- 
gions of the plasma with wp=w. To estimate the TR from 
these (large-scale) inhomogeneous sources it is convenient to 
use the approximation 

which should be integrated over the function @(cop). 
These results can be used under laboratory conditions to 

analyze experiments with monoenergetic particle beams. For 
astrophysical applications it is often necessary to average as 
well over the energy distribution of the emitting particles. 

4. TRANSITION RADIATION FROM AN ENSEMBLE OF 
PARTICLES WITH A POWER-LAW SPECTRUM 

Usually the spectrum of emitting particles under astro- 
physical conditions can be represented in the form 
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where x=plmc is the dimensionless particle momentum. 
Then the emission from an ensemble of particles with the 
spectrum (35) can be written as follows: 

where 

FIG. 5. Emission from an ensemble of charged particles with a power-law 
momentum distribution for different values of the spectral index &=1.75, 
3.75, 5.75. The broken traces indicated spectra calculated using the relativ- 
istic asymptotic forms; v= 1.5. 

and the magnitude of the velocity v which enters into the 
definition of a should be expressed in terms of the dimen- 
sionless momentum: 

The most important thing to consider is the asymptotic 
behavior of the radiation spectrum in the region wSwp, 
when the peak at w+wp is unimportant. As will become 
clear, the shape of the corresponding asymptotic forms varies 
in three different cases: 1) 5 >2v+1, 2) v+2< 5 <2v+l, 3) 
5 < v+2. If the number of particles as a function of x falls off 
sufficiently rapidly (5 >2v+l), then the main contribution to 
the emission comes from the nonrelativistic particles. Then 
we can set x = vlc and integrate (37) with respect to v from 
vo to infinity. Since it is necessary here to evaluate the inte- 
gral 

J ~ o x v + l - l d ~ ,  

[cf. the asymptotic form (25)], it is clear that it will converge 
for 

which always holds in this region, since we have v+2 
<2v+ 1 for v>l and the radiation spectrum can be written in 
the form 

In the other limiting case (<v+2, the main contribution 
to the radiation at these frequencies is associated with the 
ultrarelativistic particles. In accordance with the known 
results,8 the integration of (37) for w<min{wJwBe, wp yl}, 
where y, = 4- is the maximum Lorentz factor in the 
spectrum (33, yields 

Finally, for 

both expressions (40) and (41) hold, and the total spectrum is 
given by their sum. Since the emission spectrum in the rela- 
tivistic case wY-'-Z is more gentle than in the nonrelativistic 
spectrum w-"-~, at lower frequencies the nonrelativistic 
emission is observed, while at higher frequencies the emis- 
sion comes from the relativistic particles, and the contribu- 
tion of particles with ~ ~ ~ , - m c ~  is negligible. 

Figure 5 displays the behavior of the function G(w) as a 
function of frequency for three different values of 6, occur- 
ring in the three intervals described (we set v=1.5 in gener- 
ating the plots). The solid traces indicate the results of cal- 
culations according to the exact formula (37), while the 
broken traces correspond to the relativistic asymptotic forms. 
From the figure it is clear that the estimates given above 
agree well with the asymptotic forms of the exact calcula- 
tions. The value of the TR intensity at the peak that remains 
after integration over the particle spectrum can be several 
orders of magnitude greater than the emission from the "sub- 
strate." These peaks are shown in a form which is convenient 
for interpretation in Fig. 6. It is clear that now the declivity 
in the neighborhood of the maximum of the spectrum is 
gone. For soft distributions (large values of 8 the peaks are 
lower and smeared out. The reason for this is easily dis- 
cerned from the structure of the singularity (22). 

In order to analyze the TR from large-scale inhomoge- 
neous plasmas we should integrate expression (34) over the 
spectrum (35): 
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FIG. 6. Blowup of the peak in the radiation shown in Fig. 5. 

Here n, is the density of the warm electrons. In this expres- 
sion the main contribution comes from particles of moderate 
relativistic energy with E ~ ~ , , - ~ C ~ .  

