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The possibility is analyzed of observing the quantum states of a laser field on the basis of the well- 
known kinetic equations for the density matrix of the field. It is shown that the Fock states 
are unobservable, the Poissonian states are observable with Poissonian statistics, and some 
intermediate state can be observed with shot noise suppressed to the 50% level. For 
regular injection of the working atoms intracavity quantum states arise which correspond to 
complete suppression of shot noise at low frequencies. Some rules are formulated which allow a 
significant simplification of the calculations of the statistical characteristics of the 
electromagnetic field. O 1994 American Institute of Physics. 

I. INTRODUCTION (a'a'(t)a(t)a), (a+a(t)) ,  (a(t)a). (1) 

It is well known that the states of a micromaser can be 
substantially quantized, including the Fock states.' This is 
interesting in itself since these states are formed automati- 
cally without any additional effort (in contrast to an optical 
laser, where the quantum states arise, for example, under 
conditions of regular pumping2 or through a parametric in- 
teraction mechani~m.~ At the same time it should be under- 
stood that we are not talking here about an observable effect, 
but about intracavity states of the laser field. All the same, 
the question of obsewability still requires further study. For 
example, we could have said that the intracavity Fock states 
cannot be observed as such since the photons leaving the 
cavity, one after the other, in this case turn out to be com- 
pletely uncorrelated due to the rapid relaxation of the photon 
fluctuations inside the cavity. Thus we see that the Fock 
states are in actual fact Poissonian. This of course does not 
mean in the case of a micromaser that it is totally impossible 
to observe quantum phenomena in the maser field. But all the 
same we should theoretically estimate their quantitative as- 
pects. In particular, it will be shown that the quantum effect 
connected with the total suppression of shot noise is possible 
under conditions of regular active atom injection. 

We base our theoretical description on the well-known 
equations for the density matrix of the maser field, which 
were obtained earlier by other authors in well-known 

According to Ref. 2, the equation written for random 
injection can be easily generalized to the case of regular 
injection. At the same time, we will not try here, as is cus- 
tomary, to solve the equation by whatever means possible, 
but instead will formulate some rules which will allow us to 
write out some final results without having to solve the ki- 
netic equations themselves. To illustrate the possibilities of 
these rules, we will solve a few familiar problems. At the 
same time, the Appendix gives the traditional analysis of the 

The operators a = a(O), a +  = a+(0) ,  a(t),  and a+(t)  are the 
photon operators in the Heisenberg representation. 

Rule A: for a stationary light flux in the most general 
case 

( a+a+( t )a ( t ) a )= (a+a) s t (a+a ) , ,  

where (a'a), is the solution of the differential equation for 
the average number c?cLphotons with initial state of the spe- 
cial form 

where (a'a),, and (a+a+aa),,  are the solutions of the cor- 
responding stationary problems. 

We will prove this assertion with the help of a generating 
function of the following form: 

Here F( t )  is the density matrix of the total real system, con- 
sisting of the light mode of interest, all other light modes, 
and other material subsystems, in particular, those ensuring 
relaxation of all subsystems and generation of the light 
modes. It is understood that this expression can be rewritten 
in terms of the density matrix of just the mode in question 

Since F is the density matrix of the entire system, its time 
evolution can be represented in terms of a unitary matrix 
S(t): 

~ ( t )  = s ( t ) ~ ( o ) s + ( t ) .  (3) 

Bearing this in mind, we can write down the following 
equalities: 

-. 

kinetic equation using the diagonal Glauber representation. 
= Tr{a+aF(t)} 

2. RULES FOR CALCULATING CERTAIN AVERAGE VALUES 
=~r{S ' ( t )a 'S ( t )S ' ( t )aS( t )F(O) }  

In this section we consider rules which sienificantlv sim- - 
plify calculations of the following averages: =Tr{a+(t)a(t)F(O)}. (4) 
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Thus, if we require 

then we obtain 

At the same time, taking into account Tr F = ( a  'a), ,  , ac- 
cording to the relations (4), we have 

under the condition 

Thus, the theorem is proven. We emphasize again that it is 
formulated in the most general form since its proof makes 
use of the density matrix of the entire physical system with- 
out any specifics. 

