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We investigate various mean-square characteristics of the electric fields that enter into the 
problem of conductivity in a two-component disordered square lattice. In particular, we compute 
the mean squared intensity of each electric field component; this allows us to find not only 
the effective conductivity but also its derivative with respect to one of the arguments. We also 
investigate more general bilinear combinations of electric fields, which can be used to 
tabulate two functions that enter into the expressions for the Hall coefficient and the 
magnetoresistance. We show that by studying these mean-square characteristics in the critical 
region, we can obtain detailed information about the consequences of the similarity 
hypotheses, information that allows us to verify its implications more completely than is 
normally possible. 

1. INTRODUCTION 

It is well known that the theoretical study of the various 
properties of randomly disordered media is fraught with dif- 
ficulty. For this reason, numerical modeling of disordered 
lattices is a fundamental source of information about, e.g., 
the conductivity of such media. In these experiments, nu- 
merical simulation has been used to find the effective elec- 
trical conductivity u, = u1 f (p, h) of two-component lattices 
(of various symmetries) as a function of the concentration p 
for various values of the parameter h (where h =u21ul is the 
ratio of conductivities of the components); see, among oth- 
ers, the review Ref. 1. By studying the function f(p,h) in the 
neighborhood of the percolation threshold: we can deter- 
mine the critical indices of the c o n d u ~ t i v i t ~ ~ - ~  and check the 
relations between them that follow from the hypothesis of 

To a certain extent, we may regard the numeri- 
cal study of the electrical conductivity of disordered lattices 
as a solved problem, although quantitative refinement of the 
corresponding results is desirable (this is especially true with 
regard to the values of the critical indices). Therefore, if we 
remain within the framework of the standard formulation of 
this problem, it is reasonable to expect qualitatively new re- 
sults only if we opt to broaden the range of characteristics of 
disordered systems that can be studied. For example, mean- 
square values of the electric field intensities in the medium 
belong to this class of characteristics. 

As discussed in the paper by ~ ~ k h n e :  in a two- 
dimensional two-component randomly disordered system 
with critical composition (p = 1/2) the mean-square electric 
field intensity grows without bound as h+O. This result of 
Ref. 5 implies critical behavior of this characteristic in the 
vicinity of the metal-insulator phase transition; however, the 
author did not associate it with the corresponding critical 
behavior of the electrical conductivity. Subsequently, general 
exact relations (valid for both two-dimensional and three- 
dimensional systems) were found in Ref. 6 between the 
mean-square values of the different field components and the 
functions f and f ', i.e., the derivative off with respect to the 

argument h. The existence of such relations makes it possible 
to obtain detailed information about the quantities f and f '  
(without difficult numerical differentiation) by computing the 
mean square of each field component. In particular, all of the 
critical indices can be found in the neighborhood of the 
metal-insulator phase transition and the validity of the simi- 
larity hypothesis can be verified in detail. 

We note that there are reasons to address these questions 
that transcend the problem of electrical conductivity per se. 
A number of other problems involving the theory of transport 
phenomena in two-component media call for knowledge of 
the function f ,  its derivative f ', and the mean squares of the 
fields, e.g., the low-frequency dispersion of the 
condu~ t iv i t~ ,~  the thermoelectric power,8 and galvanomag- 
netic properties in a weak magnetic field H . ~  The effective 
Hall coefficient is completely specified once we have calcu- 
lated a somewhat more general bilinear combination of the 
electric fields (see Refs. 6, 9). We also note that in the two- 
dimensional case the problem of galvanomagnetic properties 
of a two-component system has an exact solution,10311 in 
which the components of the effective conductivity tensor 
can be expressed in terms of the galvanomagnetic character- 
istics of the components and the function f .  On the one hand, 
once we have determined the Hall coefficients by numerical 
methods, this makes it possible to check the correctness of 
the computational methods that were used. On the other 
hand, once we have tabulated the functions f and f ', we can 
completely describe the galvanomagnetic properties of the 
corresponding two-dimensional two-component isotropic 
system (to second order in H) over the entire range of the 
parameters entering into the problem. 

