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The correspondence between the real and imaginary parts of mass operators at finite temperature 
and nonzero chemical potential is discussed using the real- and imaginary-time 
representations. Within the single-loop approximation, the imaginary part of the electron energy 
shift in a static uniform magnetic field at finite temperature and nonzero chemical potential 
is calculated and its physical interpretation is given. In the limiting cases, asymptotic expressions 
for the imaginary part of the electron energy shift are obtained, its zero-field finite-T value being 
zero. O 1994 American Institute of Physics. 

1. INTRODUCTION 

In a number of recent studies the effects of finite tem- 
perature and nonzero chemical potential on the probabilities 
of various processes are discussed.'-3 The most effective 
technique for calculating the corresponding physical quanti- 
ties is the Green's function In particular, the 
calculation of the energy spectrum of a system in quantum 
field theory at finite T and nonzero chemical potential re- 
duces to finding the poles of the retarded (or advanced) 
Green's functions Gr(Ga), which are related to the time- 
dependent Green's function G by 

w - P  
Gr(w'p)] =Re G ( o , p ) ?  i wth  - 
G " ( ~ , P )  2 T  Im G(w7p) (1) 

for a Fermi system and by 

@-P 
Gr(  w7i)] = Re G( w,p) 2 i tanh - 
Ga(w,p) 2T 

ImG(o,p)  (2) 

in the case of a Bose system. 
In the real-time representation, in order to calculate the 

time-dependent Green's function of a system of interacting 
particles one uses either the Keldysh diagram techniqueb or 
the equivalent thermo-field dynamics m e t h ~ d . ~  In some stud- 
ies (e.g., Refs. 11-12), the elementary excitation spectrum is 
calculated by the method of temperature Green's functions. 
In this case, in order to find the energy spectrum of the 
system one must analytically continue the appropriate tem- 
perature Green's function to the retarded (advanced) Green's 
function. 

From what has been said there follows a relation be- 
tween the real and imaginary parts of the mass operators in 
the real-time ( 2 )  and imaginary-time (xr)  formalisms: 

for fermions, and 

w - P  
1m x = tanh - Im 2 

2 T  

for bosons. 
The relations (3)-(6) are exact and follow from first 

principles.4-5 In this connection, it should be noted that Eqs. 
(4) and (6), the correspondence between the imaginary parts 
of the real-time and imaginary-time self-energy diagrams, 
not only were derived anew but also verified by direct single- 
loop calculation in a series of ~ t u d i e s . ' ~ - ' ~  

In the present work the single-loop approximation is em- 
ployed to calculate the imaginary part of the electron energy 
shift in a static uniform magnetic field at finite temperature 
and nonzero chemical potential. 

In Sec. 2 the general structure of the imaginary part of 
the electron energy shift in the real-time and imaginary-time 
representations is examined. The result is expressed in terms 
of the probabilities of the corresponding external-field- 
induced processes. It is shown that physical significance re- 
sides in the imaginary part of the retarded mass operator. 

In Sec. 3 asymptotic expressions for the imaginary part 
of the electron energy shift for certain limiting cases are 
obtained. Section 4 discusses the results. 

2. GENERAL STRUCTURE OF THE IMAGINARY PART 

In Ref. 14 it is shown that the single-loop finite-density 
finite-T contribution to the electron energy shift in an 
electron-positron plasma, in equilibrium at T in an external 
magnetic field HTTOZ, is given by 

AE,,= AE:+ A E ~ +  AE:-~, (7) 

where 
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x ~ ( k 2 ) S ( ~ n - ~ ~ n ~ - k o ) n B ( l k l ) n F ( E n ~ )  
and N(lk1) and N ( E )  are the Bose and Fermi distribution 
functions: 

Equation (8) sums over all the quantum numbers of the in- 
termediate states (here plasma particle states; E =  t 1  is the 
sign of the energy and s t =  % 1  the spin projection). 

The unperturbed energy levels of an electron in a static 
uniform magnetic field are given by17 

En= ( m 2 +  2 e ~ n  (10) 

where n  = 0,1 , .  . . is the principal quantum number, 
- m < p , <  + m, and the explicit form of the transition cur- 
rent 

where cCr,(x) is the coordinate part of the electron wave func- 
tion in a static uniform magnetic field, is here omitted as 
overly complicated." 

The real part of Eqs. (7)-(8) is treated in Refs. 18 and 
19. Using the Sokhotsky formula we separate the imaginary 
part of the electron energy shift which, after integrating over 
ko and summing over E= % 1 ,  becomes 

x ( -  I k I - E , , - E n ~ ) l [ n ~ ( l - n ~ )  

- n ~ ( l  + ~ B ) I ,  ( I 2 )  

with 

F = ( J , + J ~ ) .  (13) 

According to the optical theorem the imaginary part of the 
quantity SE, in the case T =  O,p= 0  is proportional to the 
decay probability of a given state, 

Having in mind the effects of finite temperature and non- 
zero chemical potential, the imaginary part of the electron 
energy shift can be understood as follows: The first term in 
(12) corresponds to the probability of synchrotron emission 
by the initial electron with energy En(e - -+e - '  + y )  in a 
magnetic field, with statistical weight ( 1  + N B ) ( l  - N,),  
minus the probability for the inverse process, with weight 

NFNB. 
Including the contribution from spontaneous transitions 

at T =  0  then reduces to the following replacement in the first 
term of (12): 

The second term in (12) corresponds to the difference in 
probability between the excitation of the initial electron by 
absorbing a photon, with statistical weight N B ( l - N F ) ,  and 
the inverse process, with N F ( l  + N B ) .  