We have here considered only the simplest case, when 
(a'a),  depends only on the single initial value ( a f  a),,o. Of 
course, there are mixed situations, when this solution can 
depend on many initial values. But then all these initial val- 
ues should be (or can be) reformulated appropriately. 

Now we will give two more rules which can be just as 
simply proven. 

Rule B: for a time-independent light flux in the most 
general case 

where (a ) ,  is the solution of the differential equation for the 
average complex amplitude of the field for the initial condi- 
tion 

Here (a'a),, and (a),, are solutions of the corresponding 
stationary problems. 

Rule C: for a time-independent light flux in the most 
general case 

where ( a ) ,  is the solution of the differential equation for the 
complex amplitude of the field for the initial condition 

Here (a),, and ( a  + a),, are the solutions of the corresponding 
stationary problems. 

The latter rule is given only for reference since it is 
needed in the analysis of compressed states, which we will 
not consider here. It is clear that analogous rules can be 
formulated for other averages. 

3. A SUB-POISSONIAN LASER: THE PHOTOCURRENT 
SPECTRUM 

The case of a sub-Poissonian laser2 is most convenient to 
illustrate those advantages which obtain when one uses the 
above rules. The equation for the generation density matrix 
can be written in the form 

where the operator 

with 

defines the evolution of the field due to the interaction with 
the active medium, and the operator 

describes the decay of the field in the cavity. The arrows to 
the right of the operators indicate the direction these opera- 
tors act with respect to the expressions standing to their right, 
r is the average rate of excitation of the working atoms to the 
upper laser level, y is the average rate at which photons 
escape from the cavity due to its finite Q, and p is the satu- 
ration parameter (its inverse value has the physical meaning 
of the saturating photon number). 

In writing Eq. (9) and the operator (10) (see Ref. 4), we 
have assumed that spontaneous decay from the upper laser 
level is possible only to the lower laser level, and also that 
excitation of the working atoms can be either regular or com- 
pletely random. In the case of random excitation the operator 
term -g2 must be dropped. 

We first multiply Eq. (9) by the operator a f a  and take 
the trace and then do the same with the operator a+a+aa. In 
this way we obtain the following two equations: 

Equation (12) is exactly the same for regular and for random 
excitation of the atoms. For a random pump the last term on 
the right-hand side, -r, is absent. According to rule A, we 
should write the general solution of Eq. (12) and the station- 
ary solutions of Eqs. (12), (13) in the form 

According to the rule, it is necessary to choose the initial 
condition in the form (8), which gives 
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Thus, as a result of applying rule A we obtain 

Bearing in mind that the photocurrent spectrum is given by 
the formula2 

1 +2q y(af a),' Re 

we obtain the well-known result for the noise spectrum of a 
sub-Poissonian laser 

(q is the quantum efficiency of the photocathode). 

4. THE OPTICAL SPECTRUM OF THE RADIATION OF A 
SUB-POISSONIAN LASER 

To find the optical spectrum it is necessary to use rule B 
since 

I ,= Re (a+a(t))ei"'dt. I," 
It is clear that when the photon fluctuations are small the 
main part of the optical spectrum is formed by the phase 
fluctuations. Indeed, employing the coherent-state represen- 
tation, we can write 

where the bar above denotes averaging with the two-point 
weight P(a l , t1 ;a2 , t2)  in the form 

Going over to the amplitude and phase 

and assuming that the photon fluctuations are small 

we find that everything reduces to phase averages alone: 

In order to apply rule B, we need the two equations 

We apply the averaging procedure in the language of coher- 
ent states (see the Appendix), taking account of the approxi- 
mation of small photon fluctuations (23): 

Allowing for the condition of stationary generation no= rl  y, 
we obtain the following equation for the complex amplitude: 

(a )=-  $T(a) ,  (26) 

Applying rule B gives 

Substituting this result in Eq. (21), we obtain the Lorentzian 
optical spectrum with linewidth equal to T, which coincides 
with the known results. 

