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We have calculated accurate values of the critical fields if, for various states (n l  ,n2 ,m) of a 
hydrogen atom, including the ground state. Using modified quantization rules that take 
into account the finite permeability of the barrier, we determine how the widths r, of the Stark 
resonances depend on n for %=Ec. Using the lln expansion, along with several model 
problems as examples, we show that in the above-barrier (i5>Zc) region the Stark widths T,(%) 
depend almost linearly on the electric field. We determine the dependence of the ground- 
state Stark shift of a D-dimensional "hydrogen atom" on the dimensionality D of the 
space. O 1994 American Institute of Physics. 

1. INTRODUCTION AND STATEMENT OF THE PROBLEM 

Recently there has been considerable interest in the 
study of near-threshold resonances in scattering by a poten- 
tial barrier (i.e., the case Er- Urn,  where E,=Re E gives the 
position of a resonance E =E,- X I 2  and Urn is the barrier 
height).'-9 The problems that arise in this case can be par- 
tially solved using semiclassical quantization rules that take 
into account the finite permeability of the barrier (see Refs. 
10, 11 and the citations mentioned therein, and also Ref. 12). 
In this article we will address the following problems: 

1. Accurate calculation of the critical field Kc(nl ,n2,m) 
at which a hydrogenic level with parabolic quantum numbers 
n,, n2, m "touches" the top of the barrier, i.e., E r =  Urn.  The 
quantity 5, separates two characteristic energy regions: a 
"weak-field" region, in which the levels are below the bar- 
rier and have widths that are exponentially small (and 
that approach the semiclassical asymptotic limit13-l5 as 
Z+0), and a "strong-field" region (KbK,), in which the 
l?,(%) increase linearly with K (see (6.1) below). Both ex- 
perimental data and numerical calculations show that the 
transition from one region to the other is abrupt. Therefore, 
the critical fields %,, which are rigorously defined only in the 
semiclassical limit n S l ,  remain meaningful even for low- 
lying quantum levels such that n = n, +n2  + JmJ  + 1 .  

2. In Secs. 3 and 4 we discuss the Rydberg limit n-+m, 
in which the critical field F c = n 4 8 c - + ~ ,  , where F, is the 
classical ionization thre~hold.~, '~  For states with magnetic 
quantum number m =0, which are often encountered in prac- 
tice, F ,  can be computed analytically. The dependence of F, 
on the electric quantum number k =  n, - n2 has been ana- 
lyzed in detail.17 

3. It is interesting to study the position and, more espe- 
cially, the widths of the Stark resonances for %= 5,. In Sec. 

5 we show that the widths T,(%,) decrease rapidly with in- 
creasing n, so that resonances have small widths even when 
they "touch" the top of the barrier. We estimate T, for the 
case where the potential that binds the particle is not neces- 
sarily Coulombic at small distances, but has a more general 
power-law form V ( r ) a r - "  as r-+O. 

4. The subject of Sec. 6 is the Stark resonances in the 
above-barrier region &>Kc. In this section we explain the 
regime in which r,(%) is linear with % using the semiclas- 
sical lln e ~ ~ a n s i o n , ' ~ - ~ ~ .  Discussion of model examples 
shows that the linearity of T,(%) for %>%, is connected with 
the form of the external potential, i.e., %z, that acts on an 
electron in the atom. 

5. Finally, in Sec. 7 we address the question of how the 
Stark shift depends on the dimension of the space D in which 
the atom resides, which is interesting with regard to the 
method of dimensional scaling2' widely used at the present 
time, as well as the lln expansion. 

Some the results of this paper were reported in Refs. 23, 
24. Computational details and a discussion of the one- 
dimensional problem are left to the Appendices. 

2. CRITICAL FIELDS IN THE HYDROGEN ATOM 

In the problem of the Stark effect in a hydrogen atom, 
the variables separate in parabolic coordinates 5, 7, cp. The 
barrier depends only on the variable v=r-2; for this coor- 
dinate, the effective energies E,, and potential equal13 

Since the wave function ~ ~ ( 7 7 )  is defined on the half-axis 
O<v<w, v=O is a singular point. The Langer 
tran~formation~'-~~ 
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which places this singularity at -m, allows us to correctly 
include the boundary condition x2(0)=0 in the semiclassical 
approach. The resulting Schrodinger equation has the form 

where y =n- 'v  and P2 is the separation constant. We use 
atomic units ( h  = e = me= 1)  and the "reduced" variables 

E =E,- i r / 2  is the complex resonance energy, n l  ,n2,m are 
the parabolic quantum numbers, and n = n + n2 + 1 m 1 + 1 is 
the principal quantum number of the level. In going from Eq. 
(2.1) to (2.3), we have replaced the coefficient m2-1 by m2, 
which corresponds to including the Langer correction. 

The condition that the level "touch" the top of the bar- 
rier (i.e., E,= Urn) is expressed by the equations 

which, taking into account (2.3), have the form 

The first of these equations can be simplified, while the sec- 
ond can be solved in explicit form1): 

where y = y ,  is the point at which the potential is maximum, 
6 = 1 2 / 3 4 ~ / ~ ' ~ ,  and E'<O. Substituting the second of the 
Eqs. (2.7) into the first equation and letting w = 2J1-5, 
we find that 

where x = ~ ~ $ F ~ / ( - E ' ) ~ .  From this it follows, in particular, 
that for an arbitrary state O C X < 1  (and thus 3 / 4 ~ 6 < 1 ) .  The 
calculation of the critical field F, thereby reduces to solving 
the cubic Eq. (2.8). The quantities E' and entering into 
this cubic depend on the reduced electric field F and the 
quantum numbers of the state. Once they are calculated by 
summing perturbation-theory terms using Padi-Hermite 
approximants?28 the critical field Fc(nl ,n2,m) can be de- 
termined from (2.7) or (2.8). 

We note that for the states (n l  ,n2,0)  Eq. (2.7) is satis- 
fied for 

FIG. 1. Critical fields F , ( n ,  ,n2 ,m)  in the hydrogen atom. Curves 1-5 
correspond to the following series of states: (0,n - 1,0), (n , ;n  , ,O), 
(m,m,m) ,  (O,O,n - I ) ,  and (n-1,0,0),  where n , = ( n -  1 ) / 2  and m = ( n -  1 ) /  
3 ,  n is the principal quantum number of the level. The dashed curve was 
plotted using the asymptotic Eq. (2.11) for the states (0,n -1,O). 

rules. In this case, [=(3/4)z2, where z2=1 is the singularity 
of the hypergeometric function F(1/4,3/4;2;z2) contained 
in these equations that is closest to zero [see also (3.1)]. 