In this paper, we investigate various mean-square char- 
acteristics of the electric fields in a two-component two- 
dimensional system within the framework of the problem of 
conductivity, for the example of a disordered square lattice 
(the bond problem). For a prespecified distribution ("realiza- 
tion") of bonds with conductivities ul and u2, we find the 
potentials at all nodes of the lattice by numerical solution of 
the Kirchhoff equations. Using these potentials, we calculate 
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the mean-square intensity for each electric field component, 
thereby determining both the function f and its derivative f '. 
We then investigate the critical behavior of each of these 
quantities in the vicinity of the metal-insulator phase transi- 
tion and find the corresponding critical indices. In parallel 
with the basic problem, we solve an analogous problem for 
the conductivity of the dual lattice (see, e.g., Ref. 12), which 
allows us to determine a function cp that enters into the ex- 
pression for the effective Hall coef f i~ ien t .~~~ In addition, we 
use the expressions obtained in Ref. 6 to tabulate one more 
function (x) that enters into the expression for the magne- 
toresistance. 

We note that there exist a number of exact relations and 
results for these characteristics (see, e.g., Refs. 5, 6, and 13), 
which we will use in this paper to monitor the accuracy of 
our calculations. As a rule, we calculated all quantities for 
ten realizations in order to improve the accuracy of our re- 
sults. In the critical region, where calculations are most com- 
plex and where the results fluctuate appreciably as we pass 
from one realization to another, we increased the number of 
realizations to fourteen and doubled the linear dimensions of 
the lattice. 

2. NUMERICAL MODELING 

We set up the discrete (lattice) problem of conductivity 
in a nonuniform medium in the standard way, following the 
work of Kirkpatrick.' His numerical calculations were car- 
ried out on a square lattice with size N X N = 101 X 101 nodes, 
to each node r=(k,j) of which he attached a potential 
Vr=Vk,, , where k identifies the row and j the column (k 
= 1 ,..., N and j= 1 ,..., N). For all except the boundary 
nodes, these potentials satisfy the Kirchhoff equations 

where the summation runs over the four vectors 
A= +Ax= +(1,0) and A= +Ay = +(0,1). In this "bond prob- 
lem," as Kirkpatrick calls it, ar,,,~ in Eq. (1) is the conduc- 
tivity of the bond between nodes r and r+A; it takes on the 
value al=l with probability p ("pure" bonds) and a value 
a2=h with probability 1 -p ("defective" bonds). On the two 
opposing sides of the lattice (sample) that are perpendicular 
to the x axis, boundary values of the potential are specified at 
the nodes (0 and 1 respectively). In the direction of they axis 
periodic boundary conditions are given, i.e., nodes k = l  and 
k=N are treated as if they were the same node. 

Numerical modeling was carried out as follows. For a 
certain fixed bond concentration p a "realization" is gener- 
ated in which the remaining 1-p bonds per unit volume in 
the originally "pure" lattice are randomly replaced by "de- 
fective" bonds. Then the system of Eqs. (1) is solved for the 
resulting values of a , , , ~  and the boundary conditions for- 
mulated above. In parallel with this problem, we solve the 
analogous problem of finding the potentials Vr at the nodes 
of the so-called dual lattice (see, e.g., Ref. 12). In this case, 
boundary values of the potentials 0 and 1 are assigned to the 
nodes at the top and bottom edges of the dual lattice, respec- 
tively (Fig. I), and periodic boundary conditions are imposed 

along the edges parallel to the x axis. As usual, we assume 
that for a bond problem with randomly distributed "defects," 
the macroscopic properties, i.e., the conductivity and other 
characteristics, coincide for the original (square) and dual 
lattices (see, e.g., Ref. 5). The calculations carried out in this 
work confirm this assertion within computational error. 
However, the real reason why we discuss the problem of 
conductivity of the dual lattice is that we can use the poten- 
tials Pr (along with Vr) to compute the function q, which 
enters into the expression for the effective Hall coefficient. 

