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The spectrum of the electromagnetic oscillations of a ferromagnetic plate magnetized parallel to 
its surfaces has been analyzed. The dispersion relation for waves (magnetic polaritons) 
propagating parallel to the magnetic field and the magnetization has been calculated. It has been 
shown that three types of waves exist: fast waves with normal dispersion, slow waves with 
anomalous dispersion, which transform into the familiar type of magnetostatic waves in the limit 
of large values of the wave vector, and special waves. An analysis with comparison to the 
case of a wave propagating perpendicular to the magnetic field has been performed. 

1. INTRODUCTION 

In Ref. 1, we analyzed the dispersion relation for elec- 
tromagnetic waves propagating perpendicular to a magnetic 
field H and its associated parallel magnetization M in a fer- 
romagnetic plate of thickness 2d. The amplitudes of the 
waves (surface magnetic polaritons) decay exponentially 
with increasing distance from the plate. Solving Maxwell's 
equations with standard boundary conditions and taking into 
account the temporal dispersion of the magnetic susceptibil- 
ity (a consequence of the Landau-Lifshitz equations), we can 
find the relation between the frequency w and the wave vec- 
tor k over the entire range for the existence of magnetic 
polaritons (k>w/c). In this case (when kLH) an irreversible 
Damon-Eshbach surface wave2 exists on the boundary of the 
ferromagnetic half-space in the quasiclassical limit (k+ wl 
c), so that the results in Ref. 1 may be regarded as a gener- 
alization of the results in Ref. 2. 

The plots of w=w(k) found in Ref. 1 are schematically 
depicted in Fig. 1 in order to be able to compare the results 
obtained here with the results in Ref. 1. 

The case k l H  is interesting due to the existence of a 
special branch of oscillations in the interval 
[ Jwo(wo+ w,), wo+ 1/2wM], which transforms into a 
Damon-Eshbach wave2 when k d a l  and C--+W:') 

Unlike the waves of the upper and lower groups, the electro- 
magnetic fields in this group are superpositions of hyper- 
bolic, rather than trigonometric, functions. The velocity of 
the special branch vanishes at the limits of the frequency 
range and reaches a value -c at the maximum. The curve 
describing the special branch begins to the right of the 
straight line w=ck [the coordinates of its origin are kc 
= \ I m ( w o  + wM), w = \IO~(UO+ wM)l. ~t these 
values of the frequency and the wave vector, the magnetic 
field and the magnetization are concentrated near the bound- 
aries of the plate (the penetration depth of the field and the 

2. PROPAGATION OF A WAVE IN A PLATE PARALLEL TO 
THE MAGNETIC FIELD AND THE MAGNETIZATION 
(kllH) 

Let a ferromagnetic plate of thickness 2d be magnetized 
parallel to its surfaces and let a wave propagate in the plate 
parallel to the magnetic field H and the magnetization M. As 
the distance from the plate increases, the electromagnetic 
field decays exponentially with a logarithmic decay constant 

'Yo = JiG7P. (2) 

Hence there is a restriction on the frequencies w and wave 
vectors k that may be considered: wsck. 

For waves within the plate, the component of the wave 
vector that is normal to the plane of the plate is determined 
by Maxwell's equations, supplemented by the constitutive 
relations (e and h are the variable electric and magnetic 
fields, and d and b are the electric and magnetic induction: 

at lhis point is to see' PIG. 1. Schematic dependence of the frequency an the wave vector in the 
Ref. When @-+ODE 9 the penetration ap- case of wave urouacation ~emendicular to the magnetic field in a date . S "  . . 

proximates the wavelength A=21i-lk. 
0 

(kLH). 
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Here pik= ,uik(w) is the magnetic susceptibility tensor, 

[see, for example Eq. (9.2.1) in Ref. 31. 
Since the atomic frequencies determining the dispersion 

of the dielectric constant E are considerably greater than the 
frequencies of interest to us here (a-%,wM), E may be re- 
garded as a frequency-independent constant. When the spec- 
trum of natural oscillations is considered, dissipative pro- 
cesses may, of course, be neglected. This means that 
presumably 03-5-5-1, where T is the spin (magnetic) relaxation 
time. 

In an infinite space, two circularly polarized waves (two 
magnetic polaritons) propagate parallel to the magnetization. 
Their dispersion relations are:3 

It can be seen that the specific frequency dispersion of the 
magnetic permeability due to ferromagnetic resonance is 
manifested by the existence of a range of opacity 
(w,,<w<w,,+oM) and a slow quasistatic wave (ck$%) with 
a group velocity tending to zero as ~ 4 %  from the low- 
frequency side 

These properties are characteristic of a polariton with a wave 
vector k+ (Fig. 2). 