Another limiting case is that of the Rydberg states ( n 9 l )  
labeled (O,O,n -I), which correspond to circular orbits of an 
electron and are closest to classical mechanics. It is not dif- 
ficult to verify that Eqs. (2.7), in the limit n+m and p=1 ,  
have the (real) solution 

P2= ;, (2.10) 

where here yrn=27/16 and [= 1. 
The results of calculating F,= n48, for the various states 

(n ,n2 ,m) of a hydrogen atom are shown in Fig. 1. We note 
that the Langer correction is always present for small n,  es- 
pecially in the case of the ground state (see Ref. 23 for more 
detail). As n increases, the values of F, approach the classi- 

TABLE I. 

3 Note. the numbers in this table refer to the Rydberg limit 
2 F " = - 4(P;F)1127 = -  4 (2.9) n - + m : F ,  is the classical ionhation threshold, r, is the corre- 

sponding reduced energy, etc. In this case the parameters ul and v2 
which agrees with Eqs. (16) from Ref. 9 as n+m, which in from (2.4) equal ~ , , ~ = ( 1 - ~ ~ > ~ ) / 2 .  
turn are consequences of the Bohr-Sommerfeld quantization 

548 JETP 79 (4), October 1994 

F* -f* $2 Ym 
0.1298 1.441 1.000 5.552 
0.1674 1.076 0.432 3.213 
0.1693 1.073 0.434 3.135 
0.2081 1.053 0.444 1.687 
0.3834 0.000 0.000 0.000 

State 
( O n - 1 0  
(n l .  nl,O) 
( m . m , m )  
(0.0, n - 1) 
(n - 1,0,0) 

Popov et a/. 548 

K 

1 0 
0 0 
0 1/3 
0 1 
1 0 



TABLE 11. Parameters of the Rydberg States (n, ,n,,O) at the "critical 
point". 

Note. ~ = ( n ~  -nz)ln, the magnetic quantum number m =O; the 
values of F, and E* are given in atomic units; the power of ten 
of the numbers is shown in parentheses, i.e., a ( n ) = a .  10". 

cal ionization threshold F, , which depends only on the ra- 
tios vi . I 6  Numerical values of F, are given in Table I and in 
Table I1 (for states with magnetic quantum number m =O). In 
the latter case, F, can be calculated analytically (see the next 
section). In Tables I and I1 we also show values of other 
physical quantities (reduced energy E, separation constant 
&, etc.) that pertain to F = F, . 

It can be shown that for the Rydberg states, 

where2) the c, are coefficients that depend on vl , v2, and p. 
As an example, for the states (0,n -1,O) we have 

21° 
F*=- C1=2-25/2.rr-l, -1 

( 3 ~ ) ~  ' 2-  In 2, 

where C=0.577 ...- is Euler's constant (see also Table 111). 
We relegate the details of the derivation of Eq. (2.11) to 

TABLE 111. Coefficients c, (numerical values). 

FIG. 2. The fields F ,  and F ,  for the states (n-1,0,0) and states with nearby 
quantum numbers. The curves are denoted a ,  b ,  c, and d for states (n 
-1,0,0), (n-2,0,1), (n-2,1,0), and (n-3,1,1). Here F ,  is the critical field 
(E,= U,) and F ,  is the ionization limit (i.e., the field for which E,=O). 

Appendix A. As is clear from Fig. 1, this asymptotic form is 
in good agreement with numerical calculations even at n -3. 

In Fig. 2 we show the results of calculations of the criti- 
cal fields Fc for the states (n - 1,0,0) and those states close to 
them that are of experimental interest.23 

The curves of Fig. 1 all terminate on the vertical axis at 
points corresponding to F, . For m =O the equation that de- 
termines F, can be written in analytic form. Let us address 
this question now. 

3. CALCULATION OF THE CLASSICAL IONIZATION 
THRESHOLD F ,  

As n--tm (the "Rydberg limit"), the quantization condi- 
tion for m =O takes the form3) 

p l ( -  ~ ) - ~ / ~ ~ ( 1 / 4 , 3 / 4 ; 2 ; - ~ ~ ) =  vl ,  

where zi= 1 6 ~ ~ ~ 1 ~ ~ ~  and F is the reduced electric field, 
while F ( .  . .;z) = ,F1(. . . ;z) is the Gauss hypergeometric 
function. The solution to these equations remains real until z2  
reaches unity (i.e., the singular point for the hypergeometric 
function). This determines the classical ionization threshold 
F ,(K). As F+F , a singularity appears in the solution to the 
system (3.1), while for F>F, the solution migrates into the 
complex plane, corresponding to an above-barrier resonance. 
In this case Eq. (3.1) should be analytically continued in 
accordance with the prescription given in Ref. 29. 

Here we limit ourselves to calculating the classical ion- 
ization threshold F, and the values E, and /3,! corresponding 
to it. Setting z,=l in (3.1), and writing z=zl /z2 and 
~ = ( n ,  - n2)/n so that 

549 JETP 79 (4), October 1994 Popov et a/. 549 



we obtain the following expression for determining z=z(K): 

in which ~ , = 2 ~ / ~ / 3 1 r ,  and 

We note that 

where c , = 8 / 3 ( ~ / 7 ~ ) ' ~ ~ ,  c6=3/4K, and K is a numerical 
constant which we will often encounter in what follows: 

Equation (3.3) has a (unique) solution for all K which in- 
creases monotonically with K and has a singularity for ~ = 1 :  

where c7= c4/2 and c8 = 4 ( 7 r ~ ) - ~ / ~ .  The remaining quanti- 
ties at the "critical point" can be computed from the expres- 
sions 

(in this case 6 ,  = 12P; F, 162, = 314, independent of the 
value of K). 

