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The solution of the quantum-optics boundary-value problem is found for the spontaneous 
emission of an excited atom near the surface of a semi-infinite dielectric medium. In addition to 
the energies of the atom and the lifetime of the excited state, the spatial distribution of the 
spontaneous photon field at different observation points is calculated. A prediction is made 
regarding the effect of the near field, which develops at distances from the surface small 
in comparison with the wavelength of the spontaneous photons; it has a substantial effect on all 
phase-amplitude properties of the spontaneous photon field. A technique is proposed for 
solving the boundary-value problem, based on the system of integral field equations together with 
the Heisenberg constitutive equations. An absorption theorem for quantum optics is proved, 
from which the quantum-mechanical amplitudes of the refracted and reflected photons are 
obtained. 63 1994 American Institute of Physics. 

In recent years considerable attention has been focused 
on the solution of various boundary problems in the resonant 
optics of surfaces and thin films, where semiclassical theory 
is employed. There is special interest in boundary problems 
of nonlinear resonant optics when light interacts in a time- 
dependent fashion with a surface, when the surface is irradi- 
ated by short, spatially and temporally separated high- 
intensity pulses. Some understanding of such processes1 has 
been achieved, and the solution of the corresponding 
quantum-optical boundary problems is of considerable inter- 
est in view of the experience that has been gained and the 
special properties of quantized fields near a surface. 

The interest in quantum-optical boundary problems is 
also attributable to the appearance of new objects of investi- 
gation, such as quantum wires on the surface of porous 
silicon: quantum points, etc. Taking into account the consid- 
erable complexity of these objects, in this paper we still re- 
strict ourselves to the case of the spontaneous decay of a 
single atom near the surface of a partially reflecting dielectric 
medium. We focus special attention on the behavior of spon- 
taneous decay in the near-field region at a distance from the 
surface that is smaller than the photon wavelength, where, in 
our opinion, the near-field effect is manifested most com- 
pletely. The essential physics of this effect will be described 
below. 

Spontaneous emission from an atom near a surface, in 
microcavities, and in waveguides was considered in Refs. 
3-13, where various aspects of this phenomenon were inves- 
tigated theoretically. Let us turn our attention to some results 
in Ref. 3, which, in our opinion, are of the greatest interest 
for examining the problem of an atom interacting with a 
single surface of a dielectric. The quantum problem of cal- 
culating the reflection coefficient of spontaneous photons 
from the surface of a dielectric was formulated on a solid 
foundation in Ref. 3. According to the conditions of the 
problem posed in Ref. 3, an excited atom near a surface has 
a transition frequency w,,, and the semi-infinite dielectric me- 

dium consists of N atoms per unit volume in the ground state 
with a transition frequency o-q,. All the atoms in this prob- 
lem have the same transition dipole moment do. The prob- 
lem in Ref. 3 is solved by the Weisskopf-Wigner method for 
the probability amplitudes determining the states of the at- 
oms (ground or excited) and the photon numbers. According 
to the meaning of the equations solved for the probability 
amplitudes, when the photons are normally incident on the 
surface of the dielectric, this one-dimensional boundary 
problem takes into account the interaction between the atom 
and the medium by means of a common radiation field. Cook 
and ~ i l o n n i ~  obtained the following expression for the am- 
plitude of the quantum transition of the atom outside the 
medium (d is the distance from the atom to the surface): 

where KO= ?rdooolhAc, A is the effective surface area, 
ko = w,/c, and R = -(no - l)/(no + 1) is the reflection coef- 
ficient corresponding to the Fresnel formula for light incident 
normally on the surface of a medium with a refractive index 
no. The lifetime {Kdl+R c o ~ ( 2 k ~ d ) ] ) - ~  of the excited state 
of the atom and the frequency shift Kd( sin(2kod) of the 
atom can be found from Eq. (1.1). 

The next important result in Ref. 3 is the derivation of a 
quantum analog of the Ewald-Oseen extinction theorem, 
which is well known in classical optics.14 The condition un- 
der which the normally incident field is extinguished in the 
medium by the part of the field of dipoles which varies as 
exp(ikz), where k is the wave number of the incident field, 
were obtained. The amplitude of this field is determined by 
the Fresnel refractive index for normal incidence. 

Thus, Cook and ~ i l o n n i ~  obtained some important re- 
sults by solving the quantum-optical boundary problem; 
however, as will be shown in our work, the solution of this 
problem was far from complete. We shall show that some 
specific features of the field of spontaneous photons near the 
surface of a dielectric were not taken into account in Ref. 3. 
For example, the near-field effect, which should be mani- 
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FIG. 1. Diagram of the vector configuration in the boundary problem. Here 
2 is the surface z=O, r, is the radius vector of the site of the resonant atom, 
s, is a unit vector in the direction of photon emission, and Lo is the radius of 
the Lorentzian sphere. 

fested in the near-field region at a distance on the order of a 
wavelength from the surface, was totally disregarded. Thus, 
in this paper we propose a solution to the boundary problem 
in Ref. 3, in which the amplitude and phase characteristics of 
the field of spontaneous photons at any observation point can 
be calculated. 

