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The complex mass shift Am of a classical charge moving in external fields of a special type near 
conducting boundaries has been studied. The general formulas for the real and imaginary 
parts of the shift have been obtained for the simplest case of plane motion parallel to a "mirror." 
The geometric (causal) properties of the world lines lead to dispersion relations that define 
the relationship between the real and imaginary parts of Am. The general formulas have been 
illustrated analytically and numerically in specific examples. The method has been applied 
to the problem of the shift of the cyclotron frequency of an electron confined in a magnetic field 
within a flat cavity. The expressions found for the real (Sw:) and imaginary (Sw:) parts of 
the cyclotron frequency shift become equivalent to the known expressions in special cases of the 
position of the orbit and the orientation of the magnetic field. The resonant (with respect to 
the magnetic field) behavior of Sw; and Sw: has been studied. It has been shown that when the 
resonance condition o,=Nrrll  ( I  is the distance between the plates, N=1,2, ...) is satisfied, 
no logarithmic divergences appear in Sw: and no finite discontinuous jumps appear in Sw: at the 
(N- 1) points dividing the interval 1 into N equal parts and that the threshold behavior of 
Sw: is maintained, regardless of the position of the cyclotron orbit. 0 1994 American Institute 
of Physics. 

1. INTRODUCTION 

The influence of boundaries on one-particle states in 
quantum field theory is manifested in two ways, viz., directly 
through the boundary conditions (independently of the field 
interaction constants, see Ref. 1) and through boundary- 
modified radiation effects. The latter include the self-energy 
effects of quantum electrodynamics, which were first exam- 
ined in Ref. 2, where the contribution of conducting "walls7' 
to the mass and magnetic moment of an electron was studied. 
This subject has been widely discussed in recent years3-8 in 
connection with probable applications to high-precision mea- 
surements of g -2  of an electron confined in a cavity 

The small dimensions of the confinement re- 
gion compared with the dimensions of the cavity permit ne- 
glect of the influence of the boundaries on the field modes of 
the (massive) electronic field. At the same time, its electro- 
magnetic self-field is modified by the boundaries, altering the 
character of the self-action of the particle. When certain con- 
ditions are satisfied [see Eq. (36) below], the self-action is 
amenable to a classical treatment. In fact, it was found that 
the "instrumental7' additions to the mass, cyclotron fre- 
quency, and magnetic moment calculated in the context of 
quantum electrodynamics are not dependent on h.4,538,11,12 
Thus, nonlocal effects of quantum electrodynamics are also 
exhibited in the limit h-0 owing to the "global" properties 
of the self-field of a classical charge. We note, in passing, 
that the contributions of the boundaries to Am and Ag for 
nonlocalized electronic states located between two "mirrors" 
were considered in Refs. 7, 13, and 14') and were found to 
have a quantum character (the variation of the modes of the 
electron-positron field was likewise not taken into account 
here). 

In the present paper we obtain general formulas for the 

mass shift of a classical charge induced by a plane, ideally 
conducting boundary and external fields, as well as for the 
shift of the cyclotron frequency of an electron confined by a 
uniform magnetic field in a flat cavity. The concept of a mass 
shift forms the foundation of the approach u ~ e d , ' ~ " ~  and the 
modified version associated with consideration of the influ- 
ence of the conducting  surface^^'^'^ has several advantages 
over the other classical In particular, owing to 
the original gauge invariance of the method, the problem of 
selecting a gauge for a "photon" Green's function that de- 
pends on the boundary  condition^^*^"^"^^^^ can be circum- 
vented, and relatively compact formulas suitable for calcu- 
lating the nonrelativistic, ultrarelativistic, and "retarded" 
asymptotes of the mass shift and the cyclotron frequency 
shift (in the case of motion in a magnetic field) can be ob- 
tained. 

Self-action effects have been traditionally treated with 
the Abragam-Lorentz-Dirac equation, in which the influ- 
ence of boundaries can be taken into account43678 owing to 
the nonlocal behavior appearing in the following limiting 
cases2) 

RGT. ( 1 ~ )  

Here V is the velocity of the charge; R is the (doubled) 
distance to the boundary; T is the characteristic time of the 
motion. In addition, the perturbation introduced by the 
boundary and the reactive force are considered to be small. 
At the same time, the mass-shift method, which is also es- 
sentially a perturbation-theory method, makes it possible to 
dispense with the restrictions (1). This is achieved at the 
expense of a detailed picture of the motion based on the 
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solution of the Abragam-Lorentz-Dirac equation and a tran- 
sition to a description which utilizes averaged corrections to 
the parameters of the unperturbed motion. 