Let us consider the limiting cases. 
a) As K+ - 1 we have 

where 1 + ~ = ( 2 n ~ + l ) / n ,  cy=2(1  -3/4c4), clo=c,- 1 ;  
the values of F,(-1) and E,(-1) are given in Table 11. 

b) As ~ + 1  the quantities under discussion have power- 
law singularities: 

where 

For arbitrary ~ = k / n ,  Eq. (3.3) is not difficult to solve nu- 
merically. In this case it turns out that F,(K) and E*(K) in- 
crease monotonically as K increases; they depend strongly on 
K near ~ = l ,  and are almost constant for K<O, which quali- 
tatively agrees with the expansions (3.8) and (3.9). In fact, 
the coefficients ell and c12 (for the terms that are singular at 
the point ~ = l )  are an order of magnitude larger than c, and 
el,. Recall that ~ = l - n - '  corresponds to the states (n 
- 1,0,0), while K= - 1 +n -' goes with the states (0,n - 1,O). 

It follows from Eq. (3.1) that the reduced energy is sin- 
gular for F = F, , and develops an imaginary part when con- 
tinued into the region F > F, :4) 

where f = (F-  F,)/F, +0, 8(x)  =(1/2)(1 +sgn x )  and the 
coefficients a ,b  depend on K. Thus, for K= -1 we have 
a = 112, b =2/3; on the other hand, for K= 1 the singularity in 
(3.11) vanishes (see the next section). 

In conclusion, we note that for m f 0 it is not possible to 
obtain analytic expressions for the classical ionization 
threshold5) similar to Eqs. (3.3) and (3.7). The problem of 
computing F, (n , ,n2 ,m) has been discussed by a number of 
a ~ t h o r s . ~ ~ , ' , ~ ~  

4. A SPECIAL CASE: THE RYDBERG STATES (n-1,0,0) 

Let us pause to discuss this special case, since these 
states (and states that are close to them with regard to quan- 
tum number, e.g., (n -2,1,0) with n B l )  are the longest-lived 
of the states with a given n, and are observed during photo- 
ionization of atoms in a constant electric 

We will show that in this case, the solution to Eq. (3.1) 
has no singularities when F = F, . We note above all that the 
system (3.1) has the solution p l (F )= l ,  p2(F) =0 for vl=l ,  
v2=0. Because of this, the system reduces to the first equa- 
tion (since the second is satisfied identically). By using rela- 
tions for the hypergeometric function, this equation can be 
written in the form 

1 1 + sin t 
1/2,5/2;2; - 

2 2 

I T  'lT 
6 = 4 ~ ' / ~  tan t, - -S t<- - ,  

2 2 

which specifies the function 4 F )  in parametric form. From 
(4.1) it is obvious that the energy has no singularities and 
remains real for all values of F ,  O<F<m: 
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etc., while 

F , ( l ) =  lirn F,(n- l,O,O) 
n-m 

corresponds to t=O. At this point, let us make a few remarks. 
1) The perturbation expansion for E(F) converges for 

O<F<F, .  
2) The expansion coefficients decrease rapidly for 

F-F, (see Table 111); therefore, the dependence of the reso- 
nance energy E ,  on electric field in the vicinity of the ion- 
ization limit E,=O is always close to linear. This is easy to 
see from the figures given in Refs. 28, 32, which serve to 
confirm the scaling relationships both for below-barrier and 
above-barrier resonances. 

3) The asymptotic dependence E ( F ) ~ F ~ ' ~  for ultras- 
trong fields is associated with the form of the external poten- 
tial i5.z acting on an atomic electron. This asymptotic form is 
easy to explain using the Bohr-Somrnerfeld quantization 
rules analytically continued to the above-barrier region29 (see 
also Ref. 33 for the case of a short-range potential and a 
low-frequency field). 

The coefficients c l7 ,c I8  in (4.2) determine the correc- 
tions to the leading term (3  r r ~ ) ~ ' ~  of the asymptotic series. 
The leading correction contains In F along with F-"~. How- 
ever, since cl,=1691, for practically achievable fields the 
correction follows a power law (KF-I"). 

4) According to (4.2), the function E(F) never develops 
an imaginary part; on the other hand, for finite n we have 
r,,>O. However, there is no contradiction here, since the 
widths rn for the states n-1,0,0 are ~ l l n ,  i.e., of higher 
order of smallness, implying that E: vanishes in the limit 
n +m. 

5) Of all the states with given n, the state (0,n - 1,O) has 
the lowest classical ionization threshold, while the state (n 
-1,0,0) has the highest. 

5. STARK RESONANCES FOR %=Kc 

The quantities of interest when a level "touches" the top 
of the potential barrier (i.e., for K=ZC) are the position 
E : " ' "~~) ,  and even more so the width, of the Stark reso- 
nances. In order to solve this problem it is natural to use 
modified Bohr-Sornmerfeld quantization rules that take into 
account the permeability of the barrier.l0," In the Stark effect 
problem, the potential U1(O is closed off, while U2(r/) has a 
barrier.13 Accordingly, the quantization rules take the form 

where 

Here q = x  or y (for i = 1,2 respectively); q j  are turning 
points (j =0,1,2), and q 1  < q < q 2  is the sub-barrier region, 
for which k;<0. Finally, we have x = n 2 t ,  y = n -' 17, where 
[,r/ are parabolic coordinates. The function q(a) in (5.1) is 
related to the finite permeability of the barrier in the potential 
U2(rl), and equals 

+ a ( l  -In a ) .  (5.3) 

It depends on the parameter a ,  a quantity that will be ex- 
tremely useful in what follows: 

For states with energies E,=U, we can expand the 
quantization integrals Ji near the top of the barrier, i.e., let- 
ting F+F, , y -+y,, and a -0. In the linear approximation 
(€"=-I m € 4 0 )  we obtain 

where 

Because the partial derivatives r7J2/& and dJ2/dp2 diverge 
logarithmically as F-rF,, it is more tedious to calculate the 
expansion of the second of Eqs. (5.1). Here we omit these 
calculations and simply give the final e ~ ~ r e s s i o n s . ~  We will 
use a bar on top to denote the level width at the point where 
the level touches the top of the barrier [i.e., I?=r, (E=%,)]. 
and use this notation in discussing other quantities evaluated 
at E= %, . Then 

where y and I ,  are constants that depend on vl, v2, and /A 
(but do not depend on n): 
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C=0.5772 ..., while w is the frequency of the "inverted os- 
cillator," i.e., 

Taking (5.11) into account, we see that the second term in the 
expression under the integral sign in (5.10) regularizes the 
integral, which diverges at the upper limit y = y ,  . This regu- 
larization makes the integrals T, converge, so that they can be 
evaluated numerically. For m =O states, the integrals a, and 
7j can be computed analytically: 

(see Appendix C), where Z=Z(K) is defined in Sec. 3, while 
the expression for the maximum point y, is given in (3.7). 