5. A POISSONIAN LASER 

The model of a Poissonian laser is more complicated in 
a mathematical sense, and a consideration of this question 
will allow us to track down some typical difficulties that one 
is likely to encounter in the solution of nonlinear problems, 
and to work out recipes for overcoming them. 

We write the master equation for the density matrix of 
the laser field again in the form 

Here R coincides with its value as given by Eq. ( l l ) ,  and i 
has the form4 

This formula exactly corresponds to Lamb and Scully's 
model of the lase? in the case y,= y, (the equation is given 
in more general form in Ref. 4). Again we obtain the equa- 
tions 

As can be seen, here, in contrast to the case of a sub- 
Poissonian laser, we do not obtain closed equations. In place 
of the particle number operator a + a ,  we may now introduce 
the operator 6 which describes the photon fluctuations 
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where no is the solution of the semiclassical problem in the 
stationary generation regime. An expression for no is ob- 
tained from Eq. (30) by replacing the photon number opera- 
tors with no and taking the time derivative, which is equal to 
zero: 

From Eq. (30) upon linearizing in i it follows that 

It is clear that 

( i ) t = ( i ) t = o e  - rt 

and, consequently, in accordance with Eq. (32) 

From Eq. (31) in the stationary regime we obtain 

After allowing for relation (32) 

Here 5 is the Mandel statistical parameter. And now it only 
remains to apply rule A and we obtain 

The form of the photocurrent spectrum, which determines 
the spectral makeup of the noise, is given in the case of the 
Poissonian laser by the formula 

As can be seen, in the case of saturation ( P n o - + w )  it satisfies 
(+0, i.e., the excess noise disappears and the laser radiation 
becomes Poissonian. 

6. THE PHOTOCURRENT SPECTRUM WHEN MICROMASER 
RADIATION IS DETECTED 

We write the master equation for the density matrix in 
the form 

I ; = ~ ( M -  + M ' ) ~ +  y ~ ~ .  (40) 

The operator .. 
~ = ( a +  ) , (a) , f+f++k+-i , -  1 (41) 

with 

s indpaa '  
f = ~ 3  = cos Jpaa' 

describes the interaction of the micromaser mode with the 
active medium.' In, writing down the operator R now it is 
necessary to take into account thermal phenomena in the 
cavity (nb is the average number of thermal photons in the 
lasing mode): 

First let us consider the case of completely random pumping 
of the working atoms to the upper laser level. In this case, it 
is not necessary to include the operator term - 4 ~ ~  in Eq. 
(40). Then from Eq. (40) we have 

and 

( a + a + a a ) =  - 2  y ( a + a + a a ) + 2 r ( a + a  sin2 Jpaa') 

These two expressions are written in exactly. However, if we 
consider the case of regular pumping, then additional terms 
arise in both equations. All of them, for the most part, will be 
small under the condition 

except for one term in Eq. (45) of the form 
- r/2(sin4Jpaa'). 

We will again assume that the photon number in the 
stationary regime weakly fluctuates about its semiclassical 
solution no (32), for which in the case of a micromaser Eq. 
(30) leads to the equality 

Here account has been taken of the inequality n b 4 n o .  
We have not considered a different situation since no other 
situation could satisfy the requirement of small photon fluc- 
tuations. In Fig. 1 the points represent the various sets of 
stationary solutions of Eq. (47), which depend on the physi- 
cal parameter set. Now let us convince ourselves that 
cot& < 0 holds for these solutions. We linearize Eq. (44) 
in the new operator i: 

The above requirement follows from the positive definiteness 
of r. We may rewrite the resulting constant r in the form 

The solution of Eq. (48) is written in the form 

From Eq. (45) after linearization we obtain 
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FIG. 2. y = m c o t m .  

where 5 is the Mandel statistical parameter, which is repre- 
sented explicitly as follows: 

Using rule A, we obtain 

As a result, the photocurrent spectrum has the same form as 
(39) for a Poissonian laser, but, of course, with its own co- 
efficients. 

