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The distribution of the electrostatic potential in a three-dimensional cubic lattice whose sites are 
occupied by randomly oriented dipoles of an arbitrary number of kinds has been calculated. 
It has been shown that the far tail of the distribution is highly sensitive to impurities of dipoles with 
large dipole moments. 

1. INTRODUCTION 

In recent years considerable efforts have been aimed at 
developing a theory for the transport of charge carriers in 
disordered organic hosts, in which the influence of disorder 
is systematically taken into account from the onset and 
largely determines the transport characteristics of the host 
polymer. To prevent any possible misunderstandings we note 
at once that we shall not consider any of the various poly- 
conjugated systems such as doped polyacetylene. Here we 
have in mind host polymers which by themselves have insu- 
lator properties and acquire short-lived conductivity when 
charge carriers are injected into them, usually under the ac- 
tion of a laser pulse or an electric discharge. A typical ex- 
ample of such hosts is provided by molecularly doped poly- 
mers, i.e., polystyrene or polycarbonate, where the role of 
the dopant (transport centers) is usually played by various 
nitrogen-bearing compounds. A detailed review of the theo- 
retical results for the Gaussian model of a disordered me- 
dium, which has been developed most thoroughly, and a de- 
tailed comparison with experiment can be found in Refs. 1 
and 2. 

According to the main postulate of the model, transport 
occurs as a result of the hopping of carriers between local- 
ized states of transport centers with an assumed Gaussian 
density of states: 

The results, which were obtained mainly with the aid of 
computer simulations, show that in such a model the depen- 
dence of the nondispersive carrier mobility p on the electric 
field F and the temperature T has the form 

where r is the mean distance between transport centers, Z is 
a parameter which characterizes the positional disorder, and 
C-1 is an empirical constant.' Practically all the qualitative 
characteristics in expression (2), especially the non- 
Arrhenius temperature dependence, are direct consequences 
of the Gaussian form of the density of states. The problem of 
determining the real form of the density of states in disor- 
dered organic hosts is clearly of paramount importance for 

substantiating the permissibility of applying the Gaussian 
model to the description of the transport of charge carriers in 
real systems. 

The most important carriers for nondispersive (equilib- 
rium) transport have energies near the equilibrium value'.3 

J + ~ ~ E E ~ ( E ) ~ X ~ ( - E / T )  
E,,= lim (E(t))  = = - u 2 / ~ .  (3) 

T + m  $ ~ z d ~ ~ ( ~ ) e x ~ ( - E / T )  

A comparison of (2) with the experimental data revealed 
that, as a rule, u/T-4-6 (Refs. 4-7). Therefore, in a typical 
case the far tail of distribution (1) determines the character- 
istics of nondispersive transport, i.e., the Gaussian form of 
the density of states in the vicinity of its maximum is totally 
inadequate for a self-consistent description of nondispersive 
transport in the framework of the Gaussian model. A stronger 
condition, viz., maintenance of the Gaussian form of the den- 
sity of states far from the maximum, must be satisfied. An 
approximately Gaussian form of the density of states can be 
more or less guaranteed by the central limit theorem in the 
vicinity of the maximum, but the far tail of the distribution is 
usually formed by rare fluctuations of the environment. Then 
the central limit theorem is not applicable, and we must di- 
rectly calculate the density of states for a sufficiently realistic 
model of an organic host. 

The most important causes of fluctuations of the carrier 
energy at different transport centers include fluctuations of 
the electrostatic potential cp  caused by the random distribu- 
tion of the surrounding dipoles. Another cause is van der 
Waals interactions; however, in organic hosts it is practically 
impossible to intentionally alter their contribution to the den- 
sity of states over any broad range, while this is easily ac- 
complished for the dipole component by introducing inert 
polar dopants (or polar transport components) into the host 
polymer. It is perfectly possible that a significant portion of 
the dependence of p on the transport center concentration is 
due specifically to the variation of the electrostatic energy of 
the carriers ecp. 

In a recent study, Dieckmann et ales used the Monte 
Carlo method to investigate the distribution of the potential 
in a cubic lattice whose sites are occupied by randomly ori- 
ented dipoles. It was concluded on the basis of the results 
obtained that the distribution of the potential has a Gaussian 
form at large dipole concentrations and that its form approxi- 
mates a Lorentzian distribution at small concentrations 
cS0.1. It is generally known that the determination of the 
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asymptotic behavior of any physical quantity in a computer 
experiment is a complex problem owing to the influence of 
large fluctuations on the parameter being determined. Never- 
theless, the distribution of cp in a lattice filled by independent 
dipoles can be calculated analytically. 