2. EQUATIONS FOR PHOTONlC OPERATORS 

Let us consider spontaneous emission from a two-level 
atom at a point r, near a surface 2 (Fig. 1). We may assume 
here that the resonant frequency oo in the spectrum of the 
atom depends on the coordinate r, due to the electrostatic 
interaction with the medium, during which the electrostatic 
and retarded interactions distort the wave functions of the 
states of the atom and its energy spectrum in a specific man- 
ner. Such an interaction is radiationless, is caused by virtual 
photon exchange, and can be described with the aid of the 
generalized Breit operator for atomic electrons at arbitrary 
distances from one another.15 

In this paper we are interested in the radiative interaction 
of an atom with a surface, assuming that the influence of the 
nonradiating interaction is known to us. We show in this 
paper that two mechanisms for the influence of a surface on 
the spontaneous decay of the excited state of an atom can be 
distinguished. An example of a radiative interaction between 
two hydrogenic atoms is provided by a third-order effect'" 
with the Feynman diagram shown in Fig. 2. We portray such 
an interaction in the following manner. Let the initial state of 
two resonant atoms correspond to the excited state of atom 1 
(the observer atom) with the wave function cp+ and the en- 
ergy E +=no+ and to the unexcited state of atom 2 with the 
wave function cp- and the energy E - = h o p .  The interaction 
between these atoms through the field of virtual photons is 
described by the generalized Breit operator,15 in which the 
terms corresponding to quantum transitions of a specific type 
can identified. In this paper we take into account only the 
electric dipole transitions in the spectrum of the interacting 
atoms. As a result of this interaction atom 2 may end up in a 
certain intermediate state I +  with a positive energy E l+  and 

then return to the original state E - . During this process atom 
1 emits one real photon upon transition to E - .  We previ- 

FIG. 2. a) Feynman diagram of the radial interaction between atoms 1 and 
2 with the emission (absorption) of a real photon. b) Diagram of the quan- 
tum transitions in the spectrum of two resonant atoms interacting by means 
of a field of virtual photons. The electron and positron polarizing fields at 
the site of atom 1 differ in accordance with the sign of the frequency of the 
intermediate state I ,  . 

ously showed1 that such an interaction between atoms is 
equivalent to the induction of a polarizing field with a vector 
potential at the site of observer atom 1: 

J 27Thc2 1 
~ ( ~ ' ( r ,  , t )  = curl curl ekka2 -- 

VRmk ROZ Cki 
k i  

Here the differentiation is carried out with respect to the 
coordinates of the observation point ro; ck, is the annihila- 

tion operator of a photon of mode k,, in the interaction rep- 
resentation; RO2=lr0-r21, where r2 is the radius vector of the 
site of atom 2; ekA is the polarization unit vector of a photon 
of mode k,, with frequency wk and the wave vector k; VR is 
the quantization volume of the electromagnetic field; A =  1,2 
is the index of the polarization of the photon; a2 is the po- 
larizability of atom 2, calculated in first-order nonrelativistic 
perturbation theory using the wave functions 9% and the 
Pauli operator H =  - (elmc)pz&(r2), where e and m are the 
charge and mass of the electron; p2 is the momentum opera- 
tor of the electron of atom 2; and &(rz) is the vector poten- 
tial operator of the free electromagnetic field at r2 .  

The vector potential (2.1) represents a so-called electron 
polarizing field, since it takes into account only the elec- 
tronic states in the spectrum of the interacting atoms, includ- 
ing the intermediate state E l + .  We make several remarks, 

which greatly generalize Eq. (2.1). 1. The wavelength of an 
optical photon is considerably greater than the dimensions of 
an atom, so that, considering the pairwise interactions of the 
electrons of atoms 1 and 2, we can obtain a formula for the 
electron polarizing field at ro which is created by a more 
complicated atom with an arbitrary number of electrons. In 
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this case in Eq. (2.1) cu, is the polarizability of the many- 
electron atom 2. 2. The third-order effect in Fig. 2 can occur 
when the energy conservation have h(w+ - w- - ok)  = 0  is 
satisfied. Therefore, the field (2.1) can also be formed by a 
nonresonant atom with the corresponding polarizability 
( u ~ ~ ( r ~ ) .  3. If the field at the observation point is created by a 
set of atoms, rather than by a single atom, the field (2.1) must 
be summed over the polarizing fields formed by all the sur- 
rounding atoms. Taking into account that the characteristic 
wavelength (2 rrclw,) [wo = (E + - E -)Ih] greatly exceeds 
the dimensions of the atoms and the interatomic distances in 
the medium, we can make the transition to a continuous dis- 
tribution of surrounding atoms with a certain density N. On 
the other hand, as follows from Refs. 1 and 15, the charac- 
teristic wavelength 2rrc/oo and the interatomic distance lo 
define spatial scales for the interaction of the atoms, which 
make it possible to separate the electrostatic and retarded 
parts of the generalized Breit interaction. Therefore, in the 
near-field region, where the distances between the interacting 
atoms are at most comparable to the wavelength 
Xo=27rclw0, a representation of a discrete-continuous me- 
dium, in which the nearby atoms are distributed discretely 
around the observer atom, must be employed. At the same 
time, atoms located outside of a certain sphere of radius 
L , ( 1 , ~ L o ~ 2 r r c / w o )  are distributed continuously. Thus, in 
all the ensuing equations in which integration over the radius 
vectors of the surrounding atoms will be encountered, we 
also assume the presence of summation over the sites of the 
discretely distributed atoms within a sphere of radius Lo  (Fig. 
1). The existence of two spatial scales A, and lo for calculat- 
ing the field in the vicinity of the observation point gives rise 
to the near-field effect. We turn our attention to the important 
fact that the discretely distributed dipoles within a closed 
sphere of radius Lo  in the vicinity of the observation point 
create a field equal to zero at the observation point only in 
the case of certain types of distributions (for example, a cu- 
bic distribution) and when only the electrostatic polarizing 
field is taken into account. It can be demonstrated by direct 
calculations of the polarizing fields that within a sphere of 
radius Lo the retarded field is nonzero for any type of distri- 
bution. However, the near-field effect should be manifested 
most completely when the sphere of radius Lo  is truncated, 
as occurs when the observation point approaches the surface 
of the optical medium. We shall investigate just this mani- 
festation of the near-field effect in the boundary problem 
under consideration. 