In Sec. 2.1 we study the mass shift of electric and scalar 
charges undergoing planar motion near a mirror for a specific 
class of external fields. The real part of the shift is expressed 
in terms of the geometric characteristics of the motion and is 
related to its imaginary part by means of dispersion relations, 
which follow from the causality of the world lines. These 
properties of the mass shift have their own analogies in the 
case of charges (electric and scalar charges) that are acceler- 
ated in the absence of boundaries, but have a massive 
~ e l f - f i e l d . ~ ~ ' ~ ~ , ~ ~  Section 2.2 is devoted to the analytical re- 
sults, and Sec. 2.3 is devoted to the numerical results for 
three possible cases of the plane motion of a charge near a 
mirror. Section 3.1 describes the effective-Hamiltonian 
methodts as applied to the (complex) cyclotron frequency 
shift in a flat cavity and the derivation of fundamental equa- 
tions (58) and (63), which generalize the previously pub- 
lished results. In Sec. 3.2 we analyze the known 
"resonances'~6~7~9 and reproduce the proof of the existence of 
"antiresonance" points23 between the plates, at which infini- 
ties do not appear in the real part of the cyclotron frequency 
shift and there are no jumps in the imaginary part. Because a 
wave cannot propagate with frequency smaller than the criti- 
cal frequency of a waveguide (w,,=~ll), the imaginary part 
of the cyclotron frequency shift exhibits a thre~hold,~ which, 
as is shown below, persist for an arbitrary position of the 
orbit in the cavity. 

2. MASS SHIFT OF A CHARGE IN THE CASE OF PLANE 
MOTION PARALLEL TO A CONDUCTING BOUNDARY 

2.1. General equations and disperslon relations 

The variation of the self-action of a charge caused by the 
presence of boundaries and external fields is described by the 
following correction to the classical action of a particle: 

where indicates subtraction of the "vacuum" contribu- 
tion (see Refs. 16 and 17). Here x=x(r) is the world line of 
the particle, T is its proper time, and D(,BB is the causal 
Green's function of the "photon," which takes into account 
the boundary conditions imposed on the self-field of the 
charge. The causality of the Green's function D(,Bd means 
that exp(iAW) is the classical limit of the amplitude of the 
elastic scattering of the electron by the external field, so that 
Im AW specifies the probability of radiation and must be 
positive.16322 The Green's function D ( , B ~  for a flat cavity of 
width 1 can be found by separation of variables (the spatial 
and Lorentzian  variable^)^' in the following manner: 

where 

satisfies the Dirichlet boundary conditions at the ends of the 
interval OSx3S I, and 

is a solution of the Neumann boundary-value problem in the 
same region. Here x ( ~ )  denotes the 4-vector 
(xl ,x2 ,xSN), ixO), in which 

N is an integer, and the origin of coordinates is located on 
one of the walls. In the limit 1--tm we obtain the Green's 
function for the case of one mirror. As is seen from Eqs. (6), 
only two terms, which correspond to the charge and its im- 
age (N=O,-1) remain in Eqs. (4) and (5) in this limit. 

We consider plane motion in a constant uniform field 
near (one) mirror. In this case the functions D ( ~ '  in (3) (I=m) 
are expressed in terms of the intervals 

where i= (xl ,x2, -x3 ,ixo), and R/2 is the (constant) dis- 
tance from the charge to the boundary. The isometric nature 
of world lines, which is expressed by Eq. (7), permits (2) to 
be rewritten in the form 

(with separate translational divergence with respect to 7). For 
the mass shift Am we obtain 

The principal properties of integral function f(r) follow from 
Eq. (7): 

f ( r ) =  - 2 + 0 ( r 4 ) ,  when r or F+O. (114 

As a consequence of relations (lla) and (llb), the equation 

f ( r ) + ~ ~ = 0  (12) 

has only two nonmultiple roots 7= 7, and r+ = - 7- ; r+>0 
corresponds to the retarded proper-time interval between the 
emission of a photon and its absorption after reflection from 
the mirror. 