All that remains is for us to determine the frequency w. 
For this we note that as u-iu, we have p 2 ( ~ )  = G ~ ( U  - u,)~ 
in (2.3); here p = k2(y)ly, where p and k, are the semiclas- 
sical momenta in (2.3) and (5.2). From this we have 

(w refers to the reduced variable y,  and therefore differs from 
the frequency of the "inverted oscillator" for the potential 
U2($ by a factor of n3; this factor is given in (5.7) in ex- 
plicit form). 

Since Eq. (5.7) and those that follow it are asymptotic, 
the parameters entering into them should be computed for 
n+m. This implies that in (5.14) we must substitute 
F,+F,, E L + € , .  For states with m=O we obtain 

29 
w= .--j (1 - K ) - ~ ( I  + z ) - ~ .  

(3  .rr) 
(5.15) 

Equations (5.11)-(5.15) give all the quantities entering 
into the asymptotic form (5.7) for f', . In particular, for the 
states (nl ,n2,0) we have K+- 1, s = ~ T . ~ - ~ ' ~ ( I + K ) + . . .  
when n14n2 ,  and, taking (3.6) into account, we find 

where 

with 1 + ~ = ( 2 n  + l ) /n .  As n increases, the constant y in 
(5.7) increases, which agrees with Fig. 3 and with the nu- 
merical calculations. 

It should be noted that the asymptotic form (5.7) can be 
modified if n2=0. Thus, let us consider the "circular" states 
(O,O,n -1). Both numerical and analytic calculations show 
that in this case 

FIG. 3. The quantities 6 , = n 3 C  (for X=%,) for a hydrogen atom. Results 
of numerical calculations: 0 denotes states (09-1,0), + denotes (O,O,n 
-I), denotes (n -1,0,0), denotes (n, ,n, ,O), and A denotes the series 
(m,m,m), where n ,  =(n-  1)/2 and m =(n-  1)/3.  The solid curves were 
plotted using Eq. (5.7) with values of the parameter y and I, given in Table 
I1 for K=-1 and 0; the dashed curves correspond to the asymptotic forms 
(5.18) and (5.19). 

For the states (n-1,0,0) we find that wa(1-K)-I", 
yma(l-~)213, while s goes to a constant value. Substituting 
this into (5.8), we find that y( l-~)"~ocn- '" ,  so that 
1-K=(2n2+ l)/n. Thus, 

[in this case the constants y, and y2 differ from y in Eq. 
(5.7)]. In the case where (5.19) holds, the Stark widths f', 
decrease most rapidly. This indicates that the states (n 
-1,0,0) are the longest-lived of all the states with fixed n. 
For a derivation of Eqs. (5.18) and (5.19), see the next sec- 
tion. 

Let us compare the asymptotic expressions we have ob- 
tained with numerical calculations. The widths f ,  (for 
g=gC)  were calculated for various states (nl ,n2 ,m) of a 
hydrogen atom by summing the perturbation expansion (by 
the Pad&-Hermite approximant method, see Ref. 28). As is 
clear from Fig. 3, the asymptotic expression (3.7) is in good 
agreement with the results of numerical calculations, even 
for n>3 (the scatter of points for n>30 is due to poor con- 
vergence of the Padd-Hermite approximant method, which 
can only be improved by introducing yet higher orders of 
perturbation theory into the calculation). The agreement be- 
tween (3.7) and the numerical calculations is even surprising 
if we note that the asymptotic form (3.7) was itself obtained 
in the logarithmic approximation, i.e., under the condition 
ln(n +1/2)S1. This is most likely a manifestation of the fact 
that the region of applicability of the semiclassical expres- 
sions in physical problems usually "stretches" down to val- 
ues n-1 (in this connection see Ref. 27). The power-law 
asymptotic forms (5.18) and (5.19) also agree qualitatively 
with numerical calculations, although their accuracy is some- 
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FIG. 4. Reduced energies in for % = K c .  The notation for the curves is the 
same as in Fig. 1. The dashed curve corresponds to the asymptotic form 
(A7) for the states (0,n -1,O); in this case E, = in (A7). 

what lower. This is also understandable, for in (5.19), for 
example, the expansion parameter is n-u3, and not lln. 

The widths r, themselves are shown in Fig. 2 of Ref. 
23, from which it is clear that the Stark levels for 8=%, 
have even smaller widths, especially in the case of Rydberg 
states. 

Let us now consider the real part of the resonance energy 
E ,  when &=if,. Figure 4 shows the results of numerical 
calculations of the reduced energy E, = 2 n 2 ~ r 1 n 2 m )  for sev- 
eral series of values (nl,n2,m), obtained by the same 
method as for the case of r, . As a rule, E, depends weakly 
on n, and for n+m it passes rather rapidly to a limiting value 
equal to E, (as usual, the exceptions are the states 
[n - 1,0,0)1. 

In addition to F,, another characteristic field is Fa, the 
field at which the quasistationary level intersects the bound- 
ary E,=O, i.e., the ionization limit for the free atom (in the 
absence of an external field, E=O). In Figs. 2 and 5 we show 
the values of Fo and the corresponding widths ~ , ( F = F ~ )  
for the states (n -1,0,0) and states that are close to them with 
regard to quantum numbers.") Although the fields 
Fo(n-l,O,O), like F,(n-l,O,O), all have the common 
limit F,(l)-0.383 as n+m, for n-30 they are still rather 

FIG. 5. The quantities 6, = (ri/p)4'3~," for F=Fo,  i.e., where the levels 
intersect the boundary of the continuum [compare with Eq. (5.20)]. Notation 
of the curves is the same as for Fig. 2, n=n-pI2; for these curves the 
values of p are indicated. 

far from this value, as we see from Fig. 2. As the electric 
field increases from F, to Fa ,  the widths T, increase by one 
to two orders of magnitude; nevertheless, the Rydberg states 
remain rather narrow for F=Fo. This explains the fact that 
in the range E,>O, five to ten resonance peaks are usually 
observed293 (and sometimes several dozen before 
they overlap. 

Numerical fitting shows that for n lSn2 ,  m-1, and 
F=Fo, the following relation holds (see Fig. 5): 

which generalizes Eq. (5.19) and the scaling relations for 
above-barrier resonances (see Eq. (28) in Ref. 32). From this 
it is clear that the widths f n  rapidly increase as the quantum 
numbers n2 and m increase, which distinguishes this case 
from the levels r, when S= gc. 