The specifics of the calculations make it convenient to 
rewrite the system of Eqs. (1) in the following matrix (quasi- 
one-dimensional) form: 

Here A is an M X M matrix, where M = (N- l)(N- 2), hav- 
ing the so-called banded form. The vector b in (2) is a col- 
umn vector consisting of M elements, of which only N-1 
are nonzero (note that the right side of Eq. (2) is nonzero 
because the system (1) does not apply to the nodes located at 
the left and right edges of the lattice). Finally, U is a column 
vector of M elements consisting of the unknown (required) 
potentials Vk,,, The quantities Vk,, are sorted in the the col- 
umn vector U in the following way. The enumeration begins 
with j = 2  fixed, letting k run from 1 to N- 1. Then the po- 
tentials with j = 3  fixed are listed, once more with k running 
from 1 to N- 1, etc. The enumeration ends with j =N- 1,  
again with k from 1 to N-1. As a result we obtain 

where, for convenience, U is written here as a row-vector. 
For the dual lattice, the numeration in the column U starts 
with fixed k =2 and runs from j = 1 to j = N- 1 ,  etc. In this 

case the matrix Â  and the vector 6 differ from A and b; 
however, the equation for the dual lattice has the same form 
as (2). 

System (2) is solved directly using the Chebyshev 
method of polynomial acceleration:14 

Here 

where [ is the unit matrix, D is the diagonal part of the 
matrix A,  u(") is the value of the vector U at the nth itera- 
tion, and p and y are the Chebyshev parameters.14 An analo- 
gous method of calculation is used for the dual lattice as 
well. 

In order to monitor the calculations for correctness and 
assess their accuracy at every stage, the total current is cal- 
culated through each cross section of the sample (i.e., the 
total current flowing through those bonds located between 
columns j and j + l ,  where j is any of the intervals from 1 to 
N- 1). The iteration process stops when the magnitude of the 
average scatter in the values of these currents does not ex- 
ceed 0.1%. The values of the potentials Vr found as a result 
of this procedure (and also V,) are used to compute the con- 
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FIG. 1. Original lattice and its dual (dashed lines). 

ductivity and other characteristics of the sample. In order to 
reduce the influence of the finite lattice sizes, all the calcu- 
lations are repeated for several realizations, and the effective 
characteristics of the medium are determined by averaging 
over these realizations. The error in calculating the effective 
values is estimated by the mean-square deviation from this 
average. 

Figures 2-10 show results for the effective values aver- 
aged over ten realizations (for h=10-', h and 
h=10-~); the errors do not exceed 1%. Investigation of the 
critical behavior of the effective characteristics requires that 
we investigate samples with h and h =lo-'; for these 
values of h, the results begin to fluctuate strongly from one 

FIG. 2. Dimensionless effective conductivity f = f@,h) as a function of the 
concentration p for three values of the parameter h: 1 4 = 1 0 - ' ;  
2 4  = 3 4  = 

realization to the next. Therefore, we investigated the critical 
region on a lattice with dimensions 201x201, using 14 real- 
izations. However, even under these conditions the error in 
the effective values can be as high as 25%. 

3. CONDUCTIVITY AND MEAN SQUARES OF THE FIELDS 

Let the average electric field be directed along the x axis. 
Then the effective electrical conductivity a, of an isotropic 
medium (satisfying Ohm's law j=u(r)E) is defined in the 
usual way: 

a,= (jx)l(Ex). (3) 

Here j is the current density, E is the electric field strength, 
and (...) denotes an average over the volume V (area in the 
two-dimensional case) of the sample: 

where V-w. The quantities (j,) and (Ex) can be expressed 
in terms of the total current I and potential difference 2%. In 
the two-dimensional case, it follows from (3) that for a 
sample in the shape of a square sheet 