Thus, the Hamiltonian of an atom at the point ro near the 
surface of a certain dielectric medium may be described in 
the following manner: 

where r 2  and r3  are components of the effective spin opera- 
tor of the two-level atom, the ground-state of the atom equals 
-hod2, the vector potential operator is 

i.e., equals the sum of the vector potential operators of the 
free field and the electron polarizing field at the observation 
point r,, and dddo=ud,  where d,, is the matrix element of 
the electric dipole moment operator of the atom calculated 
with the wave functions of the atom cp, . If the atom is found 
near Z or on C itself, the fundamental frequency on and the 
transition dipole moment do are functions of the relative dis- 
tance z (Fig. 1). In view of the remarks just made, we write 
the vector potential of the polarizing field in the form 

1 
~ ( ~ ) ( r ~  , t )  = 2 gk,ckA(0)curl curl 1" ekAaN 

k, 

where the integration is carried out over the entire volume of 
the medium bounded by the surface Z, r' is a point within 
the medium or on its surface, Ro=lro-r'l, and the value of 
aN is determined by the refractive index of the medium no 
according to the Lorentz-Lorenz equation 

The curl curl operator in (2.4) was moved outside of the 
integral sign, since the observation point is located outside 
the medium. 

A. Positron polarizing field 

We also take into account the intermediate states with a 
negative frequency ( l / h ) E ,  = - (mc2/h) + E ,  in the 
spectrum of the interacting atoms, which naturally appear in 
the third-order effect in Fig. 2. Such interactions were con- 
sidered by Drake17 for two electrons in a helium-like atom 
and in our s t u d i e ~ ' ~ ' ~  for two atomic electrons belonging to 
different hydrogenic atoms. These investigations included 
derivation of the Hamiltonian of the interaction of two elec- 
trons with an external field of the type H2-piAjlrij, where 
r i j  is the distance between the electrons, pi is the momentum 
operator of the ith electron, and A, is the operator of the 
vector potential at the site of the jth electron. H z  can be 
obtained by two methods. The first method is based on the 
replacement of the electron momentum pj-+p, - (e/c)Aj in 
the Darwin ~ a ~ r a n ~ i a n , ' '  followed by a transition to opera- 
tors. The other method for obtaining Hz is based on succes- 
sive treatment of the third-order effect in Fig. 2 followed by 
a transition to nonrelativistic quantum mechanics. When the 
internuclear distance between two hydrogenic atoms equals 
zero, H2 (Refs. 15 and 18) becomes the corresponding Drake 
operator.17 
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According to Refs. 1 and 15, for a medium bounded by 
the surface 2 we obtain the following vector potential opera- 
tor 

where n,=RdRo. We call this field the positron polarizing 
field or, simply, the positron polarization of the medium. As 
a result, at the observation point ro we have the field A(r,,t) 
(2.3), to which field (2.5) must also be added. We shall see 
below that the resultant field at the site of the atom ro con- 
sists of four components, where, apart from the components 
just cited, there is a self-field due to the reciprocal influence 
of the photons on the spontaneous emission process. 

B. Transition to the Heisenberg representation 

We pass from the operators F in the representation of the 
interaction to the operators F in the Heisenberg representa- 
tion: 

where the Hamiltonian of the interaction with the photon 
field 

includes the electron (2.4) and positron (2.5) polarizing 
fields, which depend on the observation point r,. The pho- 
tonic operators in the Hamiltonian (2.7) correspond to the 
free field and are defined by the following relations: 

where ckA(0) and cLA(0) are independent of space and time. 

This permits moving the operators ckA(0) and clA(0) outside 
of the integral sign and the curl curl operator in Eqs. (2.4) 
and (2.5) and writing the Hamiltonian (2.7) as 

where the effective transition dipole moment has the form 

d : ~ = d 0 u d ( 1 ~ ' + 1 ~ + e k A  exp(ikro)), (2.10) 

N a  
1c)(r0)  = curl curl 

and the photonic operator AL;) equals 

The Heisenberg equations for the photonic operators 
CkA and SLA are found with the aid of the Hamiltonian (2.9), 
in which the replacements r2-+F2, ckA--+EkA, and c$>; 
should be made. Using the known transposition relations for 
atomic and photonic operators at coinciding moments in 
time, we obtain the following equation at the observation 
point r = r, : 

where w,,do, and the effective dipole moment d$ are as- 
signed at the observation point r,, GkA is the retarded 
Green's function 

and the photonic operator 

corresponds to the free field of the photons. The second term 
on the right-hand side of Eq. (2.12) may be interpreted as the 
self-field of the photons, which is distorted in a definite man- 
ner by the surface in comparison to the self-field of a free 
atom.16 Thus, the transition to the Heisenberg representation 
(2.6) significantly alters the coordinate dependence of the 
photonic operators, especially in the near-field region, ac- 
cording to the coordinate dependence of the quantities de- 
fined by (2.10a), as well as w, and do at the observation point 
ro . 