6. ASYMPTOTIC BEHAVIOR OF STARK WIDTHS 
(DEGENERATE CASE) 

For states with n2=0, the semiclassical approximation is 
no longer applicable, for which reason the asymptotic ex- 
pression (5.7) is modified. Let us briefly discuss this case. 

For the circular states (O,O,n - 1) the effective potential 
U2(4  has an inflection point for F = F, and n +m; therefore, 
when F-F,, E-E,, the Schrodinger equation takes the 
form 

1 d 
- 7 - - Z + ~ 3 +  fx-e ( 2n dx 

wherexmv-v,, em&-&* and f m F - F , + O  (here we omit 
some unimportant numerical factors). We can also study the 
more general case where the x3 in (6.1) is replaced by xN 
with odd N=3,5, ... (an inflection point when f=O). After 
rescaling, 

Eq. (6.1) reduces to the canonical equation 

which determines the dependence of the reduced energy E 
on g (and does not contain n explicitly). There is a potential 
barrier for values of the effective coupling constant g<O, 
which vanishes when g2O. Therefore, there exists a certain 
g=g,<O for which Re E(g,) coincides with the maximum 
of the potential yN+gy (the point at which the level 
"touches" the top of the barrier; the numerical solution for 
N=3  gives g,=-1.013, E(g,)=0.392-i0.096). In the origi- 
nal Schrodinger equation, this corresponds to the asymptotic 
forms 

E -  E* mn-2Nl(N+2), F , - F , ~ ~ - ~ ( N - ~ ) I ( N + ~ ) ,  n+m, 

(6.4) 

from which Eq. (5.18) follows for N=3. 
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Let us turn to the states (n -1,0,0). From (5.15) and (3.6) 
it follows that the frequency w ~ ( 1 -  K)-'/~, and y ,m(l- K ) ~ ~ ~  
for 1 -~= l ln - iO .  In (5.12) we have z/(z+ 1)-+1, so that the 
parameter s goes to the constant value: 

Taking this into account, (5.8) implies that ~ ( 1 -  K)"~, and 
we arrive at (5.19). Thus, the fact that the asymptotic forms 
(5.18) and (5.19) differ from the general case (5.7) is asso- 
ciated with the inapplicability of the semiclassical method 
with regard to the variable (along which real tunneling 
takes place). Note, however, that the exponents 1615 and 
1013 in these asymptotic forms differ negligibly from the 
exponent 3 in (5.7). 

7. ABOVE-BARRIER STARK RESONANCES 

At this time various numerical methods have been devel- 
oped that can be used to calculate the positions E ,  and widths 
r of hydrogenic Stark resonances to high accuracy. The cal- 
culations show9,15 that there is a range of fields D25c in 
which the widths of the resonances are essentially linear in 
the field strength: 

(the constants c and F, depend on quantum numbers). In 
order to explain this fact we use the semiclassical lln 
e ~ ~ a n s i o n : ' ~ , ' ~  

whose leading term &O) corresponds to the energy of an elec- 
tron in the equilibrium classical orbit. The higher orders in 
the lln expansion Jk)  can be evaluated recursively (in prac- 
tice, this technique can be used for values of k up to -50; 
although it is possible in principle to proceed to higher or- 
ders of k, round-off errors accumulate). 

Previous ~ o r k ' ~ , ' ~  has shown that the dependence of the 
imaginary part of the energy e" on the reduced electric field 
F = n 4 8  is qualitatively the same for all n = 1,2, ... . This 
means that we need only deal with the "Rydberg" limit 
n+m, for which the series (7.2) reduces to its leading term. 
Consider the states (O,O,n-1), for which e(O)(F) is deter- 
mined by solving the equations16 

(here 8/9<u < l ;  u = 1 - 2, where T is the variable used in 
Ref. 16). The point u =8/9, or F = F ,=212.3-9, corresponds 
to the confluence of the two classical equilibrium points. In 
the above-barrier region F > F, , we assume u = p exp(- i T), 
p>O, and from (6.3) we obtain dr(F) in parametric form: 

d1=4 sin 27. sin 3 T. sin2 8 ~ ( s i n  9 ~ ) - ~  

FIG. 6. The degree of linearity of the reduced energy c," in the above-barrier 
region, F > F ,  . Curves I and 2 are for the Rydberg states (O,O,n-1) and 
(0,n-1,0), curve 3 for the spherical model (6.5). The values of F ,  are 
respectively: (1 )  0.208, (2) 0.130, and (3 )  0.145. 

(here p=sin 8rlsin 97,0S7<7~/9; the value 7 0  corresponds 
to the classical ionization threshold F, , r + d 9  to the case 
F+m). 

We can discuss the "spherical model" for the Stark ef- 
fect in hydrogen analogously: 

For states with angular momentum 1 = n - 141,  we can use 
the lln expansion to derive equations of the same type, but 
simpler: 

err=4 sin4 T sin 2r(sin 3 ~ ) - ~ ,  

F = sin T sin2 2 ~ ( s i n  3 ~ ) - ~ ,  (7.6) 

where now F, =4/27, and 0 6  r< d3. The calculations using 
these expressions are elementary, and were used to plot the 
curves 1 and 3 in Fig. 6; for F>1.2F,  these curves are 
extremely close to straight lines (u<0.005, see Table IV). 
We determine the parameters c and Fo by fitting them to the 
linear function (7.1); the fit is based on minimizing the 
mean-square deviation 

(both the fitting interval Fl<F<F2 and the number of 
points L were varied). The results are shown in Table IV. For 

TABLE IV. Parameters c and Fo for the states (O,O,n - 1 )  of a 
hydrogen atom. 

Note. 1-4 are different fits to Eq. (7.4); 5 gives values 
calculated using expressions (8.6) and (8.9). 

F= (sin 7)'I2(sin 8 ~ ) ~ ( s i n  9 ~ ) ~ ~ ~ ~  (7.4) 
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further details we cite Ref. 24. The authors of this paper also 
addressed the following question: what properties of the in- 
teraction potential are responsible for this linearity of the 
width of the above-barrier resonances? For the spherical 
model 

these authors showed that as the effective coupling constant 
h=nZNf 2g is varied, the imaginary part of the energy d' 
possesses a distinct linear segment (at A>A,) only for N = l ,  
for which the potential (6.8) reduces to (7.5). 