For a two-component medium, the conductivity u(r) 
has constant values a, and u2 for the first and second 
components, respectively. The effective conductivity 
a ,=u,@;al  , a2)  of such a system can be written in the 
form 

ue=c+lf(p,h); ~ = U Z / U I ,  (6) 

where p is the concentration (fraction of occupied volume) 
of the first component. The function f ,  i.e., the dimensionless 
effective conductivity, plays a fundamental role in all of the 
theory of transport phenomena in two-component media 
(see, e.g., Refs. 6-8, 10, 11) and is the fundamental object of 
study in standard numerical modeling.' 

Let us introduce the dimensionless electric field strength 
in the medium 

e(r) =E(r)/l(E)l (7) 

and the mean-square quantities 

+i=(e2)(i), ( i= l , 2 ) ,  

where (...)(') is an average over the volume of the ith com- 
ponent of V' : 

in our case, (...)(')+(...)(')=(...), with (...) defined in (4). Ac- 
cording to Ref. 6, the quantities f,hi defined in (8) can be 
expressed in terms of the function f: 

From (10) and (11) we can find an expression for the func- 
tion f in terms of the quantities +i : 
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Expression (12) can also be obtained as a consequence of the 
well-known identity (jE)=(j)(E) (see, e.g., Ref. 5). 

Let us introduce a few more useful analytic results. For 
the linear field characteristics, according to Ref. 6 we have 

f - h  1-f 
( E ) = -  (E), (E)(~)=- (E). 

1-h 1-h 

For a two-component randomly nonuniform system, the si- 
multaneous replacement a12a2 and p-+ 1 -p does not 
change the macroscopic properties of the medium (see, e.g. 
Ref. 5), so that a,@; al ,a2)  = a,( l  -p; a, ,a1). This im- 
plies that the function f defined as in (6) satisfies the relation 

Note that results (13) and (14) (and also (19), (35), see be- 
low) are valid both for two-dimensional and three- 
dimensional systems. 

In the two-dimensional case, the function f is found to 
satisfy the reciprocity relation5 (see also Refs. 7, 13): 

For a randomly nonuniform system, relation (14) can be used 
to cast (15) in the forms,7313 

At the critical concentration p=p,= 112, the well-known re- 
sult of ~ ~ k h n e ~  follows from (16): 

Furthermore, it is not difficult to use the methods of Refs. 5 
and 13 to obtain a reciprocity relation for the function as 
well: 

For a randomly nonuniform medium, we have by analogy 
with (14) 

Taking into account the first Eq. (19), relation (18) takes the 
form 

By making the replacement p-+ 1 -p, we obtain from (20) 
and (16) 

Expression (18) can be verified directly by substituting 
Eqs. (10) and (11) into (18); taking into account relation 
(15), this converts (18) into an identity. Analogously, by us- 
ing Eq. (16) we can verify Eqs. (19)-(21). We emphasize 
that Eqs. (15)-(18) and (20), (21) hold only for two- 
dimensional systems, and have no analog in the three- 
dimensional case. 

In the lattice problem, we must define the quantity 
E,(r)=E,(k,j) to be the potential difference between neigh- 
boring nodes (along the x axis): 

FIG. 3. The quantity $l=(e2)(')= f - hf' as a function of p for the same 
values of h. 

E,(k,j)= VkJ- Vk,,+i. (22) 

Accordingly, we have for the total current 
N- 1 

I= C a(k, j ;k , j+ l)(Vk,j-Vk,j+l), (23) 
k= 1 

where j has any value on the interval from 1 to N-1. In the 
formulation of the problem given in the previous section 
(al = 1, U = 1), the function f coincides with the total current: 
f = I ,  with I defined in (23). For the quantities &:., in the 
discrete case we likewise find that 

where the summation runs over all the bonds with conduc- 
tivity a;. 

