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Using numerical techniques, we have solved the nonlinear wave equation modeling time- 
dependent spatially two-dimensional propagation of ultrashort high-power laser pulses in matter 
with a nonlinear relativistic ponderomotive term. Auxiliary dynamical modulation of the 
pulse is established and the process by which a precursor forms is described. It is shown that for 
a picosecond pulse there is quantitative agreement between the solution of the nonlinear 
wave equation and the simpler nonlinear Schrodinger equation only for times prior to the 
appearance of the first focus. At times between the first and second focus the solutions 
agree only qualitatively. Thereafter they disagree entirely. 

1. INTRODUCTION 

1 .l. Limitations on the nonllnear Schrodinger equation in 
the nonlinear optics of ultrashort radlatlon pulses 

The propagation of an electromagnetic wave in free 
space is described by a linear wave equation, which is a 
consequence of the Maxwell equations. Electromagnetic 
wave propagation at low intensities in matter is also de- 
scribed by a wave equation with constant coefficients (linear 
optics). As the intensity of the electromagnetic wave in- 
creases, its propagation in matter is often described by a 
nonlinear wave equation whose coefficients depend on the 
intensity of the radiation. The direct solution of the nonlinear 
wave equation is difficult, so simplifying approaches are of- 
ten used. 

To describe the transport of intense light beams and 
highly collimated laser pulses in matter, a technique has 
come into wide use which involves reducing the problem to 
the solution of the nonlinear Schrodinger equation (NSE) for 
the slowly varying complex amplitude of the electromagnetic 
field. The use of the NSE is justified if the complex ampli- 
tude of the electromagnetic field varies little over distances 
on the order of the wavelength in the direction of beam 
propagation, and over times of the same order as the optical 
oscillations of the field. 

When the radiation intensity varies smoothly over the 
propagation distance, the applicability of the NSE is not in 
question, although the problem of estimating quantitatively 
the differences between the NSE and the nonlinear wave 
equation as a function of distance is of interest in its own 
right. However, in many studies the NSE is used to describe 
self-focusing, and not only of steady beams, but also short or 
even ultrashort (r0<1 ns) laser pulses. As is well known, in 
these problems time-dependent wave structures develop, 
consisting of powerful foci propagating in the medium with 
sharply varying field amplitudes at their fronts. Close to the 
foci, the conditions for the applicability of the NSE break 
down. On the other hand, it is known that the solution of the 

NSE is unstable, i.e., small perturbations can grow. Conse- 
quently, the small deviations in the solutions of the nonlinear 
wave equation and the NSE which accumulate when the ra- 
diation passes through the first focus result in additional dis- 
crepancies between the two methods. Thus, the applicability 
of the NSE for describing the nonlinear propagation of ul- 
trashort laser pulses after formation of the first focus requires 
particular study. 

1.2. Properties of the nonlinear propagation of ultrashort 
pulses in matter 

Let L be the nonlinear propagation distance for laser 
radiation in matter, Ld= d 2 / ~  be the diffraction length asso- 
ciated with the transverse dimension d of the pulse in matter, 
A be the wavelength of the laser radiation, r0 be the length of 
the laser pulse, and rnl the time needed to develop the non- 
linear response of the medium. At present we can recognize 
the following fundamental regimes of nonlinear laser radia- 
tion propagation in matter: 

1) steady state, including waveguide 
L9L ' j ;  

2) the quasisteady regime with a fast 
r09 rnl ,  r09LIc;  

3) the time-dependent regime with a fast nonlinearity8 
r0+ rnl ,  r0<LIc. 

4) the time-dependent regime with a slow nonlinearity9 
70<7nl 

The first regime arises when radiation from CW lasers 
propagates in matter. The second regime usually arises for 
Q-switched lasers. The third regime, as a rule, is achieved 
for lasers with ultrashort pulse lengths rO<l ps. The fourth 
regime occurs when the nonlinear response of the medium 
reacts back on the radiation with a lag of the order of the 
pulse length itself. 

The present work is devoted to justifying the theoretical 
description of the ultrashort lasers most frequently encoun- 
tered in practice and to the less thoroughly studied regime 3. 
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Regimes 1, 2, and 4 have been studied in  review^'^-'^ and in 
the monograph of Ref. 13. 