C. Extinction theorem in quantum optics 

Equation (2.12) is defined at the observation point r,. 
Let us find operator equations for calculating the field at an 
arbitrary observation point rZr,, using the concepts of elec- 
tron and positron polarization of the medium. The operator 
of the electric field strength at r is written in the following 
manner: 

d(ro,t-Ro/c) +E(.,+Elp), 
~ ( r , t )  = Ev(r,t)  +curl curl 

Rn 

where d is the dipole moment operator of the atom, E, is the 
electric field strength corresponding to the field of photons in 
free space, 

N a  - 
~ ' ~ ' ( r ,  t )  = jV curl curl - R E ( r l  , t  - R/c)dVt , (2.14a) 
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and n=RIR. We transform E ( ~ )  in the following manner: 

X 1 curl curl Q ~ ~ z ~ ~ G ~ ~ v ~  + h.c., (2.15) 

where 

and the photonic operator EkA = CkA(rr,t - RIC) in the 
Heisenberg representation depends on the coordinates and 
time in the general case. Let us investigate the properties of 
the photon field near Z (Fig. 1) at various observation points, 
including observation points within the medium, when the 
emitting atom has a fixed position r=ro. The first two terms 
on the right-hand side of Eq. (2.14) play the role of the initial 
field Ei, in our treatment. The local dipole moment d is then 
determined from Eq. (2.12). 

We first consider the case in which the observation point 
is located within the medium (z<O, Fig. 1). We move the 
curl curl operator outside of the integral sign in (2.14): 

curl curl J ' Q ~ ~ G ~ ~ v ~  = J ' curl curl Q k A ~ , d v r  
0 0  0 0  

where the integral is taken over the volume bounded by the 
outer surface 2 and the inner surface uo surrounding the 
observation point ro. 

We seek a solution of Eq. (2.14) in the form 

where K=(wlc)nosT is the wave vector of a photon within 
the medium, no is a quantity which will be defined below, 
and ST is the unit vector in the direction of propagation of the 
photon within the medium. We also assume that the ampli- 
tude 

of the trial solution (2.17) is a slowly varying function of the 
position and time. 

We rewrite the integrand in (2.16) as 

where 

and then using Green's theorem we can write the following 
relation: 

where dldv' denotes differentiation along an external normal 
to Z (Fig. 1) and the second term on the right-hand side of 
the equality corresponds to the value of the surface integral 
over the small sphere no when the radius of the sphere tends 
to zero. 

We transform the volume integral (2.14b) in a similar 
manner. We leave only the first term in the integrand in 
(2.14b), since the second term makes a contribution to the 
positron polarizing field that is approximately three times 
smaller. Then we introduce the notation 

and obtain the following approximate expression: 

Thus, after all the transformations we can distinguish 
two groups of terms in Eq. (2.14). The first group of terms is 
defined at the observation point (r,t) and forms the local 
equation 

8.rr - ( ~ / w k ) ~  
E= - -  curl curl 7 4.rrQkA 

3 no- 1 

When the condition divdkA = 0 and Eq. (2.18) are satisfied, 
from (2.22) we obtain the following formula for calculating 
no: 

1 + ( 8 . r r / 3 ) N a - 4 . r r ~ ( e ~ / m w ; )  
n t =  

1 - ( 4 ~ 1 3 ) N a  
(2.23) 

As w k - + ~ ,  the positron polarization makes a negligibly small 
contribution to the refractive index of the medium, and Eq. 
(2.23) evidently becomes the Lorentz-Lorenz equation of 
classical optics. The role of positron polarization in the op- 
tical properties of the medium may become appreciable 
when the polarizabilities of the atoms are small and the fre- 
quencies of the photons decrease. The contribution of the 
positron polarization of the medium can be analyzed by cal- 
culating the ratio of the vector potentials of the electron 
(A(~)) and positron (A(P)) polarization. As was shown in Ref. 
1, the ratio A(~)/A(P) for two resonant atoms (N=2) in the 
two-level approximation equals 3c2m/4woe2. Thus, when 
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we have N=2, is considerably greater than A(P) at opti- aid of photonic operators (2.12). Thus, we have a closed 
cal frequencies. The situation may be different in the case of system of equations for determining the atomic and photonic 
N % l  when the inhomogeneous broadening of the spectral characteristics at the observation point ro. 
lines with an rms deviation from resonance Aw is taken into 
account. It can easily be shown that the ratio between 
and A@) in this case equals 

~ ( ~ ) l ~ ( p ) = r n o i d i / ( h e ~ A w ) .  

If do-1~-18 esu, q,=1013 to 1015 sec-', this ratio is ap- 
proximately equal to (10~-10'~)~Aw-'. Thus, when the in- 
homogeneous broadening is sufficiently great, the role of 
positron polarization may be comparable to the electron po- 
larization, i.e., to the field of electric dipoles in optics. Some 
attention should be focused on the following two points, 
which were ignored during the derivation of Eq. (2.23). 1. 
The observation point is located on 2 or in close proximity 
to it at a distance less than the characteristic scale of the 
medium. We previously' considered this special case in non- 
linear optics. 2. The lifetime of the excited state of the atom 
is considerably smaller than the characteristic relaxation 
times of the medium. This permits the use of the stationary 
solutions of the material equations for the medium, and the 
polarizability a does not depend on time, i.e., the medium is 
linear and stationary in our treatment. 

The second group of terms in Eq. (2.14) forms the non- 
local operator equation 

A. Lifetime of the excited state of an atom near the surface 
of a dielectric 

We use Eqs. (2.12) and (3.1) to calculate the lifetime r1 
of the excited state of an atom near a surface in the wave and 
near-field regions, using the known coordinate dependence 
of the effective dipole moment. 