In our formulation of the problem, the electromagnetic 
field in the plate depends on two coordinates. We use the 
letter q to denote the component of the field vector perpen- 
dicular to the plate surface. Consistent with the existence of 
waves with two polarizations [see (4)], we have 

1 
q$ =- {(w2~/c2)(,u2- Fr2+,u)- k2(,u+ I ) +  d[(w2~/c2)(,u2- ,ur2-p)-(p- l ) k 2 ] 2 + 4 ( ~ 2 ~ / ~ 2 ) , u r 2 k 2 ) .  

2,u 
(5 )  

After substituting the expressions for ,u and ,ur, we have 

Here D(k,w) = [(w2~/c2)(wo + wM) - k2w012 
+ 4 k 2 w 2 ( ~ 2 ~ 2 / ~ 2 ) > 0 .  Due to the cumbersome nature of 
expressions (5) and (5'), it is difficult to determine the signs 
of q: and q 2 ,  i.e., to show when a wave is the result of the 
superposition of trigonometric functions and when it is the 
result of the superposition of hyperbolic functions. The val- 
ues of q,(o,k) are henceforth calculated at characteristic 
points that are important for a qualitative analysis. It turns 
out that in most cases the electromagnetic field in the plate 
results from the superposition of both trigonometric and hy- 
perbolic functions (see below). 

The boundary conditions, i.e., the continuity of the tan- 
gential components of the magnetic field and the electric 
field in the wave, permit the derivation of a system of homo- 
geneous equations, and the vanishing of the determinant of 
the system serves as a dispersion relation, i.e., it establishes 
the relation between the frequency o and the wave vector k. 
The dispersion relation breaks down into two equations: 

,u (w2~/c2)  - k2q? 
X [ l  +(Yo~lq-)tg(q-d)l- (w2Elc2) -q' 

x [ l+ (Y0~ /4+) tg (q+d) l [ l  +(Yolq-)tg(q-d)1=0, 

(6) 

, ~ ( W ~ E / C ~ )  -kZ- q: 

(02E/c2) -q: 
[ l - (q+  lyo)tg(q+d)l 

,!A( w 2 ~ / c 2 )  - k2- q2_ 
xr 1 -(4- lYo&)tg(q-d)l- (w2,/c2)-q2 

x [ 1 - ( q + l Y o ~ ) t g ( 9 + d ) l [ l - ( 9 - l Y o ) t g ( ~ - d ) l = O .  

(6') 

The logarithmic decay rate yo is defined by Eq. (2), and the 
magnetic permeability ,!A is defined by Eq. (3). 

The boundary conditions mix the two polarizations [+ 
and -, see (6) and (6')], and the breakdown into two equa- 
tions reveals some internal symmetry in the problem, which 
we have not analyzed. The n-th branch of Eq. (6) will hence- 
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FIG. 2. Schematic dependence of the frequency on the wave vector of a 
magnetic polariton propagating in an unrestricted space. The solid line is a 
plot of o = w + ( k ) ,  and the dashed line is plot of o = o - ( k ) .  

forth be denoted by w,(k), and accordingly the n-th branch 
of Eq. (6') will be denoted by wi(k). As will be shown 
below, the form of the dispersion dependence is highly de- 
pendent on the value of ,$=.rrc/2dwod [see (8)]. A sche- 
matic plot of the dispersion curves for 5>1 is shown in Fig. 
3a. Figure 3b shows the special case for some value ,$<I (the 
number of branches originating below w = q  and intersect- 
ing other branches varies: the smaller the value of ,$, the 
greater the number; for further details see below). Let us 
consider the simpler case of el, which is depicted in Fig. 
3a, in greater detail. The branches corresponding to roots of 
Eqs. (6) and (6') are depicted differently. It is seen that with 
the exception of the single branch emerging from the origin 
(from the point w=O, k=O), which intersects an infinite num- 
ber of branches (see below), the solutions of (6) and (6') 
alternate. 

