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A transcendental equation is obtained from the Faddeev equations for the action of the two 
heavy particles in a system consisting of two heavy and one light particles with short-range pair 
potentials. Simple quantization of the motion according to the Bohr-Sommerfeld formula 
yields the three-particle spectrum of the system, in good agreement with the direct solution of the 
Faddeev equations. This permits a system with a vanishingly light exchange particle to be 
described, whereas the direct solution of the Faddeev equations is fraught with numerical 
problems. In particular, one concludes that a rich spectrum can exist in A ,  systems even 
when there is no bound state of the electron and an atom, i.e., A-. The effective quasi-two- 
particle interaction potential is determined for the heavy particles. It is local, energy- 
independent, and has a long-range Coulomb-type region, which is primarily responsible for 
determining the spectrum of the system. O 1994 American Institute of Physics. 

1. INTRODUCTION 

The three-body problem gives rise to many new and 
beautiful phenomena. One of these is the Efimov effect:' 
either varying as R - ~  in terms of the hyperradius of the 
system1 or as p-2 in terms of the relative coordinate2 be- 
tween one of the particles and the remaining pair. The expla- 
nation for this phenomenon is quite simple. In a three-body 
system the de Broglie energy of a particle in a volume of 
dimension p can go into exciting the pair and does not lead 
to effective repulsion as in the two-body problem. This is 
equivalent to the action of an effective attractive potential of 
the form - y/2mp2. From the uncertainty principle it is evi- 
dent that y must be larger than 114.') This coupling constant 
can give rise to a series of bound states if it allows a region 
in which a potential of the form pP2 acts. The same range for 
the effective long-range interaction can be deduced from 
simple considerations. This mechanism for the occurrence of 
a long-range interaction presupposes the virtual excitation of 
the pair, which imposes a condition on the time the particle 
remains in the interaction region: this time must be much 
less than the time required to traverse an orbit, which is 
determined by the binding energy E= - 212m of the pair. On 
the other hand, this time must be much greater than the char- 
acteristic interaction times, determined by the potential en- 
ergy U= - 1/2mri, where ro is the radius of the interaction. 
These two conditions yield to the familiar long-range inter- 
action 

for identical particles. In this case we have y=1.26. The 
effect increases as the pair interaction becomes more reso- 
nant, i.e., as the quantity ~ r ,  decreases. 

The system consisting of two heavy particles (assumed 
identical for simplicity) with masses ml and m, and a light 
particle with mass m2 is of particular interest. The process 
associated with the exchange of this particle gives rise to a 
long-range interaction with a large coupling constant y 
a J G 2 . ,  but only in the narrow range of conditions3 

which approaches zero in the limit m2+0. Consequently, 
there are no bound states in this potential. This stems from 
the fact that as the region in which the motion of the heavy 
particles is quantized decreases the above long-range mecha- 
nism disappears. The motion of the heavy particles becomes 
quasiclassical. 

In order to convince ourselves of this, in what follows 
we will consider a system in which the potential U only acts 
between the light particle and the heavy ones; the heavy 
particles do not interact, and all interactions in the system 
take place through the light particle. Then when the interac- 
tion of the light and heavy particles is resonant (when the 
binding energy is small) its binding energy with the pair of 
heavy particles is in fact determined by a double potential 
well. Consequently, the energy scale of a heavy particle in 
the system is determined primarily by the half-depth of the 
pair interaction potential. At this energy on the length scale 
-K-' of the system there are many wavelengths of the heavy 
particle. Thus, we will consider a system of three particles in 
which the motion of the light particle is quantized to a con- 
siderable degree, i.e., ~ r , +  1 ,  while the motion of the heavy 
particles is quasiclassical. In this case the long-range compo- 
nent of the effective interaction between the heavy particles 
is determined not by their de Broglie energy as in the Efimov 
effect but by the potential energy of the interaction with the 
light particle. But the wave function of the latter drops off as 
l lp  in region (I), which gives rise to two types of long-range 
interaction: l lp  and llp2. As we will see shortly, the spectrum 
is determined primarily by the quasi-Coulomb interaction. 