In the adiabatic approximation we have 

where jl(,0)(t1,r0) denotes unknown operators, whose time de- 
pendence is so slow in comparison to exp(+iwot), so that 
they may be moved outside of the integral sign in (2.12). 
After this transformation the annihilation operator of the kith 
mode is represented in the form 

where 5 is the Heitler function and is given by the 
- .  (c/wk)' 
EL+ 7 [curl curl I~:'+I[)I=o, (2.24) expression1y 

no- 1 
/D ., 

which, according to the correspondence principle, is an ex- -i<*(wk- wo)= - i  --- + .rrS(wk- w 0 )  (3.3a) 
pression of the extinction theorem of quantum optics. @k-Oo 

The field at an observation point located above 2 can be Here .'?signifies that the next integration is carried out in the 
calculated, if the replacement -z+z is made in the surface sense of a principal value. 
integrals I t )  and I t ) .  Then the field of reflected photons has We find the operator product A;, in Eq. (3.1c), using 
the form operator (3.3). Expressing A in terms of EkA and ?lk with 

( ~ l w k ) ~  
consideration of the fact that products of operators must be 

~ E ~ ( r , t )  = 7 [curl curl 1k:) + I[)]. (2.25) normally ordered, we arrive at the equation 
no- 1 

Thus, the boundary problem of calculating the photon d e f f ~ i l =  x gkA[dkAckA eff -v+  '1 - + (dr,) eff * -  rlckAl - V  

field at different observation points can be solved using Eqs. 4 
(2.24), (2.25), and (2.12), if these equations are supple- 
mented by the corresponding equations for the atomic opera- +--  wo C ldrAl eff 2 gkA[s(wk-wo)-s(wk 2 
tors. hc kA 

w 0 eff 2 2 
3. EQUATIONS FOR ATOMIC OPERATORS + w 0 ) 1 + ~  tree x ddkAl gkA[6(wk- WO) 

k, 
We use Hamiltonian (2.9) to define the atomic operators - 

r , ,  r2,  and j13 of the effective spin of a two-level atom. The + S(wk+ wo)]F3. (3.4) 
corresponding Heisenberg equations have the form We now perform vacuum averaging of Eq. (3 .1~)  by 

plugging the operator (3.4) into it. Vacuum averaging, which 
i, = - o o ~ 2 + 2 ( w o l h c ) d e f f ~ j 1 3 ,  deffA= d;:AkA, may be denoted by (...) is understood to be averaging with 

k~ respect to the state I+)=lvacuum)lcp), where Icp) is either state 
(3.1a) of the two-level atom and \vacuum) is the state in which 

f 2  = wojll, (3.1b) there are no photons. As a result we obtain the equation 

F3= -2 (wolhc)def f~ j l l ,  (3 .1~)  -(j13(t))=-L d [ i + ( i 3 ) ) ,  

where d c  depends on the coordinate ro in accordance with d t  71 

the above remarks and the field AkA is determined with the where 
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1 2 
eff 2 2 = 2 7 7 [ 2 )  72 c ldk,l gkA[8(wk-w~) -8 (wk+w~)~  

k, 

The vacuum averages of terms containing the vacuum parts 
of photonic operators vanish only because of the normal or- 
dering of the operators according to the properties of free- 
field operators. 

The summation over the modes in (3.6) can be converted 
to integration using the following replacement 

where d R  is an element of the solid angle in the direction in 
which the spontaneous photon leaves. Taking into account 
the properties of the integrals (2.10a), we can calculate the 
total lifetime of the excited state of the atom at various dis- 
tances from the surface. Since the observation point r, at 
which we determine the lifetime of the excited state of the 
atom is outside the optical medium, the volume integrals 
(2.10a) which determine the effective dipole moment of the 
atom are calculated by integrating over the entire volume of 
the optical medium. If the observation point is located in the 
wave region [ (w, / c )R~l ] ,  we have a single spatial scale A, 
for the interaction of the atoms and instead of the volume 
integrals (2.10a) we have integrals over the surface C of the 
optical medium. These surface integrals can be calculated by 
the method of stationary phase.14 A different situation is ob- 
served in the case of (w,/c)RSl,  in which two spatial scales 
A, and 1, must be taken into account. In this case the volume 
integrals in (2.10a) are replaced by surface integrals over a 
part of the surface Z and over the truncated Lorentzian 
sphere of radius Lo and by a sum over the discretely distrib- 
uted dipoles within the sphere. This gives rise to a power 
dependence (--1/~i) of the lifetime in (3.6) on the position 
of the emitting atom, which we regard as a manifestation of 
the near-field effect. The coordinate dependence of the life- 
time in (3.6) is completely determined by the effective dipole 
moment of the atom, which, in turn, depends on the values of 
the surface integrals. Below we shall present the necessary 
expressions with consideration of summation over the dis- 
crete distribution of atoms near the observation point. It can 
be shown that the probability of the emission of a spontane- 
ous photon per unit time parallel to the z axis coincides with 
the value of Cook and ~ i l o n n i , ~  which follows from Eq. 
(1.1) of the one-dimensional boundary problem only when 
the following conditions are satisfied: 1. The electron polar- 
izing field is considerably stronger than the positron polariz- 
ing field. 2. The excited atom is found in the wave region 
relative to the surface C (Fig. 1). Only in this case can the 
near-field effect be neglected. Applying Green's theorem and 
the method of stationary phase,14 we can express the volume 
integral ~ ( k t )  in terms of the Fresnel reflection coefficient and 

the pha~e 'ku l t i~ l i e r  cos[2(wklc)d], which is stipulated by 
the additional retardation in the interaction of the atom with 
the medium caused by virtual photon exchange. This prop- 
erty of the interaction of the atom with the medium may also 
be interpreted as an interaction of the atom with its own 