In this paper the function f@,h) is determined by nu- 
merical methods, using both Eq. (5) and Eq. (12). Both 
methods give the same result within the limits of computa- 
tional error. In Fig. 2 we plot the quantity f as a function of 
the concentration p for three values of the second argument: 
h =lo-', h =lop2, and h In Figs. 3 and 4 we also 
show the quantities t,bl and A, plotted as functions of p for 
the same values of h . Although the functions f and A,  & are 
defined only for h C l ,  their values for h >l can be found by 
using Eqs. (14) and (19). We note that Eqs. (13), (16), (20), 
and (21) were checked at every stage of the computations; 
their validity provided an additional way to monitor the cor- 
rectness of the calculations. In addition, the values of the 
functions f and were checked at the reference point 
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FIG. 4. The quantity &=(e2)(')=f' as a function of p for the same values of 
h .  

p = 112 using Eq. (17) (which is also valid in the discrete case 
for the problem under discussion here, i.e., bonds on a square 
lattice-see Ref. 5) and the expressions that follow from (10) 
and (11) after making the substitution (17). 

4. THE FUNCTIONS f AND I,+ IN THE CRITICAL REGION 

For a system with a metal-insulator phase transition, the 
similarity hypothesis implies that in the critical region (i.e., 
h91 ,  1491, where r=@-p,)lp, andp, is the critical con- 
centration) the function f has the expansion3 (see also, e.g., 
Refs. 6, 7) 

r>0 ,  A 0 4 r 4 1 :  f=d[Ao+Al(hldls) 

Here ~ ~ = h " '  is the size of the smeared-out region;3 the criti- 
cal indices t, s ,  and q are interrelated by equation (26). The 
numerical coefficients A k ,  a k  , and Bk are of order unity; Ao, 
a,, and B1 are obviously positive. As noted in Ref. 7, A ,>O 
and B2<0. It is also not difficult to show that al>O. 

For the problem of bonds on a square lattice, according 
to Ref. 5 we have p, = 112 and f(1/2,h) = &; see also Eq. 
(17). Therefore, in this case we have 

where the second equation follows from (26) with s=1/2. 
Note also that substituting (25) into Eq. (16) leads to a num- 
ber of relations for the coefficients Ak , a k  , and Bk : 

from which it follows, in particular, that a2>0. 
For the function taking into account relation (26), we 

obtain from (10) and (25) 

Note that the correction in (29a) is quadratic in the small 
parameter h/4It,  in contrast to (25a). For K O  outside the 
smeared-out region, Eq. (29c) implies that the quantity is 
proportional to h2. The reason is the same as for the function 
cp, which enters into the expression for the effective Hall 
coefficient6 (see Eq. (48) from Sec. 6). The point is that when 
p<p, and h+O, the electric field is expelled from the high- 
conductivity (first) component, while the field E(r) goes to 
zero linearly with respect to the parameter h. 

For the function &, taking (26) into account, we have 
from (11) and (25) that 

According to (30), the quantity & is a sharply peaked func- 
tion of the concentration near p=p, (see Fig. 4). As we 
mentioned above, the coefficient a ,  is positive, so that the 
dependence of & on p exhibits a maximum for p>p, (see 
Fig. 4) that is shifted from the critical point p, by a quantity 
of order -hS1'. 

The functions and & are by definition positive, so 
that it follows from (lo), (11) that 

f>h f l ,  f l>O. (31) 

Substituting Eq. (25b) into the first inequality (31) shows 
that s<l. Furthermore, substituting (25a) and (2%) into (31) 
gives the inequalities stated above: A 1>0 and B2<0. These 
inequalities were obtained in Ref. 7 from physical consider- 
ations. 
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As noted in Sec. 2, in the critical region we carried out 
our numerical modeling on a lattice with dimensions 201 
X201 for h and h = using 14 realizations. In this 
case we began to observe critical behavior corresponding, 
e.g., to Eq. (25a), only when h had dropped to so that 
the accuracy to which the critical indices and the numerical 
coefficients were determined was rather small. To broaden 
the parameter range over which the system was critical, we 
needed to use still smaller values of h (h etc.). How- 
ever, for h = low5 the finiteness of the lattice began to affect 
the results, a symptom of which was strong fluctuations (as 
p+pc=1/2) in the system conductivity from one realization 
to another. These difficulties can be overcome only by work- 
ing with a larger lattice. 