According to (lo), the real part of Am equals 
(7- 5' = r+) 

[see (ll)]. The nonlocal geometric structure on the left-hand 
side of the last inequality reduces to the Coulomb multiplier 
-a/2R only for rectilinear motion between x and x r .  This 
becomes possible either for r++0 (i.e., R+O) or when the 
first derivatives may be neglected in the Taylor series 
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x ( r t ) = x ( r +  T+)=x(T)+x(T)T+ + ... (i.e., F-tO). We note 
that a term dependent on R cannot be isolated in Eq. (10) in 
the general case: in the case of motion in an electric field this 
term ensures infrared convergence of integral (10). This ex- 
ample was examined in detail in Ref. 17, and its analog with 
a massive "photon" in the absence of boundaries was treated 
in Refs. 16 and 22. 

The equations like (10) and (13) for a scalar charge e 
follow from expression (2), in which the replacement 
x$l&-+ 1 must be made16321324 and one of the D functions (4) 
must be taken as the Green's function (if the Dirichlet 
boundary conditions are adopted for the self-field of the 
charge and 1 =w). Thus, we obtain 

A comparison of Eqs. (13) and (13') reveals that 
IReAml2ReAmSc, since xx 's-1 .  The direction of the in- 
equality in (13') depends on the type of boundary condition. 
In particular, a Neumann boundary condition imposed on the 
self-field of the particle would change the sign in front of 
ReAm,, . 

We note that an example of an external scalar field 
cpeX(x) in which the motion of the charge would have the 
property (7) can be devised. {The action -S[m + ecpex(x)]d 7 

gives the equation of motion 

whose solutions include hyperbolic world lines satisfying 
condition (7) when q ( x )  = @(xi )  (@' <O)}. 

The relationship between the radiation process and the 
reactive change in the energy of the self-field of an acceler- 
ated charge is expressed by the dispersion relations. Let us 
examine the analytical properties of A ~ ( R ' )  specified by 
expressions (10) and (10'): a) Am is an analytic function in 
a complex R2  plane with a cut along the positive real semi- 
axis; b) Am(z) * = - Am(z *) [Riemann-Schwarz symmetry, 
which follows from the imaginary and analytic nature of 
A ~ ( R ' )  on the negative real semiaxis]. These properties, 
supplemented by the asymptotic restrictions 

as 2-0 and 

IAmI<const.lnlzl 

as 1z1-+w, give the dispersion relations 

in which Am, = Am +- a/2R [as in (14), the signs correspond 
to the spin of the self-field s = l  and 01. The proof of the 

FIG. 1 

dispersion relations (16) and (17) is standard (see, for ex- 
ample, Ref. 25) and uses the Cauchy theorem for the contour 
depicted in Fig. 1. Conditions (14) and (15) [the former is the 
Coulomb asymptote for z =  (R2+ iO)+O, and the latter is a 
restriction on the infrared b e h a ~ i o r ' ~ " ~ ]  make it possible to 
discard the integrals over the small and large circles in Fig. 
1. We stress that all three properties (11) are essential for 
obtaining the dispersion relations. 

It would be useful to compare Eqs. (16) and (17) with 
the dispersion relations for the square of the "photon mass" 
(p) obtained in so general a case for the mass shift of electric 
and scalar charges." The qualitative correspondence p-1/R, 
which was verified numerically for uniformly accelerated 
motion in Ref. 17, was found to hold with a high accuracy 
over a fairly broad region, including values far from p = O .  

2.2. Special cases of plane motion near a mirror 

There are only three configurations of a constant uniform 
electromagnetic field that cannot be brought into coincidence 
with one another and allow two-dimensional 3-trajectories. 
These configurations are defined by the values of the field 
invariants: ~=(1/4)f i , J , ,=0,  2F=(1/2)FpJ,,= 0 (a 
crossed field); G =0, 2 F  = -s2<0 (an electric field E ) ;  G =0, 
2 F =  #>0 (a magnetic field 77). The remaining configura- 
tions can be obtained by applying Lorentz transformations 
(i.e., with the aid of boosts parallel to the boundary; the 
invariance of the boundary condition n,F,,ls=~ for the 
self-field of the charge, where n, is the 4-vector of a normal 
to the surface S, is significant here3)). 

Crossed field. The function f (7) has the form16 

so that in accordance with (lo), (12), and (13) we obtain 

7+ =K1[6(./-- 1)]1'2, (19) 
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The first term in (21) corresponds to an infinite distance 
from the boundary.16 Expanding the numerator and denomi- 
nator in Eq. (13) in powers of T+ and neglecting terms -6 
in comparison to unity, we obtain Eq. (20), in which 
a 2 =  [x(r)12 = - (112) flV(0) [see (7)]. Thus, if motion oc- 
curs sufficiently close to the mirror, the crossed-field condi- 
tions are satisfied for the real part of the mass shift (13). This 
property is not realized for the imaginary part of the mass 
shift in the general case: the integral like (10) representing it 
is determined by values of T from an infinite range. 