7. DISCUSSION OF THE PHOTOCURRENT SPECTRUM 
WHEN MICROMASER RADIATION IS DETECTED 

Thus, the observed photocurrent spectrum has the form 

To start with, we assume that the working atoms are only 
injected into the micromaser cavity in a completely random 
fashion, i.e., the spectral width of the noise r and the Mandel 
parameter 5 are given by formulas (49) and (52). In order to 
estimate the magnitude of the observed quantum effect, it is 
convenient to introduce one more parameter into the discus- 
sion: 

y 2nb- &lcot&l 
S = 2 q 5  - = 2 q  (55) 

(1+&1cot&l)~ '  

This parameter gives the magnitude of the dip (for 5<0) 
or peak (for 5>0) in the photocurrent spectrum (54). Thus, 
when it is negative it quantitatively characterizes the quan- 
tum manifestations in the process of detecting radiation. At 
the same time, the Mandel parameter 6 characterizes the in- 
tracavity state of the field oscillator. Comparing & and S 
makes it possible for us to judge the relation between the 
observed phenomena and the intracavity states and, in par- 
ticular, the fundamental observability of the intracavity quan- 
tum states. 

Figure 2 gives a qualitative picture of the dependence of 
the parameters 5 and S o n  y = &(cot&l, which can, 
in principle, run through any values from zero to infinity 
with variation of the stationary solutions no for micromaser 

generation. We will take the quantum efficiency of the pho- 
tocathode to be equal to unity (q = 1) in all that follows. 

As can be seen, the parameter 6 falls as y rises from the 
value nb (associated, as we should recall, with the cavity 
temperature) to - 1. This means that inside the cavity, at least 
in principle, both Poissonian and sub-Poissonian states occur, 
as well as states with positive excess noise (slightly super- 
Poissonian), all the way to the Fock states at large y.  

The parameter S behaves differently. At first, like 5, it 
falls smoothly, reflecting the decrease of the super- 
Poissonian noise, but beyond the point y = 1 + 4nb it begins 
to grow, tending finally toward zero. Thus, in the initial re- 
gion there is, as it were, a qualitative correspondence be- 
tween observation and the intracavity states: the positive ex- 
cess noise in the photocurrent corresponds to the super- 
Poissonian state, and the negative excess noise with, in this 
case, maximum possible depth of the dip (about 50%) corre- 
sponds to the sub-Poissonian state with t= -112. However, 
as one goes beyond the initial region this correspondence 
breaks down and in fact the closer the intracavity state is to a 
Fock state (i.e., to the most quantum-like of all the possible 
states), the less observable is the quantum effect and the 
closer are the observed generation statistics to Poissonian. 
This phenomenon becomes completely comprehensible if we 
recall that everything about the photoregistration noise that is 
non-Poissonian is due to correlations between each photon of 
the photon pairs that arrive at the photocathode. But such 
correlations are simply impossible in the case of a Fock int- 
racavity state. The point is that in this case any fluctuation 
inside the cavity decays with an infinitely fast decay-rate, 
ensuring the existence of a Fock (and this means nonfluctu- 
ating) state, and therefore the second photon leaving the cav- 
ity, right behind the first, is already completely uncorrelated 
with it. 

Now let us discuss the case of regular injection of the 
working atoms into the intracavity space of the micromaser. 
It is specifically in this case that the additional term - 1 1 2 ~ ~  
appears on the right in the master kinetic equation (41) in 
comparison with the case of completely random injection. As 
a consequence, there appears an additional term on the right 
in Eq. (45) in the form - r / 2 ( s i n 4 J j Z ) ,  and the formulas 
for 5 and S are now, naturally, different: 

The change in these formulas consists only in the additional 
term in the numerators of these expressions in'the form 
- 112 sin2&. 