Using the generalized Bohr-Sommerfeld quantization 
conditions for the above-barrier  resonance^,'^ we calculated 
E:(F) for the states (n, ,n2 ,0)  and determined the constants 
c and Fo in (6.1). The results are shown in Fig. 3 of Ref. 23; 
in particular, these results show that the coefficient c-+O as 
~ 4 1 ,  i.e., for the Rydberg states (n -1,0,0). 

In Ref. 22, the l /n expansion was used to calculate the 
energy of the states (O,O,n-1) of a hydrogen atom in an 
electric and magnetic field (the case 41%). The linear re- 
gime (7.1) was preserved even in the presence of the mag- 
netic field if the latter was not too strong. For B=n3,%s2, 
Eq. (7.1) was accurate to within a percent (a<8.10-~,  with 
the fitting error a defined in the same way as (7.7); in this 
case, we chose F, = 1.3F,(B), and F2=2.5). For B-4, the 
departure of 8 from linearity has become significant. 

In concluding this section, we note that in the limit of 
ultrastrong electric fields, T , ~ ( K ~ ~ ~  as E+w (see Ref. 29). 
Thus, the linear dependence (7.1) is an "intermediate asymp- 
totic form." Recently, K r a i n ~ v ~ ~  used it to calculate the en- 
ergy spectrum of electrons in the process of above-barrier 
ionization. 

8. D-DIMENSIONAL CASE 

The dependence of physical quantities on the dimension- 
ality of the physical space, in addition to its fundamental 
interest (see, e.g., Ref. 35), is also useful as a computational 
procedure in the method of dimensional scaling36 and in the 
l /n expansion. Let us discuss this question for the Stark ef- 
fect in a D-dimensional "hydrogen atom" 

In this case, the infinite series that arise from perturbation 
theory all diverge for every %#0: 

Here a = (311 6)(D - 113; the parameters P, c,, etc. depend 
not only on the dimensionality D ,  but also on the quantum 
numbers of the state. We limit ourselves to the ground state, 
where 

FIG. 7. Higher orders of perturbation theory for the Stark effect in the case 
of the ground state l,=loglE,~. In these curves the dimension of the space D 
is indicated. 

E 2 =  - & (D- I )~ (D ' -  1 ) ( 2 ~ + 3 ) ,  ..., (8.4) 

for which the odd orders of perturbation theory all vanish 
identically. 

For D =2, the first three coefficients E 2 ,  E 4 ,  and E ,  were 
calculated in Ref. 37. Naturally, the case D = 3  has been stud- 
ied in detail by many a ~ t h o r s . ~ ~ - ~ O  Probably the most exten- 
sive calculations were undertaken by the authors of Refs. 39, 
40: privman40 calculated 30 orders of perturbation theory 
exactly, i.e., in the form of rational fractions, while 160 or- 
ders of perturbation theory were calculated by Alliluev 
et (for the ground state). By using logarithmic perturba- 
tion t h e ~ r ~ , ~ ' , ~ ~  it is possible to reduce the computation of 
higher orders of perturbation theory Ek for arbitrary dimen- 
sionality D to recursion relations,43 which are convenient for 
computer calculations. The results are shown in Fig. 7; from 
this figure it is clear that the behavior of the perturbation- 
theory coefficients E k  for D = 2  differs somewhat from that 
for 0 3 3  (the asymptotic parameter a =0.1875<1 for D =2, 
while for D 2 3 ,  a > l ) .  

Once we had computed a sufficient number of higher- 
order terms in perturbation theory, we were able to determine 
the position and width of the resonance level. To this end, we 
summed the divergent perturbation expansions (8.2) using 
Padi-Hermite approximants (for F<0.5), while for F>0.3 
we summed the l ln expansion (7.2). The results obtained for 
the Stark shift A are shown in Fig. 8, where we used the 
variables: 

In particular, when D = 3  the maximum shift of the ground- 
state level of the hydrogen atom E,-Eo 
=Am/2= -0.131--3.56 eV, which is reached for F,-0.73 
a.u. As the dimension D increases, the values F, increase 
(see Fig. 9); as D-+m we obtain: 
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FIG. 8. Stark shift A of the ground state of a "hydrogen atom" for various 
spatial dimensions D. The position of the maximum shift is indicated by the 
cross. 

It follows from (7.3) that in the limit D+M we have 

3 

When F< F, , setting A')= 6' -id', we find 

d6'  
-- 

sin 9 7  
d F  

- - 2 F  - 
(s in871 C0S6r '  (8.8) 

Thus, the reduced energy E'(F) has a minimum for ? = d l 2  
(or F = F,), while the Stark shift reaches its maximum value 
at this point. At this point all the parameters are calculable 
analytically: u = urn= (3/2)1'2 exp(-irr/12), which gives (8.6) 
and a slope for d'(F) equal to 

where FolF,=(fi-1)/4; F, is the point where E'(F) is a 
minimum, while F, is a parameter obtained from the inter- 
polation formula (7.1). We note that the coefficient c, is 
quite close to its optimal value from numerical fitting (see 
Table IV). The corresponding curves for the reduced width 
of the ground state d'=([D - I ] / ~ ) ~ T ( F , D )  confirm the lin- 
ear dependence (6.1) in the region F > 1.2F,  . 

FIG. 9. Maximum shift of the ground state level and the corresponding field 
F,(D). Reduced variables (8.5) are used here, n=(D- 1)/2. 

Equations (8.6)-(8.9) apply to the limiting case D=m. 
Figure 9 shows the dependence of F, and A, on the dimen- 
sion of the space D obtained using the numerical methods 
described above. 

In conclusion, we note that for odd dimensions, the re- 
sults given above are identical to those for the circular states 
(O,O,n-1) of a hydrogen atom in ordinary (three- 
dimensional) space, where n = ( D  - 1)/2; however, for 
D =2,4,6, ... they correspond to half-integer values of the 
principal quantum number n,  which cannot occur in the 
three-dimensional problem. 

9. CONCLUSION 

Of the various results of this work, the most fundamental 
are probably Eqs. (5.7), (5.18), and (5.19), which predict that 
the Stark resonances for %=& are still narrow, especially 
for n S l  (see also Fig. 2 in Ref. 23). 