This nonlinear propagation regime for laser radiation 
was referred to in Ref. 14 as self-channeling of an ultrashort 
pulse. Essentially it amounts to saying that a burst of elec- 
tromagnetic field propagates in a medium with variable di- 
electric properties over a distance L many times the length 
Li=crO of the pulse itself and the diffraction length, L S L i ,  
Ld .  Over the propagation length L of the pulse there is no 
physical channel in the medium. The filament, otherwise 
known as the channel, is nothing but the trajectory or track 
along which the burst of electromagnetic field with dimen- 
sions small in the longitudinal and transverse directions 
propagates. 

The effect of relativistic ponderomotive self-focusing of 
an ultrashort high-power laser pulse was predicted 
the~ret ical l~ '~ and subsequently observed experimentally.16 

Borisov et a1." observed self-channeled propagation of 
the pulse from a KrF* excimer laser (h=0.248 pm, ~ 6 0 0  
fs, ~ = 3 . 1 0 "  W) over a distance of up to 2 mm, which 
amounts to L--100Ld. The channel diameter was d = l  pm. 
The length L of self-channeled propagation was determined 
by the rate of dissipation of the pulse energy in the material. 

The self-channeling of an ultrashort high-power laser 
pulse leads to strong self-concentration of the optical energy 
in a small region which is displaced in the material with a 
velocity close to that of light (the intensities can reach mag- 
nitudes 1>1020 w/cm2). This opens up interesting prospects 
for various new fundamental and practical applications of 
laser radiation, and also essentially changes the form of the 
conditions for familiar physical processes to o c ~ u r . ' ~ " ~  For 
these reasons it is of interest to study this phenomenon. 

Until recently the theory of the self-channeling effect 
was based on the use of the N S E . ~ ~ , ' ~ , ~ ~ - ~ ~  In Ref. 8 a theory 
was constructed based on the modified nonlinear Schro- 
dinger equation, which took into account, in addition to the 
NSE, the second derivatives in the longitudinal coordinate. 
In the general case the process is described by the nonlinear 
wave equation.23 

In the present work we use numerical techniques for the 
first time to solve the three-dimensional problem of the time- 
dependent spatially two-dimensional (one time and two 
space) propagation of an ultrashort high-power laser pulse in 
a medium with a relativistic ponderomotive electron nonlin- 
earity. The process by which the laser pulse is stretched out 
in the longitudinal direction (precursor formation) is de- 
scribed, and additional spatial modulation of the pulse is also 
established. A detailed comparison is made of the solutions 
obtained using the NSE and the nonlinear wave equation. 

2. FORMULATION OF THE PROBLEM 

References 8, 14-19, and 21,22 are devoted to the theo- 
retical analysis of self-channeling of ultrashort high-power 
laser pulses in matter. The nonlinear wave equation which 
describes the effect takes the form8 

Here a(r,z,t)  is the complex amplitude of the vector poten- 
tial of the electromagnetic field, v, is the group velocity, and 
we have written k2= ki- kj, where ko= o l e  is the wave 
number and kp= w ~ , ~ I c  and w, ,~= ( 4 1 ~ e ~ n , , ~ l r n , , ~ ) ~ ' ~  are 
the Posner wave number and the unperturbed plasma fre- 
quency, and = A, + - c -2d;t is the wave operator. 

The first factor (enclosed in parentheses) is the linear 
transport operator for the complex amplitude of the vector 
potential with group velocity v, in the z  direction. The wave 
operator in braces describes diffraction of the radiation. The 
second term describes refraction; the y in the denominator 
accounts for relativistic increase in the mass of the free elec- 
tron oscillating in the superintense electromagnetic field; the 
term ki2Ay is the ponderomotive term, which describes the 
force acting to push electrons into the region where the field 
is weaker. 

If we specify an infinite medium -m<z<m and at time 
t=O a pulse of known form is introduced, then it is conve- 
nient to change variables so as to localize the solution: 

Then Eq. (1) assumes the form 

The transformation (2) performs a rotation in z , t  space 
so as to make the direction of propagation parallel to the time 
axis. 