Electric field E (v=ec). The real parts of the boundary- 
induced mass shifts in electric and magnetic fields were in- 
vestigated in Ref. 18. To complete the picture, we present the 
principal equations from Refs. 18  and 23 here. Using u, to 
denote the persistent 4-velocity of an electron in the direction 
perpendicular to the direction of the electric field, we have 

- V:,-ch 2w 
v;,w-sh2 W +  ( R ~ / 2 y ~ r n ) ~  1 dw. (24) 

In Eq. (23) 6 is determined from the equation 

and the Lorentz factor yo and v;, equal, respectively, 

Magnetic field 7 ( ~ = e  7). The equations corresponding 
to (22)-(26) for the case of a magnetic field have the form 

(YK 1-V: cos 6 
Re Ammag= - - K T +  - 

2rn 6-V: sin 6' rn 9 (28) 

where 

a KR 1 - V: cos 2w 
dw, (30) 

2R rrrn w2- V: sin2 w- ( ~ ~ ~ 1 2 ) ~  

a KR J T [ ~ - V ;  coszw 
Im A m r g =  - - - 

2R rrm w2-V: sin2 w w2 

FIG. 2. 

[expressions (22), (27), and (31) were given in Ref. 16 with 
somewhat altered notation]. The Lorentz factor is 

2 -112 
y = 1 - V )  , o, = ~ l m  yl , and the invariant is 

V: = ~ ( F , > , ) ~ [ ~ ( F , > , ) ~ + F ~ , ] - ' .  (32) 

The parameter 6 in (28) is given by an equation similar to 
(25) : 

a2=4V: s i n 2 ( 6 / 2 ) + ( ~ ~ l r n  Y , ) ~ .  (33) 

The ultrarelativistic asymptotes of the real parts of mass 
shifts (20), (23), and (28) coincide: 

The correspondence 

is not surprising, since a relativistic particle perceives any 
field as a crossed field in its own reference system4) (Ref. 
26). 
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FIG. 4. FIG. 6. 

The boundary-induced mass shift (23) has a remarkable 
property: it does not tend to zero with increasing distance to 
the boundary. However, its nonlocal nature, which is obvious 
in (13), then becomes hidden (the limit R+w gives 
Re ~m!=-cuv/2m, which is consistent with the mass shift 
found in Ref. 15). In our approximation with respect to the 
radiation field, Re bm! specifies a correction to the rate of 
pair formation by an electric field." 

2.3. Numerical results 

The real parts of electron mass shifts (20), (23), and (28) 
are presented in Figs. 2, 3, and 4, respectively, in units of 
(-aI2R). The parameter B equals 1 0 ~ &  (Fig. 3) or 1 0 ~ :  
(Fig. 4). Figures 2, 5, 6, and 7 show the imaginary parts 
Im Ama (21), Im ~ m ~ l / 4  (24), Irn Amyg (30), and 
Im AmFg (31). The absolute value of the Coulomb shift 
a12R was taken here as the unit of measure, although 
Im AmFg is actually not dependent on R. A comparison of 
the plots of (30) and (31) reveals that the presence of a con- 
ducting surface can result in weak inhibition or stimulation 
of radiation, since Im Amyg is not sign-invariant [in con- 
trast, of course, to the complete sum in (29)l. The behavior 
of the real part Re Ammag (Fig. 4) is also of interest: the 
oscillations exhibit unequal accumulation of reactive energy 
by the "elementary contour" for different values of 7, V, , 
and R. The range of values of ~ R l m  corresponds qualita- 

tively to the experimental conditions in Penning traps (see 
below), and the values of vR/m were set arbitrarily. As we 
have already mentioned, there is no division like (29) for 
Im ~ m ~ l .  