The third term in Eq. (12) corresponds to the probability 
difference between the one-photon annihilation of the initial 
electron with a plasma positron, with weight N F ( l  + N B ) ,  
and the inverse process of creation of an electron-positron 
pair by a photon, with weight N B ( l - N F ) .  

The last term is unphysical and does not contribute to the 
imaginary part of the electron energy shift. 

Let rd denote the sum of the probabilities of all those 
processes transferring the electron to other states, 

r d =  w ( e - + e P t +  y)+  w ( e - +  y + e p t )  

+ w ( e - + e f  ' -  y ) .  (16) 

Further, let Ti be the sum of the probabilities of all the in- 
verse processes, 

ri= w ( e p t  + y - e )  + w ( e C t + e -  + y )  

+ ~ ( ~ - - + e - + e + ' ) .  (17) 

The probabilities enter in Eqs. (16)-(17) statistically 
weighted [see Eq. (12) and the discussion that follows]. But 
then the imaginary part of yEn in the real-time representa- 
tion may be written 

whereas in the imaginary-time representation, from Eqs. (18) 
and (14),  

Let us show that it is the imaginary part of the mass operator 
which is physically meaningful. Let f ( w , t )  be the nonequi- 
librium distribution function of particle energies. Then the 
following kinetic equation can be written down: 

where by the Pauli principle a =  + 1 for the boson case and 
a= - 1  for the fermion case. 

For small departures of the system from its equilibrium 
state, we find from Eq. (20) 

where w ,  is the total scattering probability. 
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From Eqs. (21)-(22) it is seen that in the fermion case the 
quantity rd+ ri, which is determined by the imaginary part 
of the retarded mass operator, Eq. (19), determines the relax- 
ation time of the system to its equilibrium state. 

3. CALCULATION OF THE QUANTITY lmSEN 

In this section we carry out an explicit calculation of the 
imaginary part of the electron energy shift in certain limiting 
cases. Consider the charge-symmetrical case, in which the 
chemical potential is zero. This means that at finite T an 
equal number of positrons and electrons are excited.20 For 
the ground state of the electron, the first term in Eq. (12) 
does not contribute to ImSE,. In the low temperature limit 
which we discuss below and in which T<rn holds, where rn 
is the electron mass, the contributions from the third term in 

(12) and from the process e ' 4 e - f  y will be suppressed ex- 
ponentially. 

Then, calculating by the method of Ref. 12 we arrive at 
the result 

In the limiting cases of relatively weak (eH<rnT) and 
strong (eHSrnT)  magnetic fields, it follows from (23) that 

The exponential suppression of the quantity lmSEo in the 
limiting case eH%rnT can be explained by the fact that in- 
creasing the magnetic field strength increases the energy gap 
between the ground and first excited energy levels of an elec- 
tron in an external magnetic field. Therefore the excitation of 
the electron requires high energy photons, but according to 
the Planck black-body distribution, few of these exist. From 
Eq. (23) it follows that in the absence of a field the probabil- 
ity of electron excitation from the ground state by absorption 
of one photon is zero, as it must be. This disagrees with the 
corresponding result of Ref. 21, which is probably wrong. 
Note that the result (23) corresponds to the stimulated dipole 
transition n = 0 + n = 1 in a magnetic field by absorbing a 
photon with a frequency equal to the cyclotron frequency 
w = eHlm. Suppose further that the magnetic field strength 
and the electron energy satisfy 

These conditions secure the quasiclassical nature of electron 
motion in the external magnetic field.'7,22 

Then in the region of relatively low temperatures 

Tern ,  (26) 

along with the usual synchrotron emission, stimulated emis- 
sion and absorption processes are a significant source of the 
energy loss of a relativistic electron, whose power, under the 
condition (25), is found to be 

CY udu - 1 

%?''=- - m2 
7T 

w b s o p b  = - - udu 
stlm 

T a rn2 - 1  e x p n -  1 [I, +(t)dt  

The arguments of the Airy functionsz2 in Eqs. (27)-(28) are 

where x is the characteristic synchrotron emission parameter 

In the relatively low-temperature range (26), from Eqs. (27)- 
(28) 

emit - absorh- - 
Wstim- Wstim - 

(31) 

where 

is the value of the derivative of the Airy function at zero, and 
[ (x) is the Riemann zeta function. 

4. DISCUSSION 

Let us summarize the basic results of this study. In the 
single-loop approximation, a general structure of the imagi- 
nary part of the electron energy shift in the real- and 
imaginary-time representations is established in terms of the 
probabilities of the corresponding external-field-induced pro- 
cesses. It is shown that real physical significance is carried 
by the imaginary part of the retarded mass operator. Calcu- 
lation of the imaginary part of the electron energy shift 
shows the result to be finite and not infrared divergent. In the 
charge symmetrical case, the power of the stimulated elec- 
tron emission and of stimulated absorption are calculated. 

In summary, processes in the absence of a field, as com- 
pared with those induced by external fields, are of higher 
order in the fine structure constant and exhibit a "poor" in- 
frared behavior. The corresponding calculations are therefore 
extremely l a b o r i o u ~ . ~ ~ - ~ ~  It is important however that, by 
comparison, externally induced processes may contribute 
crucially to the energy loss rate of particles propagating 
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through a plasma in intensive fields. 
We are grateful to I. V. 'Ifrutin for discussions on the 

results of this study. 
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Translated by E. Strelchenko 

This article was translated in Russia. It is reproduced here the way it was 
submitted by the translator, except for stylistic changes by the Translation 
Editor. 
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