2. PRINCIPAL EQUATIONS 

Let P(Q) be the density distribution of cp at the initial 
lattice site. Then 

Here the angle brackets denote statistical averaging; the in- 
dex n runs through all the lattice sites except the initial site; 
cp, is the contribution of a point dipole at site n to the total 
potential cp at the initial site 

where E is the dielectric constant of the medium, r, is the 
radius vector of the nth site, N(6) is the probability density 
for the polar angle 6 ,  and W(p) is the probability density of 
the dipole moment p. For dipoles with completely random 
orientations we write 

and for a lattice with m kinds of dipoles and a concentration 
of the Ith kind equal to cl the function W(p) has the form 

m m 

w ( p ) = C  clS(p-pr), C cr= l .  (7) 
1=1 1=1 

The choice of (7) implies that each lattice site is occupied by 
one (and only one) dipole of any kind. Only the very special 
case of m =2 and p2=0 was considered in Ref. 8. Another 
difference from Ref. 8 is that dipoles of finite size were 
considered there, but this difference is not significant for the 
most interesting case of small concentrations. 

Integrating with respect top,  and an in (4), we obtain 

This expression is the main result of the present work. We 
shall henceforth restrict ourselves to the case of greatest 
practical importance, m =2 and p2>0, in which c1 = c and 
c2= 1 -c, and we shall measure the potential in units of 

cpo=epl/ea2 (a is the lattice constant) and the dipole mo- 
ment in units of pl (to be specific, let p2<pl) .  In this case, 
for a three-dimensional cubic lattice 

where p =p2/p1 is the dimensionless dipole moment of the 
second component and p i=  i2+ j2+ k2. The indices i, j ,  and 
k are arbitrary integers with the exception of i = j = k = 0.  

3. CALCULATION OF THE DISTRIBUTION OF THE 
POTENTIAL 

To compare our results with the results in Ref. 8, we first 
calculate the function P(cp) for m = 2  and p = O  when 

If c=1, the main contribution to integral (8) is made by the 
range of small values of y,  where 

S(y)= - A ~ ~ - A ~ ~ ~ + O ( ~ ~ ) ,  (10) 

B4=16,46 ..., B8=6,95 ... . 
Therefore, 

and the second term in expansion (10) makes only a small 
correction. At the opposite limit c*l the expression whose 
logarithm is taken is a smooth function of n; therefore, the 
summation can be replaced by integration with respect to p 
after preliminary expansion of the logarithm in a series with 
respect to c. This gives 

Q =  I," dpp2(1-p2 sin(llp2))=0.334 ..., 

and 

x exp( - 312), (13) 

cpc= ( 4 7 r ~ c ) ~ I ~ .  

It can be shown by the saddle-point method that at x S l  

F(x) = ( 9 ~ / 3 2 ) ' ~ ~ ~ - ~ ~ ~ ,  (14) 

and the general form of F(x) is shown in Fig. 1. Thus, at 
small values of c the distribution P(q) does not tend to a 
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FIG. 1. F ( x )  from Eq. (13). 

Lorentzian distribution, although the difference is not exces- 
sively great. Using numerical integration, we obtain 

where r is the half-width of P(q)  at half-maximum. 
Let us now consider the case p>O. In both limiting cases 

c + l  and c+O, P(q) has a Gaussian form (with different 
values for A). When p e l ,  it is natural to expect the existence 
of a relatively broad concentration range in which the central 
portion of the distribution approximates (13). The fact that it 
actually exists can be seen in Fig. 2. It is the concentration 
range in which the half-width of P(q)  approximates (15). 
The position of the transition region from distribution (13) to 
a narrow Gaussian distribution with the parameter PA, which 

FIG. 2. Dependence of the half-width of the distribution P(9) on the con- 
centration c of the component with a larger dipole moment for various 
values of the dipole moment p of the second component (which are indi- 
cated on the respective curves). Broken line-results for Gaussian approxi- 
mation (16) when p=0.1. 