In processing the data from the numerical model with 
p>pc (i.e., outside the smeared-out region) it is convenient 
to define the index t not in terms of the function f itself but 
rather in terms of the quantity This is because the cor- 
rection to (due to finiteness of h) is smaller than the 
corresponding correction to f (see (25a) and (29a)). At the 
same time, along with the index t, we also determine the 
coefficient Ao. Furthermore, by processing the data for 
using Eqs. (30a) and (30c), we can find both the index q and 
the coefficients A and Bl . As a result we obtain 

In (32) we also give the value of the coefficient B2 deter- 
mined from the second relation (28). The results (32) show 
that the critical indices q = t [see (27)] to within the limits of 
computational accuracy. 

Thus, our combined investigation of the functions f ,  
and allows us to check more completely (than usual) the 
implications of the similarity hypothesis, and to find not only 
the coefficients A. and B , ,  but also A, and B2 (which is quite 
difficult using the standard approaches1). To complete the 
picture we should find, in some independent way, the index s 
as well. Unfortunately, due to the strong fluctuations men- 
tioned above in the values of the functions f ,  and &, the 
quantity s cannot be reliably determined in the critical re- 
gime (i.e. in the present case when hs1oV5 and 
p =pc = 112). However, because the results of ~ ~ k h n e ' ~  hold 
for any h, even those portions of our data for f ,  and & 
outside the critical regime (from h =lo-' to h = and for 
p = 112) can be processed to give results that are close to the 
exact ones (i.e., s = 112, ao= 1): s =0.50+0.02, and 
a,= l .OOtO.O1.  

5. THE FUNCTIONS +II AND +It 

Along with the quantities &, there is considerable inter- 
est in studying the functions 

where ell and e, are the components of the vector e defined in 
(7) parallel and perpendicular to the mean field (E), respec- 

tively; (...)(') is the same as in (9). The quantities (33) are 
related to '/'i from (8) by the obvious expression: 

In the lattice problem (as formulated in Sec. 2), the func- 
tion '/'il is given by the first sum in Eq. (24), while +bit is 
given by the second. For the dual lattice (where the potential 
difference is applied along the y axis), r71ir is conversely 
given by the second sum in (24), while *it is given by the 
first; in this case Vk,j is replaced by Vk,, . 

For a randomly nonuniform medium, we have by anal- 
ogy with (19) 

and two more equations that follow from (35) by replace- 
ment of the indices 1 S 2 .  In the two-dimensional case, it is 
not difficult to obtain the following reciprocity relation from 
the methods of Refs. 5, 13, taking Eq. (35) into account: 

By making the replacement p+l  -p,  we can obtain from 
(36) and (16) two more relations analogous to (21). 

There are no known relations like (10) and (11) for the 
quantities and qit ; however, their fundamental properties 
can be established by starting from the definition (33) and 
Eqs. (34). The general form of (for h< l )  is clear from 
Fig. 5, where we plot it as a function of concentration p for 
three values of the argument h. (Note that the longitudinal 
function '/'11 essentially mimics the behavior of and is 
close to it quantitatively as well.) The transverse function 
is qualitatively reminiscent of $11 and for p50.6; how- 
ever, it differs from them markedly in the interval 0 . 6 5 ~ 6 1 ,  
and it vanishes at p = 1 (Fig. 6). The fact that $lt goes to zero 
as p+l is connected with the obvious fact that there are no 
transverse components to the electric field intensity in a uni- 
form medium. Finally, in Figs. 7 and 8 we show the genera1 
form of the functions $21 and $2t, which qualitatively mimics 
that of 4h2. 