image in the medium. In the near-field region, the probability 
of the emission of a photon per unit time differs significantly 
from K,[l+R cos(2k0d)] owing to the near-field effect and 
is determined mainly by the electrostatic part of the polariz- 
ing field of the discretely distributed atoms within the trun- 
cated sphere of radius Lo.  In the single-mode approximation 
this causes the photon emission probability to contain not 
only an oscillating term of the form cos(2kod), but also a 
sum over the power functions 1 / ~ : ,  where the subscript a 
labels the atoms within the truncated sphere of radius L o ,  
and this sum specifies the coordinate dependence of the life- 
time given by (3.6) in the near-field region. Thus, we note an 
inconsistency in the theory in Ref. 3, in which the near-field 
effect was totally ignored, although Cook and ~ i l o n n i ~  pro- 
posed using Eq. (1.1) specifically for the near-field region, 
where kod - 1 .  

B. Energy shift of an atom near a surface 

Let us calculate the influence of the radiative interaction 
of an atom and a dielectric medium on the energy spectrum 
of the atom. This interaction is determined by the polarizing 
fields (2.10a). 

We define the operator in Eq. (3.la), using the pho- 
tonic operators (3.3) for this purpose: 

,L 
kA 

" " I L L  

- { ( w ~ + w ( ) ) ) ~ - .  (3.7) 

We consider the equation for i+ . After vacuum averaging, 
this equation takes the form 

where the shift of the transition line center is 

In the continuum limit a hypothetical upper limit must be 
introduced into (3.9) to eliminate ultraviolet divergence. 

4. NEAR-FIELD EFFECT 

We have already offered some preliminary remarks re- 
garding the near-field effect, which is associated with the 
existence of two spatial scales in the interaction of atoms in 
a radiation field. We calculate di: (2.10) at various observa- 

tion points. The properties of the integrals (2.10a) are such 
that in the wave region, where kR,Pl,  their dependence on 
the coordinates of the observation point ro is completely de- 
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termined by the exponential multiplier exp(ikro). This was 
shown in Ref. 14, where an analytical expression for these 
integrals was obtained. A different situation is observed in 
the near-field region, where kRo51. To demonstrate this, we 
transform the integral $) using Green's theorem in the fol- 

lowing manner: 

where the differentiation dldv' is carried out along an exter- 
nal normal to the surface C (Fig. 1) and 
Gk(Ro) =exp(i(wlc)Ro)lRo. 

The derivatives appearing in the integral with respect to 
C have the form 

Following Ref. 14, when the condition kRo%-1 is satisfied, 
we can use the method of stationary phase and obtain an 
analytical expression for integral (2.10a), which expresses 
the Fresnel field of the reflected wave at ro with a constant 
amplitude and the phase factor exp(ikro). 

We calculate the surface integral ZZ appearing in (4.1) 
for distances Ro in both the near-field and wave regions. We 
assume that the observation point r is located outside the 
medium; therefore, we have the following vectors: 

We specify the xz plane as the plane of incidence of the 
photons and assign a certain angle of refraction 8, to the 
photons, so that the wave vector of each photon in the me- 
dium lies in the plane of incidence and has the following 
components 

o o 
K,=--n sin 0 ,  K,,=O, K,=--n cos 

C C 

Then in view of (4.2) the surface integral takes on the form 

Ir = ikOlz exp(iko(R - nx' sin BT)} 
R 

where ko= olc.  We introduce a polar coordinate system in 
the following manner: 

x'  =x-p sin Q, y r = y  - p  cos Q, dS' = p d p d ~ .  
(4.6) 

This allows us to rewrite expression (4.5) as 

Z2= 2aiko exp( - iko sin 8 ~ )  
" P 

0 (p2+z2)1/2 I 

X e x p ( i k o ( p 2 + z 2 ) 1 / 2 } ~ 0 ( ~ p ) d p ,  (4.7) 

where fl, is the angle of incidence of the photon, 
n sin t+.=sin 4, 

C=kon sin BT, O<C<ko, 

and J(Cp) is a zeroth-order Bessel function. 
From Ref. 20, we can find the following integrals: 

Therefore, we have 

The differentiation of (4.9) with respect to z gives the ex- 
pression 

(4.10) 

Thus, taking into account expression (4.10), we find 

Iz= -273- exp(-iko sin Bp)Ir(z)+2aiko 

x exp( - iko sin BC)n cos BTZ(z), 

or, after some simple transformations, we ultimately obtain 

sin( 8,- BT) 
Iz= - 2 a exp(ikosRr) 

sin BT cos BI' 

where the unit vector SR has the components 

sR=(-sin B,,O,cos 8,). 

Expression (4.11) coincides with the corresponding sur- 
face integral calculated by the method of stationary phase14 
in the wave region. As we know, this value of the integral 
makes it possible to obtain the Fresnel laws for the refraction 
and reflection of light waves. Our calculation of surface in- 
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tegral (4.5) is also valid for k&-1, and this indicates that 
strict amplitude-phase matching of the fields appearing in the 
integrand in (4.9, which may be different functions of R, 
occurs at the surface 8. Thus, when there is a continuous 
distribution of dipoles in the medium, the surface 8 marks 
the mathematical boundary z=0, at which the reflected wave 
with the exponential phase multiplier exp(ikosRr) begins. 