At first glance, this appears to contradict the well-known 
result of Kemble: namely, that the coefficient for penetration 
through a parabolic barrier at the point where the level 
touches the top of the barrier (E,=U,) is ~ = 1 / 2 ,  indepen- 
dent of frequency. The same is also true of other smooth 
potentials, for example, for 

In this case1' 

where Q = (2 UJ = 2 U,lw, from which we find 

The parabolic approximation is valid for IxlGL, while the 
condition for applicability of the semiclassical method is 

Both conditions are fulfilled for L Q - " ~ G x G L ,  which re- 
quires Q+1. However, in this case the coefficient of penetra- 
tion approaches the Kemble value D = 112 and is not small at 
all. 

Let us clarify the reason for the smallness of the widths 
r, for n S l .  It is obvious that in the parabolic approxima- 
tion, l?,-w, simply because there is no other parameter with 
the same dimensionality in the problem. 

We now show that the frequency w of the "inverted 
oscillator" itself depends on the quantum number n. Specifi- 
cally, 

if the potential that binds the particle V(r)mr-" at small 
distances. This is not difficult to verify for the following 
example: 
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(1=0). If 5-0, the levels with energies E- ~,,,ccif"~("+') are 
located in the region of highly excited states that are close to 
the continuum (the point where the potential is a maximum 
rrn=(gl@'i(a+')+~). In the semiclassical approximation 

) ~ , / - ~ - 2 a 1 ( 2 - a )  9 (rn>-n 2/(2-a), ns 1.  (9.6) 

Taking into account that o- (~ , ) ' /~ / ( r , ) ,  in which 
(T,)= [aI(a-2)]E,  (the virial theorem), we arrive at the 
estimate (9.4). If a=l (i.e., a Coulomb singularity for V(r) 
as r--+O), then wmnP3, which coincides with the collision 
frequency of a particle localized in a well, and (5.7) corre- 
sponds to collision with the barrier wall. 

We note that (5.7) contains still another order of small- 
ness -1Pog n for the widths r, . The origin of this effect is 
as follows. According to Gamow's formula, 
T , ~ T - '  exp(-2~ra), where T is the period of oscillation of 
a classical particle in the well. As the energy approaches the 
top of the barrier, a = (Urn- E)lw+O and the widths r, are 
no longer exponentially small; however, the period T di- 
verges logarithmically: 

1 1 
T-w-' ln-,  T,-T-'K----- 

a n3 In n 

[the parameter amn, which is apparent from (5.4) and (5.5)]. 
Although the factor (log n)-' is not very important compared 
to nP3, it is fully confirmed by numerical calculation (Fig. 3). 
In addition, it determines the parametric smallness of the 
ratio I',/AE,m(ln n)-', which causes the Stark resonances to 
remain isolated for F=F, (especially in the case nS-1). 

The authors are grateful to N. B. Delon, B. M. Karnakov, 
and V. P. Krainov for useful discussions, and to S. G. Pozd- 
nyakov and D. V. Popov for assistance in the numerical cal- 
culations. The work was carried out with partial support from 
the Russian Fund for Fundamental Research (Project 93-02- 
14368) and the International Science Fund (ISF grant Ph 
1-2292-0925). 

APPENDIX A 

Here we derive the asymptotic form (2.11) for the states 
(0,n - 1,O) with n +l (vl = 1/2n-0, Y= 1 - 1/2n). 

In the semiclassical approximation the quantities 
E=E' -ierr, P1 and are found from the quantization rules 
taking into account the permeability of the barrier, see Eq. 
(5.1). The function d a ) ,  defined by Eq. (5.3), has the fol- 
lowing expansion as a -+O 

where C=0.5772 ... is the Euler constant. In this case 

where 

and c22=l+6 In 2. It follows from (2.8) that at the point 
where the level touches the top of the barrier, 

or 5=3/4. Since P1ml/n, in the first equation from the system 
(3.1) the variable 2, cc lln--0, so that 

(from what follows it is clear that Cr-=Slerl). Substituting this 
expansion into z2= 16(1 -p,)F/e2 and taking (A5) into ac- 
count, we obtain 

Using (A4) in the case 2-1, we reduce the remaining equa- 
tion to the following form: 

(it should be noted that the logarithmic terms in (Al) and 
(A4) cancel without a remainder). Substituting (A6) at this 
point and separating its real and imaginary parts, we finally 
obtain 

and Eqs. (2.11) and (2.12) for F ,  and F ,(- 1). Here c2, clO, 
y, and lo are constants, defined in (2.12), (3.8), and (5.16) 
above. As we should expect, for the terms that are a l ln  the 
coefficients coincide with the corresponding coefficients 
given in (3.8). 

The asymptotic forms (2.11) and (A7) are in good agree- 
ment with the results of numerical calculations even for 
n33 ,  which is apparent from Figs. 1 and 4. 

APPENDIX B 

We discuss the width of the resonances for E,=U,  for a 
one-dimensional potential U(x) with a barrier, a problem of 
interest in its own right. Assuming the potential is smooth, 
we apply quantization rules that take into account the finite 
permeability of the barrier.''-l2 For levels that are close to 
the top of the barrier, U(x) can be approximated by the 
potential of an "inverted" (or repulsive)43 oscillator: 

557 JETP 79 (4), October 1994 Popov et a/. 557 



1 
U(x)= Urn - - ~ ~ ( x - x , ) ~ ,  w= [- U " ( X ~ ) ] ~ / ~ .  

2 
(B1) 

It will be clear from what follows that the parameter am11 
log n--0 for n P l ,  which allows us to use the expansion 

~ = I + c ~ I ~ + c ~ I ~ + . . . ,  I=(U,-E)Iw, 033) 

and (Al) for the function cp(a) in (5.1). Here J 
= 1 1 .rr.fXlp(x,~)dx the quantization integral, 

*o 

xm is the point of maximum potential, Urn= U(x,); we de- 
note quantities that are related to the (real) energy E = Urn by 
an overbar, i.e., at the instant the level touches the top of the 
barrier: i1 =x, , p =p(x, E = Om), etc. We note that J, is the 
regularization of the integral 

which diverges logarithmically as E +  Urn (here T is the pe- 
riod of oscillation of a classical particle between the turning 
points x, and xl). Finally, ck in (B3) are coefficients that 
determine the value of the anharmonic corrections in the ex- 
pansion of U(x) when x-x, , see Eq. (2.17) in Ref. 11 (not 
to be confused with the coefficients ck in this article). 