3. MASS AND CYCLOTRON FREQUENCY SHIFTS FOR AN 
ARBITRARY POSITION OF THE ORBIT IN A FLAT 
C A W  

The problem of finding the "instrumental" contributions 
to the cyclotron frequency oc of an electron confined in a 
"trap" became interesting after record precision was 
achieved in the determination of its anomalous magnetic mo- 
ment. Detailed descriptions of the University of Washington 
experiments were given in Refs. 9 and 10. The quantity 
(os-wc)/oc=(g- 2)/2, where o, is the electron spin preces- 
sion frequency, was measured in these experiments. As the 
calculations of various i n ~ e s t i ~ a t o r s ~ , ~ , ~  showed, when the 
size of the cavity is 1-0.1 cm and the magnetic field is q-50 
kG, the boundary contribution to o, may be completely ne- 
glected. The value of the cyclotron frequency shift 
(~o~,Jo~-l0-'*) approximates the experimental error and 
should be taken into account only when the latter is reduced. 
The resonant (with respect to the magnetic field) behavior of 
the cyclotron frequency shift and the boundary addition to 

FIG. 5. 
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g -2 discovered for cavities with simple geometry in Refs. 5 
and 6 has aroused special interest.') Although under ideal 
boundary conditions the cyclotron frequency shift logarith- 
mically diverges at a resonance, the detailed analysis of the 
problem performed for the case of two "mirrors" in Ref. 8 
shows that consideration of the k i t e  conductivity of the 
plates eliminates the infinity when lln(0)I is replaced by a 
factor of order Iln wed-10 (S is the depth of the skin layer). 

The instrumental mass and cyclotron frequency shifts 
have been calculated for a simplified cavity model using 
quantum electrodynamics under the r e s t r i ~ t i o n s ~ ~ ~ ~ ~ ~ ~ " ~  

which follow from the conditions of experiments with an 
isolated electron. Here m-', Rz, and 1 are, respectively, the 
Compton wavelength of the electron, the quantum cyclotron 
radius (eV)-lD, and the distance between the conducting 
walls of the flat cavity. The first of inequalities (36) signifies 
nonrelativistic conditions, and the second inequality simu- 
lates the condition of confinement of the electron in a trap 
mentioned in the introduction. The validity of the classical 
treatment of the problem follows from the fact that the quan- 
tum conditions (36) leave a degree of freedom for the clas- 
sical parameter wcl: along with (36) the two possibilities 

are equally permissible. "Retarded" conditions (37b) are re- 
alized in g -2 experiments [ R ~ / I  -lop6, l/ml --lo-", 
wc 1-25 (Refs. 6 and 8)]. 

3.1. Effective Hamiltonian and the cyclotron frequency shift 

Like v:, the mass shift alters the "dispersion law" 
E(v:), where E is the energy of the electron in the rest 
system of the cyclotron orbit. As clearly follows from the 
mathematical operations presented below [see (56) and (60)], 
the addition AL = - Ammag/y, to the Lagrangian of a par- 
ticle in the nonrelativistic limit has the form 

The real constant Smc coincides with the Coulomb addition 
to the rest energy (it can be calculated by simple application 
of the image method), and the total energy of the charge is 

The value of Sm specifies the cyclotron frequency shift (in 
the nonrelativistic approximation wc= ~ l m )  

and, in the general case, is not equal to Sm, .6) Unlike amc, 
Sm depends not only on the position of the orbit relative to 
the boundaries, but also on the magnitude of the magnetic 

field, as well as on the orientation of the latter relative to the 
cavity plates. It is important that the sign of the imaginary 
part of Sw,, which is determined by the causality of the 
Green's function D$, correctly describes the decay of the 
cyclotron motion of the electron. 

Let us proceed to the calculation of the correction Sm. 
Let cp be the angle between the plane of the electron orbit 
and the planes of the boundaries x3=0 and x3 = 1, and let R/2 
be the distance from the center of the orbit to the x3=0 
plane. Then the interval ( x - x ' ( ~ ) ) ~  equals 

-2ZkVL sin cp sin u sin w+z ,~]  (41) 

for even N=2k=0,2,4 ,..., or 

T ~ X ~ V ,  sin cp cos u cos W +  

for odd N =  2k+ 1 = 1,3, ... . The value k=O corresponds to 
the contribution of one boundary (X3=0). The following no- 
tation was introduced in Eqs. (41) and (42): 

Zk=klwc=2Ak, X: = 2 ~ ( k +  t),  t=R/21, (43) 