For a system with a metal-insulator phase transition, the 
critical behavior of the function $11 can be described by the 
following expressions, which are similar to (29) (here we 
give only the leading terms of the expansions): 

where ~ ~ ~ = h ~ l l " l l  is the sue of the smeared-out region for 
the function yilr. According to the similarity all 
the critical phenomena (in the absence of a magnetic field) 
are characterized by the same scale, so that All should coin- 
cide in order of magnitude with A, from (25) (compare with 
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FIG. 5. The longitudinal function ICI,,=(~~)('). FIG. 7. The longitudinal function &*=(ef)('). 

the similar discussions in Ref. 6). From this we obtain a 
second relation between the critical indices we have intro- 
duced: 

s l l l t l l = s l t .  (39) 

Because and c jr , ,  are positive, it follows from (34) that 
cannot decrease more slowly or increase more rapidly 

than These conditions constrain the values of the corre- 
sponding indices: t l l > t ,  s l l > s ,  2 q l 1 + t l 1 ~ 2 q + t .  In the 
two-dimensional case, where s=1/2, we obtain t l l > t ,  
s11>1/2 and 2 q l l  + t 1 , s 3 t .  The critical behavior of the func- 
tion r j l l ,  is described in exactly the same way. For the 

same dependences and relations hold (with regard to form) 
as those for we obtain them by simply replacing the 
label I by t .  

The behavior of the function @21 in the critical region 
can be described in a way similar to (30) (here also we com- 
pute only the leading terms of the expansion): 

FIG. 6. The transverse function t+b1,=(ef)('). 
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Relation (41) follows from the condition that Az1-AO, where 
A21 = hX211~21 is the size of the smeared-out region for the 
function $21. Because h1 cannot be more singular than A ,  
we have q2[<q and A 2 [ S  1 - S, and in the two-dimensional 
case we find that q2[St  and A21S1/2. For the function ht in 
the critical region the same dependences and relations are 
valid as those for h l ,  which we find by replacing the label 1 
by t. 

Thus, the critical behavior of each of the functions i,bll, 
h l ,  and At is characterized by one new index; we 

choose these indices to be tll, tit, 921, and q2,, respectively. 
The remaining indices can be expressed in terms of them as 
follows: 

For a two-dimensional system, however, the quantities tll, 
t l t ,  q2!, and q2t are further interrelated. Substituting Eqs. 
(37), (40), and (25) into Eq. (36) gives two more relations 

Consequently, in the two-dimensional case the four functions 
t,bZ1, and $2t are characterized by only two indepen- 

dent critical indices, for example, t l l  and tit, where t l13 t  
and t t. For the remaining indices we have 

h21= 1/2(q21/t), h2t= 1/2(q2t/t) 

along with the two Eqs. (42). In addition to (42), we can also 
derive a number of relations between the expansion coeffi- 
cients from (36): 

A$)=(A~)~B(~: ) ,  01 a01 (2) , B ~ ) = ( B ~ ) ~ A ( , ? )  (43) 

and three more relations of the form (43) by replacing the 
label 1 by t. 

Processing of the numerical data for the functions 
$11, k t ,  and hl gives 

From (44) and (32) it follows within the limits of computa- 
tional error that we have equality of the indices: 

Study of the interval Id6Ao is difficult for the same reasons 
as in the previous section. The corresponding critical indices 
can be determined from the relations found above. Within the 
approximation (45) we obtain the following estimates: 
sll=slt=A21=A2t=~= 112. We also give here the values of 
several coefficients from the expansions (37) and (40): 

The other coefficients can be found from relations like (43). 
The main reason for the low accuracy of our results in 

the critical region is, as we have already noted, the finiteness 
of the sample. In order to bring to light the corresponding 
quantitative criterion, we will investigate the region r>0, 
A06&1. Note that as 740 ,  the correlation radius increases 
according to r,-7'  (see Ref. 2), reaching a maximum value 
of (I-,),,-(Ao)-' at the boundary of the region ?Ao. In 
order for the critical behavior of the conductivity to be un- 
affected by sample finiteness, the linear size L must be large 
compared to (r,),,, . Therefore, the criterion we want takes 
the form 