Next we will construct the effective potential veff for the 
interaction of the two heavy particles. For simplicity we take 
the potential U in the separable form of a Yamaguchi inter- 
action Ui = ) vi)( vi( (i = 1 ,  3, as usual, runs over the particles 
present in the subsystem), or 
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Here K is the wave number of a real (K>O) or virtual (K<O) 
state, p determines the radius of the interaction (ro= P-'), 
and in our case the depth of the two-particle potential; and 
mi, is the reduced mass of particles i and j. Hence the 
Yamaguchi potential acts only through the S wave. 

It is found that the potential can be local and energy- 
independent. Ordinary Bohr-Sommerfeld quantization 
yields the spectrum of the three-particle system. For com- 
parison we present the spectrum of this system, calculated 
from the Faddeev equations for both real and virtual pair 
states. 

It should be noted that the problem has been solved simi- 
larly, proceeding from the Bohr-Oppenheimer 
approximation4 in order to analyze the Efimov long-range 
interaction. Our work differs in having a quasiclassical solu- 
tion of the Faddeev equations, from which it is obvious that 
the long-range interaction of the Efimov effects as well as its 
spectrum differ from the long-range interaction considered 
here. 

2. EQUATIONS AND EFFECTIVE POTENTIAL 

- As mentioned in the Introduction, we will treat a system 
of three particles (1+2+3) in which the heavy identical spin- 
less particles 1 and 3 interact through the potential U with 
the light particle 2. Then, because particles 1 and 3 are iden- 
tical, the pair of Faddeev equations for the three-particle 
wave function W reduce to an equation for the projection 
*(4*): 

where A ,, = ( vil Go(Z) 1 v,) and Go is the three-particle 
Green's function of the free motion. 

For convenience we will use quantities nondimensional- 
ized in terms of p without changing the notation. Moreover, 
we introduce the dimensionless energy parameter h through 
the relation Z =  -h2E0; Eo=fi2/2m12 determines the char- 
acteristic depth of the two-particle potential. In this notation 
the complete form of Eq. (4) can be written as 

= fOw d3kr (1 + ~ ) ~ ( 1  +a)2$(k') 
7 ( ~ - K ) ( ~ + K + ~ ) ( I + ~ ~ ) ( I + ~ ' ~ ) ( X ~ + E ) '  

(5) 
t=k+Skl ,  t r=k '+Sk,  E=k2+kr2+28kkr ,  

where S=m,,lrn2, a = J-, and a2=m12/m,,23. It 
was by solving Eq. (5) numerically that the spectrum of the 
system was found. 

The form of Eq. (5) shows that for a 4 0  (S-tl) its ker- 
nel contains a nonlocal interaction in configuration space. 
This can easily be removed from the equation by introducing 
the free-particle Green's function for the two-particle motion 
and calling the remaining part of the effective potential Vff. 
The potential thus constructed will be local in the limit a+O, 

but it is energy-independent and on the whole does not rep- 
resent the spectrum of the system very accurately. The main 
reason for this is that the transition to the local form of Vff 
without treating the wave function q9 is incorrect because the 
wave function of the relative motion contains a factor which 
varies rapidly as a function of the relative coordinate. 

To see this we can represent the classical action in the 
form 

Here u2 is the dimensionless effective potential of the rela- 
tive motion, i.e., veff= - U ~ E ~  (we will refer to u as the wave 
number of this potential). As can readily be seen, the quan- 
tity s does not depend on a ,  since its scale is determined by 
the binding energy of the light particle with the pair of heavy 
ones. For the Yamaguchi potential these elementary ideas 
yield an equation for the limiting value uli, : 

from which we obtain u , , , = f i - l + d ~ .  Hence the quantity 
S in the limit a-0 becomes large and the wave function # 
will have a rapidly oscillating factor exp(is1a). 