Thus, using (2)-(6), we arrive at the expression 

in which 

The function which does not depend on 1 

and the functions f(w) and f(w,u) are equal, respectively, to 
g(w,u,Zo) and f(w,u,x;) [see (41)-(43)l. Utilizing the pe- 
riodicity of Fl(w,u) with respect to u, we obtain the mass 
shift averaged with respect to the proper time period 2 r m l ~ :  
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It is convenient to perform the further calculations for 
the real and imaginary parts of Ammag separately. Contribu- 
tions to the real part are made by the (nonmultiple) poles of 
the expressions in the square brackets on the right-hand sides 
of Eqs. (47) and (48). The half-residues in these poles are 
determined by the roots of transcendental equations like (12). 
To obtain the nonrelativistic expansion (38), these roots must 
be found with an accuracy of v:. We demonstrate the 
method for the case of a single mirror (l=m), in which the 
function F from (48) appears instead of F ,  under the integral 
sign in (49). We have 

The positive root w+ of the equation for f (w,u)=0 allows 
the nonrelativistic representation 

w + ( u ) = ~ , + { l - ( ~ , / ~ , i ) s i n  cp cos u c o s ~ ;  

+ cos 2x; - 2 cos2 u cos2 x; 
- 2 ~ ;  sin 2 ~ ;  cos2 u)]), (51) 

so that, expanding the integrand in (50) in powers of V, and 
integrating by parts, we find the cyclotron frequency shift 
(Ref. 23) in accordance with (38) and (40) (Sm = Sm' 
+iSmr',Suc= Su:+iSu:): 

where X=  of = R wJ2, and 

sin 2X 1 - cos 2X 
cos 2X- 

sin 2X 3 + cos 2X 
A3(X)=cos 2X+ - 

2X 
+ 

4 x 2  . 

Equation (50) is a generalization of Eq. (28) to the case 
of arbitrary magnetic field orientation. Just how strongly the 
mass shift depends on this orientation can be seen from a 
comparison of Figs. 4 and 8. The latter figure shows 
Re A m y g ,  i.e., Re Ammag (50) when cp= rr12 (when the mag- 
netic field is parallel to the boundary). Unlike Re A m y g  
(28), Re A m r g  tends to zero as V ,  increases (in the relativ- 
istic limit the self-field of the charge is "attracted" to the 
force lines of the magnetic field, becoming "insensitive" to 
the presence of a boundary). It should be noted that due to 
the restriction R:' = mV, y, /x < R/2, which is natural in 
the case of cp=rr/2, we have the following region in which 
Re Amrg(V, , ~ R / 2 m )  is defined: 

FIG. 8. 

The upper limit of V, for the values of ~ R l m  (3 7) chosen 
from Fig. 8 is close to the absolute maximum V,= 1, so that 
this restriction is not manifested in the figure. 

Returning to Eq. (49), we can use the scheme just de- 
scribed to find the nonrelativistic expansion of Re Ammag in 
the case of a cavity: 

where 

is the well known Coulomb shift of the rest energy.8311.12 
Here 5=0.577 ... is Euler's constant, and $(t) = $(R/21) is 
the logarithmic derivative of the r function. According to 
(40), the addition Sm ' specifies the real part of the cyclotron 
frequency shift:23 

i n 2  3 -  I + r  (58) 

[see the notation in (43), (44), (53), and (54)l. Here 

3 sin 2X 3 sin2 X 
A2(X)=cos 2X- 2X +- 

2 x 2  . 

The calculation of the imaginary part of the cyclotron 
frequency shift (am:) is more involved; therefore, here we 
present only the result of the calculations for an arbitrary 
position of the orbit in the cavity (O<t<l), but with cp=O 
(when the magnetic field is orthogonal to the plates). In ad- 
dition, in (49) the integration with respect to u reduces to the 
multiplier 27r, and in the nonrelativistic limit the integral 
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with respect to w, which may be understood in the sense of a 
principal value, is proportional to V: [in accordance with the 
expansion (38)l: 

cos 2X sin 2X 
sin 2X+ -- 

We note several characteristic features of expression (60). 
The first term in curly brackets, which does not depend on R 
and I, describes the (nonrelativistic) mass shift in the absence 
of boundaries and was obtained in Ref. 16; the second term 
takes into account the influence of one plate, and the sum 
specifies the contribution of the cavity (which vanishes for 
1=m). It is interesting that this contribution becomes domi- 
nant in the limit 

since the first two terms cancel one another [A4(0)=2/3]. If 
the second plate is moved away and (62b) is maintained, the 
radiation vanishes (Im Am =O). It is important to stress that 
the absence of a constant term independent of V ,  in Eq. (60) 
for Im Am is closely related to the nonmultiplicity of the 
poles of F1 in (49), i.e., to the property like (llb) in intervals 
(41) and (42), or, in the final analysis, to the causality of the 
world line of the charge. 