To pose the problem for the nonlinear wave equation (3), 
we must include the initial conditions 

and the boundary conditions 

If we assume that the complex amplitude varies slowly 
over distances on the order of the wavelength in the direction 
of propagation and over times on the order of the oscillation 
period of the field I d,a), c-'1 d,a I4kla 1, then the wave op- 
erator and the Laplacian in the nonlinear term should be 
replaced by transverse Laplacians: 0, A--+A,. The resulting 
equation is called a nonlinear Schrodinger equation and has 
been the subject of a great deal of 

In view of the complexity of the nonlinear wave equa- 
tion (3), it is usual in the literature8 to introduce an equation 
in which the cross-term 45, and the second derivative with 
respect to time d2, are omitted, but which takes into account 
the second derivatives with respect to the longitudinal coor- 
dinate, &. This equation is called the modified nonlinear 
Schrijdinger equation. 
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3. NUMERICAL ANALYSIS OF SELF-CHANNELING IN THE 
NONLINEAR WAVE EQUATION MODEL 

3.1. The numerical method 

We will assume that at time r=0 the pulse has a hyper- 
Gaussian intensity profile in the radial and longitudinal co- 
ordinates: 

We specify the phase distribution in the form of a uniform 
plane front: 

We set the first derivative with respect to time equal to zero 
initially: 

which corresponds to the analogous condition in linear op- 
tics. 

The problem specified by Eqs. (3)-(5) has been solved 
using a spectral-finite-difference method on an infinite do- 
main: semi-infinite in r and extending to infinity in both 
directions in 6. In terms of the variable the problem can be 
treated as two semi-infinite regions. From the leading edge 
(=0 of the pulse the continuation beyond the trailing edge is 
in the direction +m. From t = 0  the continuation beyond the 
leading edge is in the direction -w. The spectral-finite- 
difference method we used is an outgrowth of techniques for 
solving nonlinear problems involving partial differential 
equations developed in Refs. 24-26. The numerical algo- 
rithm for the problem defined by Eqs. (3)-(5) is imple- 
mented using the collocation method based on representing 
the desired functions as a finite sum of Chebyshev polyno- 
mials of the first kind. In each region we arrive at a system of 
second-order ordinary differential equations in time. The 
conditions for the continuity of the solution and its derivative 
with respect to 5 at the point .f=0 yield the requisite equa- 
tions for simultaneous solution of these two systems. This 
technique can be regarded as a version of the finite-element 
method. The points of the collocation grid in this version are 
bunched up in both directions near the point t=0, which 
enables us to get a detailed description of the process by 
which the precursor forms. By means of a change of vari- 
ables we arrive at a system of nonlinear ordinary differential 
equations with twice as many dependent variables, but now 
of first order. To integrate the latter in time we have used a 
predictor-corrector scheme26 with a second-order predictor. 

3.2. Solution of the 2D+1 problem 

The main purpose of this work is to simulate the propa- 
gation of an ultrashort high-power laser pulse in matter by 
numerically solving the nonlinear wave equation. We have 
treated the propagation of a Gaussian N1=2, N2=2 pulse 
from an excimer laser with wavelength h=0.248 pm and 
aperture 2ro=6 pm, of length 2r0=800 fs with energy 
E=6.0 J in a plasma with electron density N,=7.5.102' 
~ m - ~ .  Figures la-d show the solutions of the nonlinear 

FIG. 1. Ro-dimensional surface plots of the intensity profile for an initially 
Gaussian laser pulse with wavelength A=0.248 pm, aperture 2rO=6 pm, 
length 2r0=800 fs, and energy E=6.0 J, propagating in a plasma with elec- 
tron density N,=7.5. loZ0 ~ r n - ~ .  The calculations were carried out using the 
nonlinear wave equation. The figures are shown at times T (in fs): a) 150.0; 
b) 187.5; c) 262.5; d) 281.25. 

wave equation (3) at times r= 150.0, 187.5, 262.5 and 281.25 
fs respectively. 

The initial Gaussian profile of the laser pulse is not 
shown in Fig. 1. Its intensity is lower than those shown in 
Fig. 1 by more than a factor of 100; it is 25 times as wide in 
the radial direction. On the scale of Fig. 1 the initial profile 
would look like a nearly zero uniform background. As it 
propagates the pulse converges toward the axis in the trans- 
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FIG. 2. %o-dimensional surface plots of the intensity profile for an initially 
Gaussian laser pulse with wavelength X=0.248 pm, aperture 2ro=6 q, 
length 2r0=800 fs, and energy E =6.0 J, propagating in a plasma with elec- 
tron density N,=7.5. lom ~ m - ~ .  The calculations were carried out using the 
modified NSE. The figures are shown at times T (in fs): a) 187.5; b) 262.5. 

verse direction. Figures la, b illustrate the pulse passing 
through the first focus; Fig. l c  shows the second focus. Fig- 
ure Id illustrates the intensity profile that develops beyond 
the second focus. 