Let us compare Fig. 3a with Fig. 1. In Fig. 1 the char- 
acteristic frequencies are Jwo(oo+ wM) and 
W D E = ~ J ~ + ~ / ~ W ~ ,  and in Fig. 3a they are q and 
\/wo(wo+ wM). In both cases (Figs. 1 and 3), the dispersion 

relations have an infinite number of solutions, i.e., the spec- 
trum has an infinite number of branches. In both cases the 
branches can be divided into two distinctly different groups 
[the solutions of Eq. (6) and of Eq. (6') can be divided into 
two groups]. In one group the frequencies are greater than 
the largest of the characteristic frequencies, and in the other 
group they are smaller. However, while in the first case 
(MH,  Fig. 1) all the frequencies of the lower group are 
smaller than both characteristic frequencies, in the latter case 
(MIH, Fig. 3a) the frequencies of the lower group fall in the 
range (wo, Jwo(wo+ wM)). Some special branches not con- 
forming to this rule will be described below. The frequencies 
of the branches belonging to the upper group will be identi- 
fied by the superscript (>): [wr)(k) ,wr) ' (k)] ,  and the fre- 
quencies of the branches belong to the lowering group will 
be identified by the superscript (<): [ o r ) ( k ) ,  o;<)'(k)]. 

The lowest characteristic frequency [Jwn(wn+ wM) in . - . .  . 

Fig. 1, wo in Fig. 3a] is the limit point (as k+m) of the 
branches of the lower group; however, in the former case 
(Fig. 1) all the branches of the lower group have normal 
dispersion and approach the limit point from below, while in 
the latter case (Fig. 3a) the branches have anomalous disper- 
sion and approach the limit point from above. All the 
branches begin on the straight line w=ck (where yo van- 
ishes). The origins of the branches belonging to the lower 
group have a limit point: in both cases it is w 
= dwo(wo+ wM) (Figs. 1 and 3a). 

The branches of the upper group are outwardly similar: 
both when kLH and when I<IlH they begin on the ray w=ck 
and asymptotically approach the straight line w = ckl 6 (as 
k+w). There is, however, a significant difference. As was 
shown in Ref. 1, when M H ,  the upper group of branches 
does not "survive," i.e., the frequencies of all the branches 
go to infinity, as ~ + 1 .  When NIH, the frequencies of all the 
branches increase but do not reach infinity as &+I. In fact, 
an accurate calculation of the equation of the straight line 
which the branches of the upper group asymptotically ap- 
proach as k 4 ~  (NIH) gives 

FIG. 3. Schematic dependence of the fre- 
quency on the wave vector in the case of 
wave propagation parallel to the magnetic 
field in a plate (NIH). The solid lines are 
solutions of Eq. (6), and the dashed lines are 
solutions of Eq. (6'). a) el; b) (<I. 
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Therefore, when E =  1, both straight lines (the straight line on 
which the initial points are located, and the asymptote of the 
branches of the upper group) are parallel to one another and 
do not merge. The branches of the dispersion curves are lo- 
cated between them when E =  1. 

Let us now consider the special branches appearing in 
the case depicted in Fig. 3a, i.e., when NlH and el (for a 
description of the special branch appearing when kLH, see 

above). ?ivo branches emerge from the origin: wr) ' (k)  and 
wr) ' (k) .  When k+O, the branches are very close to one 
another and to the straight line w=ck: 

1 . , , I  \ w o + w ~ I  
ck- wF) ' (k)  = - (k, 

2 

As k+m, the frequency of one wave w = wr) ' (k )  tends to 
its limiting value (w-w,). 

and its group velocity is 

The latter equations reveal why the ratio 

plays an important role. When Y>1, the plot of w r ) ' ( k )  
approaches the straight line w=wo from above, and as k+@~ 
it has anomalous dispersion, and therefore intersects the 
straight line w=w,, reaching a certain maximum point k 

(9' k = k,,, (dw, ( )/dklk=kmax = 0). Unfortunately, the complex- 
ity of the dispersion relation precludes deriving an analytic 
expression for kmax . 

The branch describing the wave wr ) ' ( k )  "violates the 
rules," since it intersects all the curves of the lower group 
and asymptotically approaches the straight line w 
= ck/& as k+w, as do all the curves of the upper group of 
branches. 

Let us now consider the case ,$<I (Fig. 3b). First, we 
note at once that the number of wi') and w y ) '  branches 
exhibiting special behavior (intersecting other branches) de- 
pends on the value of ,$ (while in the case 5>1 the picture is 
qualitatively identical for any 8, just as does the number of 
w r )  and w r ) '  branches having normal dispersion over the 
entire range of wave vectors, i.e., approaching w=w, from 
below (there are four such branches in our figure). Even 

when 6 is infinitesimally small, their number is restricted, 

and an infinite number of the wi<) and w r ) '  approach w, 
from above. The number of or) and w r ) '  branches inter- 
secting other branches is also always restricted, and an infi- 
nite number of these branches lies above the value w 
= \Iwo(wo+ wM) when 6 is infinitesimally small. 