The decay rate (or the imaginary part of the cyclotron 
frequency shift) obtained using (60) and (40) has the form 

In the special case t = 112 (when the charge is in the midplane 
of the flat cavity) Eqs. (58) (cp=O) and (63) transform into 
the corresponding equations in Ref. 6. We present these ex- 
pressions here: 

-a 
Swf 2cu , (-1)" 1 sin 2An 

The Fourier series (64) and (65) can be summed (see Ref. 
29) to establish the presence of logarithmic divergences 

("resonances") in Swf for A=(2N+l )d2  and finite discon- 
tinuous jumps in Sw: (see Ref. 6). The relationship between 
our notation and the notation in Ref. 6 is as follows: 

3.2. Resonances and antiresonance points 

Series (58) and (63) reduce to Fourier series, whose co- 
efficients are represented by rational functions of k (see Ap- 
pendix). The functions Swf and Sw: have singularities when 

where N=1,2, ..., due to the slow (mk-') decay coefficients 
in some of the series. The character of these singularities and 
their dependence on the second parameter t can be estab- 
lished after calculating the trigonometric sums (58) and (63). 
We at once note that the singularities in Swf and Sw: dis- 
covered in Ref. 6 do not exhaust all the possibilities, since 
between the cavity plates there are "antiresonance" points,23 
whose coordinate t satisfies the condition 

The midpoint of the cavity, where Brown et a~~ considered 
the cyclotron frequency shift, is just one of these points. The 
latter are identified by the fact that the coefficient vanishes 
when there is a singularity at these points, if (69) is 
satisfied.') 

The complete expression for Sw:/w can be obtained by 
applying equations from the Appendix to the sum (58). The 
result is not presented here due to its complicated nature [for 
the special case of Swflw, see Eq. (A9) in the Appendix]. 
Let us examine the resonance part, since it alone contains 
singularities of interest to us. We bring Eq. (A8) for 
(SO~/O~)~, ,  into the form 

a(2-sin2 cp) ( 1  = 4-1 P ( t ) -P ( l - t ) -  
res 

cos 4At 
X cos 7rt + - 

t 
+ 2  In2  

The last (integral) term in square brackets contains loga- 
rithmic singularities. In cases in which (68) is not satisfied, 
the integral is finite. In the limit &+Ar it can be represented 
in the following form: 

where the ellipses denote terms that are finite in the limit 
A+Ar. Thus, when A-+A,, there are no singularities in (70), 
if t satisfies (69). 
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Let us consider the imaginary part of the cyclotron fre- 
quency shift. The sum (63) is calculated in the Appendix and 
has the form (A7). The following properties of Sw: can eas- 
ily be derived from (A7): 

The magnitude of the jump decreases monotonically with 
increasing A=2Alrr=N and vanishes at the antiresonance 
points (69). Furthermore, a value of wcl-25 [see text after 
Eq. (37)] corresponds to the presence of seven or eight such 
points. 

4. CONCLUSIONS 

The main results of this work were enumerated in the 
introduction and in the abstract. Several qualitative remarks 
are in order. First of all, we stress that the mass shift, which 
is a classical first-order radiation correction, is determined on 
unperturbed world lines. The presence of boundaries, there- 
fore, requires setting a criterion for smallness of the trajec- 
tory perturbation caused by a boundary. The latter can be 
obtained from a comparison of effective Hamiltonian (39) 
with its unperturbed part: 

Condition (74b) might have been violated in the case of reso- 
nance; however, in reality it holds for nonideal plates.8 Con- 
dition (74a) may be rewritten in the form r0GRv:, so that it 
is clearly violated for slow motions. In g -2 experiments the 
corresponding values of the parameters are such that this 
condition is satisfied (R -1 cm, ~ , - 1 0 - ~ ,  rol~-10-13).9 
Furthermore, there is an important difference between Sm 
and 6m : Sm becomes Sm , only under special conditions 
(q=O, This has spurred on attempts to find ad- 
ditional "shifts" in the cyclotron frequency, magnetic mo- 
ment, etc. by means of the simple replacement m+m + Sm, 
(see, for example, Ref. 31). 