From this there follows a bound on the parameter h for fixed 
L (see Ref. 3): 

In the two-dimensional case ~t (see Ref. 2), so that this 
criterion takes the form h%LP2; for L =I00 we have 
h%loP4. Thus, in order to increase the accuracy of the re- 
sults in the critical region, it is necessary to use larger lattices 
(for example, L =500 or even L =1000). 

6. HALL COEFFICIENT AND MAGNETORESISTANCE 

A two-dimensional system in a transverse magnetic field 
H is characterized by the conductivity tensor 

where our notation is the same as in Ref. 6. In a weak mag- 
netic field (H-+O) the Hall component ua is linear in H. In 
the same approximation, the Hall component of the effective 
conductivity tensor has the form6 

~ a e = ( + a 2 + ( ( + a l - f f a 2 ) ( P ( ~ , h ) .  (47) 

In expression (47), the galvanomagnetic characteristics of the 
components are shown explicitly; and the function cp(p,h) is 
determined by the properties of the medium at H=O. Equa- 
tion (47) implies the following expression for the effective 
Hall coefficient Re = H-'a,,la;: 

where Ri is the Hall coefficient of the ith component and f is 
defined in (6). 

Let ~(")(r)  be the electric field intensity in the medium, 
defined for a given (E(")), where the index v shows that the 
average field is directed along the ~r-axis. According to Refs. 
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FIG. 10. The function x defined according to expression (53). 

FIG. 9. The function cp defined according to expressions (49) and (50). 

6, 9, the function &,h) from (47) can be expressed in 
terms of the electric fields defined within the framework of 
the conductivity problem (for H=O) as follows: 

In the two-dimensional case, the following analytic expres- 
sion for the function &,h) is valid? 

where f is the dimensionless effective conductivity defined 
by (6). 

In this paper we have used Eq. (49), choosing for E(") 
the field in the original lattice and for E ( ~ )  the field in the 
dual lattice. In this case the fields E ( ~ )  and E ( ~ )  can be ex- 
pressed in terms of the potentials V,  and ?, using equations 
like (22). The corresponding results of our numerical model- 
ing are shown in Fig. 9, where &,h) is displayed as a 
function of the concentration p for three values of the argu- 
ment h. Use of Eq. (50) gives the same values for the func- 
tion &,h) as does direct computation using Eq. (49). For 
h41 ,  we have from (50) that pf '. The data from numerical 
modeling in the critical region confirm this dependence (to 
within the computational accuracy). 

In a weak magnetic field (H+O), ax can be written in 
the form 

ax= a+ y, (51) 

where yac~', and a is the conductivity of the system for 
H=O. According to Ref. 6, in the two-dimensional case the 
corresponding correction to the effective conductivity 
ye= ax, - a, is found to be 

Here yi= axi- ai refers to the ith component, while the 
functions and $2 are defined in (lo), (11). The function x 
is given by a more complicated expression in terms of the 
electric field in the medium (see Ref. 6), so that it is impos- 
sible to define it directly within the framework of this par- 
ticular numerical model. However, in the two-dimensional 
case the problem of the galvanomagnetic properties has an 
exact solution for arbitrary H,'O," so that the function x can 
be explicitly written in terms of f  (see Ref. 6): 

x=( f -h f l -  f q ) l ( l -h2 )  (53) 

with q from (50). By using Eq. (53) and our numerical re- 
sults, we can find the dependence of the function x on the 
concentration p for the three values of the argument h; the 
results are shown in Fig. 10. 

We note that x-$~ over the entire critical region, so that 
the critical behavior of the function x is, in fact, given by 
Eqs. (29). 
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