By substituting the expansion given above into the Eq. 
(1.3) from Ref. 11, it is not difficult to verify that terms 
ma In a cancel, i.e., a = O  is not a singular point. Taking into 
account that at the instant the level touches the top of the 
barrier I= is12 (S=T/w), we are led to equations that deter- 
mine Sand the shift in the resonance An = n - no (due to the 
finite permeability of the barrier): 

where 

From this we find in the logarithmic approximation (ln(n + 11 
2)Pl):  

where A=ln(n+1/2)+h,+h2 In 2. 
Let us illustrate these expressions with the example of 

the potential (8.5). In this case 

The semiclassical momentum corresponding to an energy 
E = U, equals 

from which we have 

J=A g3/2(a+1)g-(2-a)/2(a+ 1) 
a 9 (B10) 

(as x-1 the pole singularities in cp(x) cancel completely: 
cp(l)=(a+2)/6; therefore, the integral in (B11) converges for 
all a). To summarize, we have 

where 

From (B14) it is clear that resonances with n P l  are 
narrow for E = U, ; their widths decrease with increasing n 
primarily according to a power law (the exponent of the 
power law is determined by the behavior of the potential at 
small distances). For a = l ,  which corresponds to a Coulomb 
singularity V(r) at zero, the asymptotic form (B14) coin- 
cides functionally with (5.7), while y-z2 [the coupling con- 
stant g = Z in (9.91. 

In conclusion, let us discuss a few special cases. 
1) a = O .  Going from general to specific in (Bll), we 

obtain 

2) For a=1/2 the integral can be computed in terms of 
elementary functions: 
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FIG. 10. Parameters of the asymptotic form (5.7) for the spherical model 
(9.5). 

23/2 
All,=_ (&-A sinh &)=0.3737, 

from which 

(the constant y in (B15) has a minimum for a= 112). 
3)  a = l .  Just as in the previous case, the computations 

can all be done analytically: 
2512 

A,=-=0.6002, v ( x ) =  ( 1  + x " ~ ) - ' ,  
3lr 

which gives 

2 
y=A:.z1l2 In 2= - 

( 3 ~ ) ~  
In 2=0.21196, 

We note that the results in (B18) coincide exactly with the 
constants in the asymptotic form (5.7) for the Rydberg states 
(0,n-1,O) in the three-dimensional problem. This is ex- 
plained by the fact that the quasiclassical equations for the 
energies of these states are the same as for the "spherical" 
model of the Stark effect, which is described by the potential 
(8.5) with a=1. For this case it is not difficult to calculate 
the coefficients of the expansion (B3) as well: 

Hence it is clear that ck are small for states with large n and 
can be omitted in (B7). 

The results of numerical calculations using Eqs. ( B l l ) ,  
(B15) are shown in Fig. 10, from which it is clear that y is a 

"sluggish" function of the exponent a in the range 
O<a%1.3 (however, y increases rapidly for ~ 0 1 . 5 ;  note that 
the value a=2 corresponds to the "fall to the center" of Ref. 
13). On the other hand, the constant lo  decreases monotoni- 
cally with increasing a, while 10>2. Therefore, the term with 
In n in the asymptotic form (B14), which dominates as 
n+W, is not dominant for values of n-20. 

APPENDIX C 

We discuss the calculation of the integrals ai ,r j  from 
Sec. 5 for states with m=O. In this case the centrifugal term 
in k?(q) vanishes, and the turning points can be found in 
explicit form: 

where xo=yo=O, 

(E<O, therefore, x,>O, while x2<O). At the instant the levels 
touch the top of the barrier we have: z ,  = z ( K ) ,  z2=1, 

Using the integral representation (2.12.1) from the handbook 
Ref. 45, we can express J ,  and ui in terms of hypergeometric 
functions of the argument w = [ I  - ( 1  + z,) 112]1 
[ 1 + ( 1 + ~ , ) " ~ ] .  If we then make use of the Kummer 
t ran~format ion~~ 

we finally obtain 

J , = P , ( -  ~ ) - ~ ' ~ ~ ( 1 / 4 , 3 / 4 ; 2 ;  - z l ) ,  

ao=21rp,(- ~ ) - ~ / ' ~ ( 3 / 4 , 5 / 4 ; 2 ;  - z l ) ,  (c4) 

Here assuming z l=z  and taking (3.7) into account, we are 
led after several transformations to Eq. (5.12). 

We note that the integrals ai are easily calculated for 
~ = l ,  where xl  = -x2=9rI8K,  

k l ( x )  = F ' , ' ~ [ ( x : - x ~ ) / x ] ~ ~ ~ ,  
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from which s(1) = ~ ( 3 / 4 ~ ) ~ .  This result also follows from 
(5.12) and (3.6), if we take into account that 

where K is the constant entering into (3.5). 
Taking (C3) into account, calculating the integrals 7 

from (5.10) is elementary: 

where $(x) is the logarithmic derivative of the gamma func- 
tion. In particular, 

which gives Eq. (5.13). Since Eq. (5.7) is asymptotic, in the 
computations the constants that enter into it can be taken to 
the Rydberg limit n-m, i.e., we can replace F, with F , ,  
etc., which was used in the derivations above. 

' )~rom physical considerations we choose that root y ,  which goes to infinity 
as the electric field is turned off, i.e., the root ym-2/3F as F+O. 

"1n what follows, we denote the coefficients of expansions encountered 
below by ck ; their numerical values are given in Table 111. Although all 
coefficients ck can be calculated in analytic form, we omit certain of these 
expressions because of their unwieldiness 

''see Refs. 9,32. As n+m, we can omit the function cp(a) in the second of 
these equations, i.e., we can consider the barrier impenetrable (for F<F,) 

4 ' ~ s  in the case of the lln e~~ansion, '~ . '~  this leads to the circumstance that 
for F>F, the classical solution begins totdescribe not only the position 
but also the width of the resonance. We refer to the solution to Eqs. (3.1) 
as "classical" because these equations are the limit (as n-+m) of the semi- 
classical quantization rules. 

5)~xcept for the circular states (O,O,n - 1) with nB1, for which the lln ex- 
pansion rather rapidly leads to Eqs. (2.10). 

6khese expressions are conveniently derived for the general case of systems 
with fP2 degrees of freedom that allow separation of variables in the 
Schradinger equation. This question requires a separate investigation. The 
basic idea of the derivation is set forth in Appendix B for the technically 
simpler example of a one-dimensional potential with a barrier. 

7 ) ~ o r  the other states, the energy E, can also intersect the boundary E =0, but 
the corresponding fields are too large. Thus, in the case of the ground state 
F p 2 . 3  a.u. (see Fig. 8 below). 
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