We consider separately the case of koR41, in which the 
model of a continuous dielectric medium cannot be em- 
ployed. In this case the model of a physical boundary of a 
dielectric, whose thickness is specified by the structural pa- 
rameter Lo, should be used. Strict matching of the fields 
appearing in the integrand in (4.5) does not occur on the 
physical surface C, and a dependence of integral (4.5) differ- 
ing from exp(ikgRr) appears. The concept of a physical 
boundary, which we have introduced in our treatment, is as- 
sociated with the near-field effect. 

Further calculations lead to the following expression for 
the effective dipole moment 

where Ig is specified by Eq. (4.11), I=, and Igd are the sur- 
face integrals over the circle formed by the intersection of 
the Lorentzian sphere and 8 and over the part of the Lorent- 
zian sphere inside the medium, respectively, and 

Here &=ro-ra, and na=RJRa. As numerical analysis 
shows, the largest contribution to de: is made by S, which 
corresponds to the region of the discrete distribution, i.e., by 
the last term in (4.13), which depends on the coordinate as 
11~ :  and thus corresponds to the electrostatic interaction be- 
tween the resonant atoms. Upon transition to the wave re- 
gion, the effective dipole moment takes the form (without 
consideration of the positron polarizing field) 

deB- ( 3 sin(&- 0,) 

k*-dOUd 2(nf +2 )  sin 0, cos 0, 

Using this relation, we can show that in the case of normal 
incidence (4=0) the expression for the lifetime of an atom 
in the excited state coincides with the corresponding result in 
Ref. 3. These relations will be analyzed in greater detail in 
our next reports. 

5. SPATIAL DISTRIBUTION OF SPONTANEOUS PHOTONS 
NEAR THE SURFACE OF A DIELECTRIC MEDIUM 

We use the extinction theorem (2.24) and Eq. (2.25) to 
describe the photon field near the surface Z at observation 
points inside and outside of the medium. We assume here 
that each observation point is located at a certain distance 
from 8, which is greater than the characteristic scale of the 
medium, so that the refractive index would not depend on the 
location of the observation point. In the case of a stationary 
medium, the refractive index also does not depend on the 
time, i.e., the refractive index in our treatment is a constant 
real quantity. We also assume that the location of the reso- 
nant atom relative to Z is fixed. We are interested in the field 
at an arbitrary observation point r#ro. The distance from the 
observation point to the atom Ro must satisfy the condition 
Ro*a, where a is the characteristic dimension of the reso- 
nant atom. This condition allows us to use the electric dipole 
approximation and to write the second term on the right-hand 
side of Eq. (2.14) in the form of a dipole field operator. 

The surface integrals 1L:' and 1c) in (2.24) and (2.25) 

contain the creation (annihilation) operators of the photons 
ZLA(tkA) under the integral sign. The operators ckA and 2; 

depend on the coordinates and on the time, i.e., on the vari- 
ables r' and t-Rlc. It is not possible to solve the quantum- 
optical boundary problem under these conditions; therefore, 
as before, we use the approximation of slowly varying am- 
plitudes for the photonic operators (the adiabatic approxima- 
tion), under which 

Let us elaborate on the physical meaning of this approxima- 
tion. The slowly varying amplitudes ikA (as well as ElA) un- 

der the surface-integral sign satisfy the trivial inequalities 

When these inequalities are satisfied in the integrodifferential 
equation (2.24), two types of fields, viz., the fields at the 
current points r' on 2, and the fields at the observation 
points, can be distinguished. In the near-field region, where 
~lr'-rl91 holds, we may assume that the amplitudes of the 
fields at different points r' on the surface are identical and 
that at the observation points r we have a slowly varying 
amplitude, which is specified by the superposition of all the 
polarizing fields and the initial field Ei,. When we change 
the location of the observation point, we automatically alter 
the identical amplitudes of the fields at the points r', and as 
a result of the integration of the surface integrals with rapidly 
varying exponential functions and multipliers of the forms 
1/R and 1 1 ~ ~  in the extinction theorem (2.24), we obtain 
another value for EkA(r,t). Note also that as a result of the 
use of conditions (5.1) and (5.la), the boundary problem 
continues to remain self-consistent, since the fields at r and 
r' differ from the initial field. In the wave region, where 
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~ ( r ' - r I + l ,  the amplitudes of the fields are identical at all r' 
and r according to the structure of the surface integrals, and 
approximations (5.1) and (5.la) may be omitted. Thus, in our 
treatment only the field at an observation point has physical 
meaning. Conditions (5.1) and (5.la) suppress the weak ef- 
fects associated with successive consideration of the varia- 
tions in the amplitudes of the fields at the points r ' .  Employ- 
ing conditions (5.1), from Eq. (2.24) we obtain the 
approximation equation 

n2- 1 
2(O)(rT,t) = - 

'=A (curl curl IF + 1C))ekA (c/wk)*' (5.2) 

where K f  k in accordance with the choice of trial solution 
(2.17), ekA is the unit vector of the polarization of the initial 
field E l A ,  and the values of the surface integrals I!:) and 

I!:) without the photon creation (annihilation) operators were 

determined at an observation point (rT,T) within the me- 
dium. 

We can now use (5.2) to find the field EEA at the obser- 

vation points (rR,t) above the surface 2 .  Plugging (5.2) into 
Eq. (2.25), we obtain the following equation for the field 
amplitude: 

E~(O)(~R ,t) = - 
k~ (curl curl $ + 1C')ekA 

In this equation there is a definite correspondence between 
the fields at observation points rT within the medium and at 
an observation point rR outside of the medium, which is 
embodied in the surface integrals. 