5. CONCLUSION 

We have considered transition radiation from charged 
particles of arbitrary energy in a plasma with random density 
variations in the absence of external fields. We have found 
and analyzed the frequency and angular distribution and the 
spectral distribution of the radiation. In the latter case we 
have derived a simple approximate formula in place of the 
exact expression (20), which is accurate to about 10% and 
has a maximum error of order 20%. We have also studied the 
emission from an ensemble of particles with a power-law 
momentum distribution. 

In Ref. 8 it was shown that some radio flares occurring 
on the Sun can be explained by the mechanism of transition 
radiation if the plasma has density irregularities of order 

The peak found in this work, which is several orders of mag- 
nitude greater than the emission calculated in the relativistic 
limit, can, generally speaking, reduce the level of the ob- 
served density irregularities in the plasma in solar flares to 
values 

exceeding the level of equilibrium (thermal) fluctuations by 
no more than one or two orders of magnitude. It should, 
however, be kept in mind that under the conditions of large- 
scale inhomogeneity in the solar corona, these peaks will be 
smeared out and will be reduced (in comparison with a per- 
fectly uniform source of the same volume). Nonetheless, 

since the total energy of the transition radiation including the 
peak is found to be larger by about c2/u; than in the ul- 
trarelativistic case, the role of this mechanism can increase 
considerably. Note that the similar intensity enhancement 
factor indicated in Ref. 3 for polarized radiation, was smaller 
by a factor c luT (Ref. 11). 

APPENDIX: CALCULATION OF RESONANT TRANSITION 
RADIATION 

The transition radiation generated near the plasma fre- 
quency may be termed resonant by analogy with resonant 
polarized rad ia t i~n .~  

Since the phase velocity of transverse waves near wp is 
considerably greater than the velocity of light and ulvph<<l 
holds for arbitrary u < c, when we calculate resonant transi- 
tion radiation to an accuracy of ( ~ l v , ~ ) ~  we can restrict our- 
selves to the contribution of the longitudinal field of the fast 
particle (the nonrelativistic approximation). However, the di- 
electric function that enters the expression for this field 
should be written so as to retain the spatial dispersion 

since for w- wp we have ~ ( w ) -  k2d2. Then the intensity of 
the resonant transition radiation can be represented in the 
form 

[nkrI2SI.w- (k- kl)v]ISNl;,dqd cos 6 
X 

( k - k ' ) 4 [ ( ~ ( ~ ) - 3 ( k - k r ) 2 d 2 ) 2 + ~ " 2 ]  ' 

(Al) 

where d =  uT/wp is the Debye radius and the imaginary part 
E" of the dielectric function is written so as to eliminate the 
divergence when (Al) is integrated. Note that at the frequen- 
cies in question we have ~ ( w ) G l  and k G k r .  This enables us 
to neglect k in comparison with k' everywhere except in the 
resonant denominator. Then it is convenient to integrate (Al) 
over the angles of the vector n, i.e., find the energy emitted 
over the complete solid angle (the directionality diagram in 
this case corresponds to that of a dipole): 

sin2 6 d  cos 6 
X 

( ~ ( 0 ) + 6 k k ' d '  cos 6 - 3 k r 2 d 2 ) 2 + ~ " Z  ' (A2) 

In (A2) we have also performed the trivial integration over 
the azimuthal angle, J dq. .  . = 2 ,rr, 6 is the angle between 
the vector k' and the particle velocity v. Breaking up the 
integrand into partial fractions and integrating over the angle 
6, we arrive at the result 

where 
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,rrO(l- a2)  + arctg 

and we have written a = 3kI2d2- &(w)/6kk'd2, 
b=&"/6kk'd2. Let us say a bit more about the analysis of 
the expression for J8 in Eq. (A4). The case of a nonabsor- 
bent medium corresponds to the limit b+O. Then for a 2 6  1 
we have Ja-'m as rib. This divergence has a simple physi- 