In order to simultaneously take into account the rapidly 
varying part of both the kernel of the integral equation and 
the wave function, it is convenient to represent Eq. (4) in the 
form += (Aii+Aij) *, which can be written in configuration 
space in the limit a-0 in the form 

exp(- iqy- d w i )  
(1+q2)2 

The technique for carrying out this limiting process is as 
follows: the integrand I ( r  +la, p' ) ~ , b ( ~ ' ) d ~ ~  ' is rewritten 
through the change of variables x=r+/a  and becomes 
a31(x, 1 a ~ - ~ l ) ~ a x - ~ ) d ~ x ,  which is finite in the limit 
ado .  In order to include the finite part of the oscillatory 
factor in # we must take into account the first term in the 
expansion in S as well. Retaining nonvanishing terms in a 
and performing the trivial integration with respect to x and q, 
we find a transcendental equation for the gradient of the ac- 
tion, which in the notation ( v s ) ~ + A ~ = u ~  [cf. Eq. (6)] can 
be written as 

Having thus determined the action, we can determine the 
spectrum of the system according to the usual quasiclassical 
formula 
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TABLE I. Binding energy of a three-particle system in eV for real and virtual two- 
particle pair wise binding energy <= -0.002 eV; (a) solutions of the Faddeev equations; 
b) quasiclassical spectrum 

Note. a-solutions of the Faddeev; b-quasiclassical spectrum. 

Below we present a table in which the spectra calculated 
from the exact equation and in the quasiclassical approxima- 
tion are compared for the real and virtual pair states with 
a=0.1. The mass of the heavy particles was taken to be 
equal to two nucleon masses, i.e., the mass of the light par- 
ticle was equal to 0.01 nucleon masses; we took /3= 1 A and 
the two-particle binding energy was -0.002 eV, which 
yielded ~ ~ 2 0 . 1  respectively for the real and virtual states. 

N 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

3. LONG RANGE OF THE EFFECTIVE POTENTIAL 

Virtual level 

It is evident that the quantity u determined by Eq. (8) is 
the wave number of the potential introduced above. Equation 
(8) can be regarded as the equation for the effective poten- 
tial. To within differences in notation this equation is the 
same as the expression for the interaction energy of two par- 
ticles found previously by A. S. Fonseki et a ~ . ~  in their analy- 
sis of the long-range Efimov effect. Here, in contrast, we 
show that the main contribution to the spectrum comes not 
from the Efimov long-range interaction but from the quasi- 
Coulomb interaction. 

Let us discuss Eq. (8) in more detail. In the limit p+O 
the quantity u satisfies Eq. (7), which confirms our elemen- 
tary discussion. Hence it follows that the attractive potential 
vff exists even for virtual binding (K<O) for ~ > f i / 2 - 1 .  For 
the virtual two-particle interaction the potential vff is re- 
stricted to a region -11~ .  For the real state the asymptotic 
value is u = K, and so we must call the effective interaction 
potential vff = - (u2 - K ~ ) E ~ ,  which corresponds to measur- 
ing the binding energy from the two-particle threshold. 

In this case the effective potential contains two terms: 

Real level 
a 

-0.7265. 
-0.1448. 

which have different asymptotic forms in the region (1): 
qffxpp2,  while Gff falls off only as p-'. In fact, in this case 
in region (1) we can legitimately simplify Eq. (8): 

a 
-0.4614. lo-' 
-0.2975. lo-' 
-0.1896 . lo-' 
-0.1 185 . lo-' 
-0.7583. 
-0.5056. low2 
-0.3613 . 
-0.2799. 
-0.2354. 
-0.2123. lod2 
-0.2021 . 

b 
-0.7009. lo-' 
-0.1379. 

the main term of whose solution has the long-range compo- 
nent 

b 
-0.4557. lo-' 
-0.2940. lo-' 
-0.1871 . lo-' 
-0.1180. lo-' 
-0.7510. 
-0.4988. 
-0.3565 . 
-0.2776. 
-0.2344. 
-0.21 18. 
-0.2019. 

where the constant c = 0 . 5 6 7 1  ... is the solution of c=exp 

( -c> .  
To be sure, the potential Gff has a factor that vanishes in 

the limit K-+O. It is therefore necessary to estimate separately 
the contribution of this potential to the spectrum of the sys- 
tem. That it can be substantial is clear from simple consid- 
erations. Since this potential is Coulomb-like in region (1) 
with a "Bohr radius" a= a2/cK and states with index n 
bound in this field correspond to average radii in2, from the 
requirement that they must be localized within a region - 1 / ~  
it follows that the number of Coulomb-like states is 

which does not depend on K (of course, we are considering 
the case KGI)  and can be large when the exchange particle is 
light. 