A. Initial photon field 

In Eq. (2.14), as well as in the extinction theorem (2.24), 
the initial photon field has the form 

d ( r o , t - ~ ~ / c )  
Ein(r,t) = E,( r ,  t) + curl curl 

R 0 
9 (5.4) 

where Ro=lr-rol is the distance from the fixed location of 
the resonant atom to the observation point. Here the operator 
of the local dipole moment d is determined by the field at ro, 
and this field is the solution of the system of equations (2.14) 
and (3.1). In other words, we have a self-consistent problem 
of finding the field at different observation points when the 
resonant atom and the nonresonant medium have some po- 
larizing influence on one another, which is specified by inte- 
grodifferential equation (2.14). 

To solve the boundary problem posed in this paper, it is 
important to properly select the corresponding initial condi- 
tions. As such an initial condition we choose the field (5.4), 
in which the local dipole moment of the resonant atom is 
determined by the self-field of the photons, according to Eq. 
(2.12), in the assigned polarizin~ field of the nonresonant 
dielectric medium. Thus, when d is calculated, we can dis- 
regard the reciprocal influence of the atom on the medium 
and employ the concept of an effective dipole moment di:. 

Employing the standard procedure in Ref. 16, which we have 
already mentioned above in connection with Eqs. (3.6) and 
(3.9), we obtain the following expression for the initial field 
(5.4): 

2do - 
(Ein(r,t))= -curl curl - R o ( r2)ro , t -R, lc~d,  (5.5) 

where the vacuum mean (t2), as a solution of Eqs. (3.1), has 
the form 

x (t  - Ro /c)] - (r-(O))exp[- i ( o o +  8) 

x (t-Role)]). (5.6) 

Here the lifetime r1 and the frequency shift 6 were deter- 
mined at ro from Eqs. (3.6) and (3.9) using 1t: and $. 

8. Angular distribution of spontaneous photons near a 
surface 

We use Eqs. (5.2) and (5.4) to investigate the principal 
amplitude-phase characteristics of the field of spontaneous 
photons at different observation points both within a dielec- 
tric medium and outside it in the wave and near-field regions. 
We ascertain the principal properties of the spontaneous pho- 
ton field, using the values of the surface integrals specifying 
the quantum refractive index (5.2) and reflection coefficient 
(5.3) of spontaneous photons. 

1. We assume that the surface of the dielectric medium is 
uniform. This means that the lifetime 7, and the frequency 
shift S are not dependent on the coordinates x and y on the 
surface 2 (Fig. 1). We isolate the spectral component corre- 
sponding to the wave vector k in the field E in .  Then the 
negative-frequency part of field (5.6) has the exponential 
multiplier exp(ik,r,), and the denominators in Eqs. (5.2) 
and (5.3) contain the exponential function exp(iK,r,), 
where k, and K, are projections of the wave vectors k and 
K onto 2. Owing to the uniformity of C, we have 

" k " k 
k,= - - c sin O1 cos cpl, ky = - c sin eT sin cp, , 

" k 
Kx= -n  - sin BT cos (PT, 

C 

"k 
Ky = n - sin BT sin (PT , 

C 

where 8, and (m are the assigned angles of incidence of the 
spontaneous photons onto the surface 2 ,  and 4 and (h. are 
the corresponding angles of refraction. The angles of inci- 
dence and reflection in the three-dimensional problem under 
consideration can be related to one another using Eqs. (5.7). 
Similarly, the angles of incidence and the angles of reflection 
% and cp, can be related to one another using relations (5.7) 
and Eq. (5.3). 

2. When the position of the excited atom ro and the 
photon wave vector are fixed, the initial field (5.5) is a plane 
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wave with a constant amplitude. The dependence of the sur- 
face integrals 1i:) and IC) in Eq. (5.2) on the coordinate of 

the observation point r is such that in the wave region the 
refracted photons are also represented in the form of a plane 
wave with a constant amplitude. The amplitude of the re- 
flected photons has the same property. A different situation is 
observed in the near-field region. When spontaneous photons 
impinge on a surface in the form of plane waves with a 
constant amplitude, the reflected and refracted photons are 
represented in the form of plane waves whose amplitudes 
vary as the observation point varies. This property of re- 
flected and refracted photons is a manifestation of the near- 
field effect. We can attribute this property to the linear super- 
position of electrostatic and retarded polarizing fields having 
different dependences on the relative distance R in the 
extinction-inducing field (2.24). It is noteworthy that a simi- 
lar situation is also observed in classical optics, where the 
near-field effect results in the appearance of non-Fresnel re- 
flection and refraction laws. 

3. When the atom is stationary relative to the surface of 
the dielectric, the process of the emission of spontaneous 
photons exhibits anisotropy of the angular distribution, under 
which the field of spontaneous photons in the upper hemi- 
sphere relative to the plane zo=const differs from the field of 
spontaneous photons in the lower hemisphere relative to the 
same plane. This anisotropy is caused by the character of the 
dynamic interaction of the atoms through the virtual photon 
field, under which the probability of spontaneous emission 
from one of a pair of interacting atoms in the direction of the 
wave vector k is not equal to the corresponding probability 
of the emission of a photon in the opposite direction -k 
(Ref. 1). 

The results of our detailed numerical analysis of Eqs. 
(5.2) and (5.7) for the complex amplitudes of the field of 

spontaneous photons at various observation points will be 
presented separately in special journals. 

In conclusion, we wish to thank the participants in the 
Jubilee Lectures on Photon Echoes (October 1993), as well 
as V. G. Minogin and Yu. E. Lozovik for a useful discussion 
of the near-field effect and its role in various boundary prob- 
lems of classical, nonlinear, and quantum optics. 
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