< 1 the condition for Cher- cal origin. It happens that for a2. 
enkov radiation holds for arbitrary (plasma) waves. Hence 
the particle field for the corresponding values of w, k, k' is 
not quasisteady but propagates, and its interaction with the 
plasma inhomogeneities corresponds to scattering of already 
emitted quanta, not the production of new ones. The mean 
free path of the Cherenkov plasmons in an infinite nonabsor- 
bent medium is infinite, which is the reason for this diver- 
gence. In order to calculate the intensity of the transition 
radiation, viewed as the result of transforming the quasi- 
steady field of the particle into propagating waves,5 we must 
exclude values a 2 s  1 from the range of integration over k ' .  
In this case the function J8 can be simplified. Discarding the 
term rO(1  -a2)  and expanding arctan x in a series in its 
small argument for a > 1, we find 

( a + ~ ) ~ +  b2 

( a -  1 ) 2 + b 2  -41 @(a'- 1) .  

The quantity J8 has a singularity in the limit b+O, a 2 - + 1 ,  
but this singularity is integrable. This can easily be shown if 
we expand Ja in powers of l l a ,  the expansion converges 
within 1 /la 1 < 1.  Retaining the first nonvanishing term of this 
expansion 

ensures an accuracy of better than 30%. After substituting 
(A6) in (A3) and going over to the dimensionless variable 
p = k f v l o ,  we can write the resonant transition radiation 
spectrum in the form 

where ~ = ( E / ~ ) ( u / ~ ~ ) ~ ~ ( E I ~ ) ( u / u ~ ) ~  and v T  is the ther- 
mal velocity of the plasma electrons. For arbitrary values of 
the spectral index v the integral in (A7) can be expressed in 
terms of hypergeometric functions. In fact, the shape of the 
peak has only a weak dependence on the spectral index, so it 
is convenient to use the result of integrating (A7) for v=2, 
which can be expressed in terms of elementary functions: 

where 

Next it is convenient to transform from the function 
@(a) to another function 

since for large frequencies w+wp, a91 we have F ( a ) = &  
-3 /2 (w) ,  and the corresponding expression matches with 
the overall transition radiation spectrum (20). Thus, the TR 
spectrum which is correct at all frequencies w> wp is found 
if we note the substitution E - ~ / ~ - - + F ( ~ )  in Eq. (20). It is 
easy to see that at high frequencies w+wp the role of the 
spatial dispersion is minor, i.e., 

~ ( ~ ) , , , ~ - 3 / 2 - 1  9 

at low frequencies, a e l ,  

while near the maximum of the spectrum a-1, 

i.e., larger by a factor c /uT ,  which follows from the esti- 
mates (see Ref. 3, p. 59). 

In conclusion, we comment on the estimate of the con- 
tribution to the spectrum of the radiation produced in a ran- 
domly varying plasma as a result of the scattering of Cher- 
enkov plasmons. The spectral intensity of Cherenkov plasma 
generation is given by the well-known expression 

Accordingly, the total energy emitted per unit time is equal 
to 

and the fraction of plasmons scattered per unit time is 
proportional to the dimensionless factor l1/l2,  equal to the 
ratio of the plasmon free path 1, to the length l2 for conver- 
sion into transverse waves. Under realistic conditions this 
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ratio is much less than unity, and as a rule we have 
I , ~ I ~ ~ ( A N ' ) ~ N ~ .  Thus, the ratio of the energy Ig, of the 
scattered Cherenkov radiation to the resonant energy 
TR I& in Eq. (33) is equal in order of magnitude to 

Accordingly, in this case the effect of Cherenkov plasmon 
scattering from irregularities plays no important role, and the 
expressions obtained here in fact describe the total emission 
spectrum from charged particles in a randomly inhomoge- 
neous plasma. It should, however, be noted that an analogous 
effect can be important if the conditions for Cherenkov emis- 
sion of transverse waves are satisfied.'' 
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