Now we estimate which of the potentials qff and qff 
makes the larger contribution. For the analytical dependence 
we use the estimate of Calogero (see, e.g., Ref. 5) for the 
number of states in an S wave resulting from some asymp- 
totic region p>po for po%l, which is equivalent to turning on 
an additional repulsive potential in the form of a hard sphere 
of radius po between the heavy particles. On the other hand, 
we compare these estimates with the quasiclassical calcula- 
tions of the system spectrum for both qff and Gff separately 
and for the total effective potential, which, as we saw above, 
yields a spectrum that differs from the actual one (from the 
Faddeev equations) by a few percent. Thus, the Calogero 
estimate 
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TABLE 11. Contribution to the spectrum of different parts of the 
effective potential (see text). 

for the number of bound states ny and n; resulting respec- 
tively from the potentials qff and eff leads to the restric- 
tions 

1 
nf<- If, ( i =1 ,2 ) ,  

a 

in which the quantities If depend on K only through the 
lower limit of integration and are shown in Table I1 as a 
function of this limit of integration p , ~ .  The actual number 
of bound states in the table is given by the quantities 

All parameters of the system are the same as in Table I, i.e., 
a=0.1. The repulsive radii in the table have been chosen so 
as to illustrate the following results. The number of levels 
resulting from the potential Gff is always greater than the 
number of levels resulting from qff. The Calogero estimates 
using the asymptotic values of the potentials are not shown 
in the first column. The range of validity of these estimates 
starts with the second column, which shows that the 
Coulomb-like interaction yields twice as many states as does 
the potential qff. As the repulsive radius increases the con- 
tribution of the potential eff dominates and it is what deter- 
mines the number of levels in the system beginning with the 
repulsive radii, which are larger than the characteristic size 
of the light-particle wave function, i.e., for POK 2 1 .  The last 
columns show where the levels vanish (for a=0.1). 

If we estimate the size of a pair consisting of a light and 
heavy particle from the quantity - ~ I K ,  which is permissible 
for K el ,  then the last level vanishes when the repulsive 
radius between the heavy particles exceeds the size of a pair 
by a factor of 3.7. The large size of this quantity gives an 

estimate of the maximum repulsive radius for a negative mo- 
lecular ion. We consider a system of the form Li,, with 
a-0.01 and binding energy in the Li- subsystem of about 
0.6 eV (Ref. 6). Then we find K-0.4 A-', and the maximum 
value of K& is -6 from the Calogero estimate, yielding a 
maximum radius po-15 A, which is much greater than the 
interatomic repulsive radii. We can therefore expect that the 
quasiclassical part of the spectrum (including the higher or- 
bital angular momenta) in actual molecular ions will have a 
small binding energy in atomic ions. 

Note that for a system consisting of a meson and two 
nucleons, for which a = 0.5 holds, the maximum repulsive 
radius will be approximately 1 Fm. 

4. CONCLUSION 

This effective potential agrees well with exact calcula- 
tions even for a = 0.1. This allows us to conclude that the 
region in which the long-range interaction has the form l l p  is 
highly extended, coinciding with the region where particles 
of zero mass are exchanged. Consequently, the most interest- 
ing areas of application may be to the physics of two-atom 
negative ions, the physics of quasimolecular nuclear pro- 
cesses, and the physics of meson-nucleon systems, which 
constitute special cases of processes with exchange particles 
of negligible mass. 

I would like to express my indebtedness to D. A. Kirzh- 
nits for his interest in this work. 

''1n this work we take the Planck constant to be h = l .  
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