For our purposes, when we try to observe stationary 
states most strongly evidenced by their quantum manifesta- 
tions, the most interesting stationary micromaser states are 
those for which sin2& = 1 (or is close to 1). Figure 3 
gives a qualitative picture of just such a case with the addi- 
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FIG. 3. y = m c o t m .  

tional condition nbGl .  As can be seen, now all of the chosen 
stationary intracavity states are sub-Poissonian (all the way 
to the Fock states, as before). All these states are substan- 
tially quantum-like. In this regard, note that the state 5= 
-112 corresponds to the most observable quantum effect 
since in this case S= -1 holds, i.e., here we have the same 
situation as for a sub-Poissonian laser.2 Thus, in the case of 
regular injection complete suppression of shot noise is pos- 
sible, which substantially distinguishes this situation from 
the situation with random injection, where complete suppres- 
sion is never achieved. As for the Fock states, here the pic- 
ture is the same as before: these states are unobservable. 

8. APPENDIX: THE MASTER KINETIC EQUATION OF A 
MICROMASER IN THE DIAGONAL GLAU'BER 
REPRESENTATION 

We represent the operator functions j and g in the form 
of an expansion in the small parameter 

We keep terms to second order in i: 

here y = &lcot&l and allowance is made for the fact 
that c o t 6  < 0 for stable stationary solutio?~. 

Now we can write the operators M and M~ in the same 
approximation, and after that go over to the diagonal Glauber 
representation, which is defined by the following integral 
relation 

Here a and la) are the eigenvalue and eigenfunction of the 
photon annihilation operator: 

As is well known, the transformation to the diagonal repre- 
sentation can be carried out with the help of the following 
rules: 

Bearing this in mind, we obtain 

Two more useful relations: 

We can now write down explicit expressions for the opera- 
tors ;, and ;, : 

where 

Using all these formulas, we can finally write down the equa- 
tion for the density matrix in diagonal form: 

This equation as written takes account of the fact that no 
coincides with the semiclassical solution given by Eq. (47). 
The coefficients are given by 

r=  Y ( ~ + Y ) ,  6411) 

where the Mandel parameter for regular injection has the 
form 

For random injection it is necessary to drop the term 
-112 sin2&, 

(A14) 
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The terms in (A10) not written out explicitly have the fol- 
lowing form: 

Below we will show that they do not contribute to the ob- 
served signal. Thus, we could have written the equation in 
the diagonal form in the diffusion approximation although, 
strictly speaking, for quantum fields this is invalid. 

What we do next depends on what we want to calculate 
next. If we are interested in the photocurrent spectrum, then 
we need to calculate the average (ss(t)). This being the case, 
we can limit ourselves to the equation for the amplitude den- 
sity matrix: 

~ ( e , t ) =  ~ ( J z ~ e ' v , t ) d q .  (A161 

Integrating (A10) over q, we obtain 

Now we must take into consideration the relation 

where R( ...) and G( ...) are solutions of the same equation 
(A17) for the physical initial condition and for the special 
initial condition 

G(EI  ,OIs2,0)= S ( s 1 - 4 .  (A19) 

From Eq. (17) we now get the equation 

The solution of this equation has the form 

Thus, we still need to know the quantity (s2), an equation for 
which is also not difficult to obtain from Eq. (17): 

We have set the derivative equal to zero since we are inter- 
ested only in the stationary solution. These formulas make it 
possible to bring this problem to a conclusion. And we see 
that higher derivatives indeed do not contribute to the desired 
quantity. 

In exactly the same way we could work out the optical 
spectrum, which, as is well known, is defined by the expres- 
sion 

To start with, it is necessary to write out the equation for the 
phase density matrix 

and then construct an equation for the unknown quantity, 
which is just as simply solved. Strictly speaking, the equa- 
tion for @ contains the fourth derivative with respect to q 
besides the usual second. However, because the coefficient 
of the second derivative is positive and in this case there is 
no "quantum" unpleasantness, the fourth derivative can with 
good accuracy be dropped. 
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