In conclusion, we stress that the principal "practical" 
results of this work [Eqs. (58) and (63) and their corollaries] 
have only a qualitative connection to real g -2 experiments. 
Nevertheless, they raise interest in the question of the exist- 
ence and dynamic role of resonances and antiresonance 
points in "relativistic" models of cavities. 

We thank V. I. Ritus for some stimulating discussions of 
the questions addressed. 

APPENDIX 

The main role in the calculation of trigonometric sums 
(58) and (63) is played by the series 

m m 
sin kx cos kx 

(All 
k=O k=O 

for which closed expressions were given in Ref. 31. In par- 
ticular, for s = 1:) 

However, the ranges of applicability of Eqs. (A2) and 
(A3) were not indicated in Ref. 31. An analysis shows that 
these equations hold in the range O<x<2rr, the existence of 
a strict inequality being significant, since at the ends of the 
interval (0,2rr), fl is discontinuous (its jump is equal to rr 
and does not depend on t), and g, goes to infinity. For peri- 
odic extension along the entire numerical axis, the obvious 
symmetry properties of expressions (A2) and (A3) [for ex- 
ample, f ,(x) = - f1 (2 rr -x)] become important. For this ex- 
tension x should be replaced on the right-hand sides of Eqs. 
(A2) and (A31 by 

Thus, we obtain, for example, 

+'( P sin[2rrtN+ ( t-  1/2)y] 

2 i sin(y12) 
dy ,  

The last equations should be used together with the known 
results for Fourier series of the forms29 Xk-S sin kx and 
Ck-S cos kx to calculate Sw: and Sw:. 

Equation (63) for Sw: (O<t<l, q=O) can be trans- 
formed by replacing x with i (A=2Alrr, N =[A]): 

1 sin(2 rrtN + rrt) + - A - ~ ( x ~ + N ~ )  
2 sin rrt 

sin 2 rrtN cos rrt 
-N 

sin2 rrt 
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The corresponding expression for Swf is fairly cumber- 
some, and we present here only the "resonant" part, which 
originates from the first terms in A,,  A,, and A, [see Eqs. 
(53), (54), and (59)l: ($1 - - a(2-sin2 cp) 5 [COS 4A(k- t) 

res 4ml k = 1  (k-t)  

cos 4A(k- 1 + t )  2 cos 4Ak + - 
k - l + t  k I 

where x e 4 A .  We also present the complete expression 
specifying SwAlw, for the special values t = 112 and cp= ~ / 2 :  

It is easily verified that Eq. (A8) gives a singular loga- 
rithm in (A9) (the first term in the brackets) for t=1/2 and 
cp=d2. Oddly enough, the remaining terms in the square 
brackets in (A9) represent the continuous function x=4A 
(N= [ x / 2 ~ ] ) .  This is due to their origin: unlike the sum 
(A8) the trigonometric series representing them, like f, and 
g, (s=2,3), converge uniformly [see (58) and Ref. 291. 

')we omit the analysis of the inaccuracies and errors accompanying the 
solution of the problem of the instrumental contributions in quantum elec- 
trodynamics. For information on this subject, see Refs. 4, 8, and 14. 

')A system of units in which c = l ,  h = l ,  and a = e 2 / 4 r f i c  and a metric in 
which x,=(x, ixo) ,  F , , = ( i / 2 ) ~ , , , $ , ,  (F,, is the electromagnetic field 
tensor), etc. is used. 

3 ) ~ u c h  invariance would be absent, for example, in the case of a lattice 
boundary: a charge moving without acceleration perpendicularly to con- 
ducting strips radiates (the Smith-Purcell effect). In our case the uniformly 
accelerated electron does not radiate: Re Am = - a / 2 R ,  Im Am =0,  see 
Eq. (17). 

4 ) ~ e  thank V. I. Ritus, who also turned our attention to Eqs. (19) and (20), 
for this remark. 

')we should also point out Ref. 28, in which such resonances were predicted 
qualitatively for an arbitrary cavity. The model of coupled oscillators used 

in Ref. 28 is in many ways similar to the rigorous treatment of the problem 
of the cyclotron frequency shift in Ref. 6 .  

6 ' ~ h e  correspondence between 6% and 6m specified by Eq. (40) follows 
from expression (39) for the energy. 

7 ) ~  similar effect in the real part of the spin precession frequency shift 60, 
was noted in Ref. 8.  

8 ' ~ ( t ) =  i [ 9 ( 1 / 2 + t / 2 ) -  $ ( t / 2 ) ] .  
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