In order to analyze the conditions for the applicability of 
the simpler models shown in Figs. 2a,b we have presented 
the solution of the modified NSE for exactly the same prob- 
lem in which we solved the nonlinear wave equation (3) at 
times ~ 1 8 7 . 5  and 262.5 fs respectively. This solution is 
illustrated in more detail in Ref. 8. From the physical stand- 
point, Fig. 2a illustrates the two-dimensional intensity profile 
of the laser pulse at the time when the first focus forms in the 
center; Fig. 2b is close to the second focus. 

The most important thing to note is the asymmetry of the 
solutions of the nonlinear wave equation in the 6 direction. 
This is due to the inclusion of the mixed derivative term i$r 
in the complete model. The solutions of the modified NSE 
are symmetric in 6, as can be clearly seen in Fig. 2. Thus, 
taking the mixed derivative into account is a very important 
consideration for the correct solution of the problem. 

Qualitative agreement in the development of the struc- 
ture of the foci using the NSE and nonlinear wave equation 
models is only seen in the approach to the first focus; there- 
after the solution in the nonlinear wave equation model 
qualitatively and quantitatively differs from that obtained 
with the modified NSE. The qualitative discrepancy results 
mainly from the effect of the second derivative in time, 
- 

c '&. The self-modulation of the pulse in the 6 direction in 
the nonlinear wave equation model begins to develop earlier 
than in the modified NSE, which is especially clear when 
Figs. l b  and 2a are compared. Thus, including the second 

derivative with respect to time is also an important consid- 
eration. 

Comparison of Figs. l c  and 2b shows that part of the 
radiation in the nonlinear wave equation model proceeds 
ahead, outstripping the main pulse. That is to say, a precursor 
forms. Note that the leading edge of the pulse corresponds to 
a smaller value of 6 in Fig. 1. In the nonlinear wave equation 
model the pulse is stretched out in the direction of propaga- 
tion; this is clearly seen in Fig. Id. 

The calculations shown in Figs. 1 and 2 were carried out 
for a peak value P,IP,,>10. In the present work we have 
also considered cases with a small ratio P,lP,=1.4. They 
exhibited retardation of the self-focusing in the nonlinear 
wave equation model. The first and last foci developed at 
somewhat larger distances than in the NSE model. This ef- 
fect is due to spreading of the pulse in the longitudinal di- 
rection in the nonlinear wave model, which naturally causes 
the conditions for self-focusing to deteriorate. 

4. CONCLUSIONS 

In the present work we have continued the theoretical 
study of the nonlinear wave equation (1) describing the 
propagation of ultrashort high-power laser pulses in matter, 
including the effects of diffraction and refraction in a me- 
dium with a nonuniform radial profile of the index of refrac- 
tion resulting from electron relativistic and ponderomotive 
nonlinearities. 

W o  problems arise when the nonlinear wave equation 
(1) is studied. The first is related to the analysis of the effect 
of nonlinearity on the propagation of radiation. The 
relativistic-ponderomotive nonlinearity is a combination of 
the two, and it is therefore of interest to clarify the role of 
each effect individually. This can be done by considering a 
hierarchy of increasingly complicated nonlinearities. In the 
weakly relativistic approximation we have a Kerr-type non- 
linearity; at higher intensities, a relativistic nonlinearity, and 
then the relativistic-ponderomotive nonlinearity. Some as- 
pects of this problem have been considered in Refs. 14 and 
21. 

The second problem is related to the proper treatment of 
the wave properties of Eq. (1). When we go to the comoving 
variable in order to localize the solution of Eq. (1) spatially it 
takes the form, e.g., of Eq. (3). For Eq. (3) it is traditional 
(beginning with the work of V. I. Talanov, V. I. Lugovoi, and 
A. M. Prokhorov; see the reviews in Refs. 10-12) to use the 
approximation in which the complex amplitude of the elec- 
tromagnetic field is slowly varying. In this approximation all 
second-order derivatives C$., &, which enter into the 
NSE should be omitted. Other approximations are also pos- 
sible. For example, the equation in which the derivative C$e is 
retained but the L$r, & derivatives are omitted is naturally 
called the modified NSE. We can treat the form of the equa- 
tion in which only the second derivative with respect to time 
am is omitted, and all the others are retained. The resulting 
equation is classified as a modified NSE with a mixed de- 
rivative. It would be of the greatest interest to treat the exact 
nonlinear wave equation (3), including all the derivatives. 
Thus, including the wave properties of Eq. (1) leads us to the 
study of a hierarchy of four models: the NSE, the modified 
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NSE, the modified nonlinear wave equation, and the nonlin- 
ear wave equation itself. In each model, in principle, we can 
treat different nonlinearities. 