So far, we have been interested only in the dispersion 
relation (the dependence of the frequency of the branches on 
the wave vector). The structure of the electromagnetic field 
depends on the signs of q: and q!. (see above). It can be 
shown that when w, k+O the fields of the waves with both 
polarizations result from the superposition of trigonometric 
functions, since q:>0. In fact, according to (5), when w+O 
and k+O, we have 

As k+O, the fields of all the waves result from the superpo- 
sition of trigonometric and hyperbolic functions (this state- 
ment is true when o+w, and when w-+m). A similar state- 

ment can be made for the frequencies mi') and w r ) '  lying 
on the straight line w=ck. With respect to the lower group of 
waves (wo < w < Jwo(wo+ wM)), the fields at the points of 

intersection of the curves w=wr)(k)  and w = wr) ' (k )  
with the straight line w=ck result from the superposition of 
trigonometric functions. The wave fields of the upper group 
apparently result from the superposition of trigonometric and 
hyperbolic functions at all values of the wave vector k; the 
remaining waves must have finite values k = k;,, at which 

2 2 2   conversion^' occurs, i.e., q , q +  , or q-  changes sign. Un- 
fortunately, it seems impossible to us to calculate k:, with- 
out using numerical methods. 

It is, of course, impossible to obtain expressions for 
w=wi5)(k) and o = wi5)'(k) by analytic methods. How- 
ever, the values of the frequencies and group velocities at a 
series of characteristic points can be calc~lated.~) 

We begin with the initial frequencies of the lower group 
of branches. The values of the frequencies wi') on the 
straight line w=ck are given by 

For w:)', n - 112 must be replaced by n in the expression 
for A, . At large n (i.e., when An+ wo+ wM) 

in accordance with the assertion that dwo(wo+ wM) is the 
convergence point. At small values of n, the group velocities 
of the waves of the lower branches are of the order of the 
speed of light when k= wi<)/c and k = w!<)'/c, but they 
decrease with increasing n : 
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The limiting curves (n+w) begin with a quadratic depen- 
dence 

wk<)(k)- Jwo(wo+ wy){l -~ , (k -k , )~ ) ,  

The dependence for wk<)'(k) is similar. It is difficult to de- 
termine p,. Its dimensions are cm2, and most probably 
pm-d2. 

As we have already noted, oi<)(k) and wr) ' (k)  tend to 
w, as k+w (for all n). The asymptotic values of wi<)(k) for 
5>1 are 

Upon the transition to wr) ' (k) ,  n must be replaced by 
n +1/2 in the expression for lldi. The group velocities of 
these waves naturally tend to zero as w+w,: 

Equations (10) and (lo'), like Eqs. (9) and (97, were calcu- 
lated for the case &=I. In addition, it is assumed that 5>1 
[see (S)]. When ,$<I, the analysis becomes very complicated 
due to the fact that the plots of w=wr)(k) and w 

= wr) ' (k)  behave differently for different n. However, at 
any value of 6, there are values of n for which Eqs. (10) and 
(10') hold. Values of the minimal frequencies w$>) of the 
upper group of branches can also be presented. For this pur- 
pose the sign in front of the radical in Eq. (9) must be re- 
versed. The group velocities for k= wi>)lc as n+w are 
d w ~ ) / d k = C / [ 1 + 3 / 4 ( d ~ ~ / ~ ) ~ ] .  

The problem allows transition to the quasistatic limit 
(c+w). Here the branches of the lower group of both equa- 
tions "survive." We introduce the notation 
wn(k)l,,,= wr(k).  According to the results in Ref. 4 we 
have 

(11) 
where x,  is the nth root of one of two transcendental equa- 
tions: x ctg x = - kd or x tan x = kd. The former equation re- 
fers to the "solid" branches, and the latter equation refers to 
the "dashed" branches. A comparison of Fig. 3 with Fig. 4, 
which shows the spectrum in the quasiclassical limit, reveals 
the role of electrodynamic processes (the finite nature of the 
speed of light). 