FIG. 3. Deviation of P(9) from the Gaussian form for small values of the 
concentration c of the component with the larger dipole moment [numerical 
calculation of integral (8) with S ( y )  from (9)]. The dipole moment of the 
second component p=0.1, and the concentration c equals loW5, 

lo-', lo-', and 0 for curves 1-8, respectively. 

describes the fluctuations of the potential in a host polymer 
consisting nearly entirely of the second component, can be 
evaluated from the relation pA-qc,  whence cmp3I2. Thus, 
if p 4 1 ,  distribution P(q) does, in fact, approximate asymp- 
tote (13) for p 3 I 2 4 c 4  1. If p30.1, P(q)  does not differ sig- 
nificantly from a Gaussian function at any value of c, and A 
is given by the expression 

(see also Fig. 2). 
A very important result was obtained in the limit pgl,  

c < l  for the far tail of distribution (8). Expanding (9) in a 
series in c and p ,  we obtain 

for significant values of y,  i.e., P(q) has the form 

with the Gaussian function P,(q) [expression (ll)] and 
P2(q), which is given by expression (13). Convolution inte- 
gral (18) describes a Gaussian distribution in the vicinity of 
the maximum, and a power-law asymptote (14) along the tail 
(see Fig. 3). The position of the transition region qt can be 
evaluated from the relation 
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FIG. 4. Position of the transition region cp, determined from Fig. 3 (points) 
and calculated from Eq. (19) (solid line). 

Asymptotic solution (19) has the form 

As can be seen in Fig. 4, solution (20) is fairly accurate for 
modest values of u [the main sources of disparity between 
the values of cp, calculated from (20) and the values obtained 
from Fig. 3 are the approximate character of Eq. (19) itself 
and the indefiniteness of the determination of the transition 
region from Fig. 31. We note that for the data in Fig. 4 ecp, 
varies from 3 . 5 ~  to 6 . 5 ~  as c varies from to lop9. 
Thus, the far tail of distribution (8) is extremely sensitive to 
very small concentrations of impurities with large dipole 
moments.') Equilibrium energy (3) for distribution (18) does 
not exist at all due to the divergence of the integral at the 
lower limit. This result, however, is not of great significance, 
since power function (14) does not extend fairly far for real 
values of p [see footnote I)], and P(cp) decreases consider- 
ably more rapidly at large values of cp (see also Fig. 3). 

Finally, we note that our main results remain unchanged 
after the spatial disorder of real organic hosts is taken into 
account. In fact, the most important results are associated 
with the region of small concentrations, in which the specific 
configuration of the lattice sites is unimportant. This situa- 
tion is also illustrated by the exact solution for a model with 
a completely random distribution of dipoles when only their 
mean density is fixed. This solution, which is closely related 
to Holtsmark's result for a completely disordered electro- 
static system: coincides exactly with expression (13). It is 
not surprising that in this case we are always working at 
small concentrations, since there is no length scale differing 
from c-'l3 in the problem. 

The main restriction on our treatment, as in Ref. 8, is the 
complete neglect of the relative orientation of neighboring 

dipoles caused by their interaction (the high-temperature 
limit). Systematic consideration of this interaction is a com- 
plicated problem warranting a separate treatment. 

4. CONCLUSION 

We showed that the model of an organic host consisting 
of randomly oriented dipoles that was proposed in Ref. 8 
demonstrates the high sensitivity of the far tail of the density 
of states to small concentrations of impurities with large di- 
pole moments. No other independent contributions to the 
form of the density of states (e.g., the van der Waals contri- 
bution) alter this assertion provided they do not decay more 
slowly than E - ~ ' ~ .  Thus, the universal applicability of the 
Gaussian model' to the description of the nondispersive 
transport of charge carriers in disordered organic hosts is 
open to some serious objections. For example, this model is 
hardly applicable to the description of transport in a nonpolar 
host polymer such as polystyrene [the dipole moment of a 
polymer chain subunit is 0.36 D (Ref. lo)] when there is a 
small concentration of transport components with larger di- 
pole moments [3.16 D (Ref. l l )  or 4.34 D (Ref. 12)]. 
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"1n a strict sense, when p=0.1, the difference between the dipole moments 
of the components is still not large enough for power distribution (14) to 
actually appear in a region of any significant width, as is clear from Fig. 3 
(when p=0.01, this region can already be reliably demarcated). Neverthe- 
less, even when p=0.1, the position of the transition region for the distri- 
bution calculated from Eq. (17) coincides almost exactly with the data in 
Fig. 3, and Eq. (19) is, therefore, approximately applicable. 
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