Early work analyzed only the eigenmodes of the two- 
dimensional NSE. Most studies of Eq. (1) for different forms 
of nonlinearity were carried out using the NSE model, but 
only in the two-dimensional problem which describes the 
evolution of a specified thin transverse slice of the laser 
pulse. Among these one should note the studies carried out 
with the participation of A. B. Borisov, in which the corre- 
sponding numerical techniques were Re- 
cently Ya. M. Zhileikin has written a fast-running code that 
solves the three-dimensional (one temporal, two spatial) 
problem in the nonlinear wave equation In a recent 
paper this three-dimensional problem was solved for the 
modified NSE model with a relativistic-ponderomotive non- 
linearity. 

In the present work the study of the wave properties of 
Eq. (3) led to the development of the basic ideas.8 The nu- 
merical calculations were carried out for the relativistic- 
ponderomotive nonlinearity, which when certain conditions 
are imposed leads to the self-channeling of an ultrashort 
high-power laser pulse in matter (in the plasma produced by 
the pulse itselfz1). In carrying out this work we wrote a code 
specifically designed for a 486166 MHz IT computer, in- 
tended to solve two- and three-dimensional problems using 
the four models listed from the NSE to the nonlinear wave 
equation. It is based on spectral-finite-difference methods 
with expansion of the dependent variables in both spatial 
variables in finite series of Chebyshev polynomials of the 
first kind. The three-dimensional (one temporal, two spatial) 
problems were solved for the propagation of an initial pulse 
which was Gaussian in both directions in a nonlinear me- 
dium. Special attention was given to solving the nonlinear 
wave equation, since this is the more accurate model. 

In solving the 2D time-dependent problem with the non- 
linear wave equation we found the following physical ef- 
fects: 

First, the existence of an asymmetry in the longitudinal 
(5) direction due to the retention in the model of the second- 
order mixed derivative term. 

Second, strong self-modulation of the laser pulse in the 
longitudinal direction due to the retention in the model of the 
second time derivative. Such self-modulation occurs when 
the pulse passes the first focus. In models using the NSE it is 
less pronounced and occurs considerably later. The pulsating 
nature of the modulation in the nonlinear wave equation 
model should be noted. The effect first appears and then 
disappears (it is smoothed out due to overlapping of the 
peaks). 

Third, in the nonlinear wave equation a precursor devel- 
ops over the course of time: part of the radiation moves on 
ahead, outstripping the main pulse. The laser pulse has a 
tendency to spread in the propagation direction. Note that 
this effect is decidedly wavelike and is not described by the 
NSE model. 

Fourth, near the threshold the self-focusing of the pulse 
is observed to lag in time in the nonlinear wave equation 
model in comparison with calculations using the NSE model; 

this is due to the longitudinal wave spreading of the pulse, 
which causes the focusing conditions to deteriorate. 

We note an important fact revealed by the nonlinear 
wave equation calculations for picosecond pulses (2r0=800 
fs). It was found that the results of solving the problem using 
the NSE model agree qualitatively with the nonlinear wave 
equation solutions only over times prior to the appearance of 
the first focus. Then the agreement is only qualitative prior to 
the appearance of the second focus. Thereafter the solutions 
disagree greatly. 

Thus, in order to develop a reliable picture of the non- 
linear propagation of ultrashort laser pulses in a nonlinear 
medium we should use the nonlinear wave equation. The 
NSE model, which has attained general respectability in non- 
linear optics, is probably valid in a very restricted region in 
problems involving the nonlinear propagation of ultrashort 
pulses. 

Note that .in the present work we have not taken into 
account a number of physical effects, such as ionization of 
the medium by the radiation, generation of plasma waves,28 
the Kerr nonlinearity due to the background ions, etc. There 
are prospects for studying these by including them in the 
nonlinear wave equation model. 

In conclusion we thank V. V. Korobkin for his compre- 
hensive support of this work. 
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