3. CONCLUDING REMARKS 

In our opinion, we have thorDughly characterized the 
spectrum of surface magnons propagating parallel to the 

FIG. 4. Spectrum of magnetostatic oscillations in a plate. The solid and 
dashed lines are branches to which the branches oi<) (k)  and w;<)'(k), 
respectively, tend in the limit c--im; these alternate. The lower branch near 
k=O, o = Jw has a linear dependence on w=w(k), and the 
remaining branches have a quadratic branch. 

magnetization M. A comparison with the spectrum of mag- 
nons propagating perpendicular to M reveals that the spectra 
observed in these two limiting cases differ significantly (this 
is especially true of the lower and special branches). This 
raises the problem of the transition from one type of spec- 
trum to the other as the wave propagation direction varies. In 
Ref. 4 we showed that the frequency w,, of a Damon- 
Eshbach wave (an analog of the special wave in Fig. 1) de- 
pends on the propagation direction 

wo+(wo+ wM)sin2 0 kM 
ODE= , cos $=-, 2 sin 8 kM (12) 

and exists only at values of 0 greater than the critical value 
(@ $,,), where 

$,= arcsin - 

It would be interesting to ascertain the critical angle for the 
special wave in Fig. 1. This problem can probably only be 
solved numerically. It seems obvious that the critical angle 
for the existence of a special wave $,, must depend not only 
on the parameters of the problem (w,, wM, E ) ,  but also on 
the wavelength (the magnitude of the wave vector k). Of 
course, as k+w, the value of 8,,(k) should become identical 
to expression (12') for O,,. 

The existence of a group of waves with anomalous dis- 
persion over a broad range of wave vectors (wavelengths) 
should be regarded as a unique property of the spectrum 
considered here. It should also be noted that the frequency 
range for their existence [w,, Jwo(wo+ OM)] can easily be 
adjusted by varying the magnetic field and/or the tempera- 
ture (the magnetization, and therefore the frequency wM, de- 
pend on the temperature; see footnote 1). 

The waves investigated here have another property (it is 
characteristic of both kLM and WIM): the same wave has 
totally different values of the group velocity at different val- 
ues of the wave vector k. We present one example. A special 
wave plotted as a function of the wave vector o 
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= @'(k) emerges from the origin and asymptotically ap- 
proaches q,. At small values of k, it has v,,-c, and as 
w+q, (k+w), its group velocity tends to zero [see (771. 

The existence of limit points implies that the identifica- 
tion of each dispersion dependence near these points requires 
satisfaction of some very rigid requirements imposed on the 
relaxation time r. The relaxation time must satisfy the fol- 
lowing condition: Aw7.>1, where Aw is the difference be- 
tween the frequencies of neighboring branches. Since Aw-0 
as the limit points are approached, the latter inequality de- 
marcates (at a fixed temperature and quality of the relaxation 
time value) the boundaries for the validity of our treatment: 

In addition, the hypothetical nature of the limiting transition 
must be taken into account. 

If the frequencies of the branches wn tend to infinity as 
k - m ,  the entire treatment should be restricted so as to en- 
sure fulfillment of the condition formulated in the introduc- 
tion w9wOpt, where coopt denotes the characteristic atomic 
frequencies (they determine the frequency dispersion of the 
dielectric constant e). 

If the frequencies con tend to finite limiting values as 
k-a, the restriction on k is associated with the neglect (in 
our treatment) of the inhomogeneous exchange interaction. 
Both k and q must satisfy the conditions 

where wchar is the characteristic (magnetic) frequency 
(w,,,wM), I is the exchange integral (as a rule, I -  Tc , where 
Tc is the Curie temperature), and a is the crystal-lattice pa- 
rameter. Although usually hwch,,4Z, condition (13) does not 
impose excessively severe restrictions for macroscopic 
waves. 

In closing, we thank A. S. Semenov, who at our request 
computed the function o=con(k) for &=I over a range of 6 
with q,=wM/2 (n=1,2, ..., 6). The agreement between the nu- 
merical and analytic results has augmented our confidence in 
the validity of the present conclusions. 

')we use the notation adopted in Ref. 1: %=gHeE, HeB=H+PM, P i s  the 
anisotropy constant (P>O), g is the gyromagnetic ratio, and w,,,=4~gM. 

')performing even such an "abridged" program, we restrict ourselves to the 
case ~ = l ,  in which Eqs. (6) and (6') reduce to relations equating the 
>xpressions in square brackets to zero. The results obtained do not quali- 
tatively differ from the general case &>I. As can easily be shown, the 
multiplier in front of the expression in square brackets does not vanish. 
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