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We examine the effect of fluctuations of the surrounding medium on the resonant tunneling 
through a nonstationary barrier containing localized states. The models employed are those of a 
Gauss-Markov process and a discontinuous Markov process. We establish the effect of 
dynamic narrowing of the barrier penetration probability, which manifests itself in the narrowing 
of the curve representing the dependence of the penetration probability on the energy of 
the tunneling electron as the correlation time of the fluctuations increases. 

1. INTRODUCTION 

Resonant tunneling through local energy levels has been 
well studied both theoretically and experimentally (see, e.g., 
Ref. 1). This phenomenon has seen an upsurge of interest in 
the development of solid-state microelectronics, field-effect 
transistors based on one-dimensional metal-insulator- 
semiconductor structures, mesoscopic semiconductor junc- 
tions, e t ~ . ~ - ~  The probability of an electron with an energy 
E tunneling from region 1 on the left of the barrier to region 
3 on the right of the barrier through a localized state with an 
energy e 2  inside the barrier (the barrier's transmission coef- 
ficient) is described, as is known,6 by a formula of the 
Breit-Wigner type: 

where )r is the width of the level formed by the localized 

state, and T = TI + T3, with r1 and r3 the partial widths 
describing the tunneling decay of the electron in the regions 
on the left and right of the barrier, respectively. This paper 
examines how fluctuations of the energy c 2  of the level 
brought on by the surrounding medium affect the Breit- 
Wigner resonance (1). This is part of the general problem of 
tunneling through a nonstationary b a ~ i e r . ~ - ~  The reason for 
the fluctuations may, for instance, be electron-phonon pro- 
cesses, which are known to broaden the lines in the optical 
spectra of local centers. For phononless lines the contribu- 
tions of the zero-point vibrations of phonons'O lead to a 
Lorentzian shape of the optical absorption lines and corre- 
spond to a random-force correlator proportional to 
exd-It-trl/7). The interaction of an electron on a local cen- 
ter inside the barrier with the optical phonons within the 
phonon dispersion band also leads to random forces that 
change the position of the energy level in time. Another ex- 
ample of such fluctuations is two possible positions of the 
energy level E~ related to a change in the charge of the 
localized state in the barrier brought on by electrons hopping 
onto the closest (nonresonance) states and back. Such a situ- 

source of random forces is an external source of noise, say, 
an ultrasonic generator acting on the insulator layer of the 
barrier, which has piezoelectric properties. 

This paper considers Markov processes that describe 
fluctuations in the position of a resonance level, 
E '(t) = c2(t) - ( E ~ ) ,  with a correlation function 

where ( .  . .) denotes an average over the ensemble of fluc- 
tuations of the local-level position, A is the characteristic 
width of the fluctuation distribution function, and r is the 
correlation time. The choice of the correlation function in the 
form of (2) makes it possible to explore nonstationary 
electron-phonon processes, which sets the statement of the 
problem in this paper apart from that in Refs. 11-15 and 
other papers, which allow only for steady-state electron- 
phonon processes. As will shortly be shown, in the presence 
of fluctuations the barrier transmission coefficient 
D(E - s 2 )  is highly dependent on the ratio of the width S of 
the fluctuation distribution function and the reciprocal corre- 
lation time T-'. In the quasistatic limit A 7% 1, the curve 
representing the D vs E - e2  dependence is a set of infinitely 
close Lorentzian profiles with a halfwidth )r and with an 

envelope following the shape of the distribution function of 
the fluctuations of positions of the resonance level (say, a 
distribution function of the Gaussian type D(E - E ~ )  
.( exp{-(& - ( E ~ ) ) ~ / ~ A  2}). In the opposite limiting case of 
rapid fluctuations, A re 1, the curve representing the depen- 
dence of the tunneling transmission coefficient on the energy 
of the tunneling particle, D(E - E ~ ) ,  has a Lorentzian profile 
with a halfwidth $I'+A~T. In the most interesting case, 
) r 4 A 2 r 4 A ,  the width of this curve is determined by A2r 

and diminishes sharply as the correlation time T decreases 
(the effect of dynamic narrowing of the barrier penetration 
probability, similar to the well-known effect of dynamic nar- 
rowing of electromagnetic-radiation absorption lines in sto- 
chastic fields16,17). A further decrease in the correlation time 
r ,  such taht A ~ T ~  $r holds, switches off the effect of fluc- 

ation may have been realized in e ~ ~ e r i m e n t s . ~ - ~  A likely tuations, since the tunneling particle has no time to follow 
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the fluctuations. Here the halfwidth of the energy depen- 
dence of D(E - c2) is, as before, equal to ir. 

When a Gauss-Markov process is used to describe ran- 
dom forces, an expression for D(E - e2) can only be found 
for the limiting cases of rapid and slow fluctuations. Using 
the example of a discontinuous Markov process without his- 
tory, we are able to find an analytical expression for 
D(E - c2) when the relation between A and r - I  is arbitrary. 
This method of description also allows the criterion for the 
correctness of the two limiting cases to be sharpened. The 
expressions obtained for the tunneling transmission coeffi- 
cient make it possible to calculate the tunnel current in the 
barrier system and clarify the role of fluctuations in the struc- 
ture the current-voltage characteristic of the system. 

2. CALCULATING THE TUNNELING TRANSMISSION 
COEFFICIENT D ( E - E ~ )  FOR A GAUSS-MARKOV PROCESS 

We examine resonant tunneling in a system with a bar- 
rier containing a localized energy level whose fluctuations in 
time, ~ ' ( t ) ,  are described by a Gauss-Markov process with 
a correlation function (2). The Schrijdinger equation for the 
electron amplitudes in the tunneling Hamiltonian 
approximation1 is 

where Clp(t) is the amplitude of an electron in state p to the 
left of the barrier, c2(t) is that of an electron on a local 
center with an average energy E ~ ,  Cjk(t) is the amplitude of 
an electron in state k to the right of the barrier, and T12 and 
T23 are the Hamiltonian matrix elements between the respec- 
tive states (here and in what follows we ignore the depen- 
dence of T12 and T23 on the energies E I,, c 2 ,  and E3k). 

The probability per unit time Wlp+3k of a transition 
from state p into state k can be found from 

The system of equations (3)-(5) was solved by applying 
methods of the theory of perturbations on the assumption 
that the matrix elements T12 and T, are small compared to 
the characteristic energies of the electron states (see also 
Refs. 11 and 18). The result is 
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where 

and the function S(t, tl , t2 ,  t3) has the form 

(8) 

We now use a well-know property of Gaussian processes: 

(S(t,tl,tz,t3))=exp - - dt '  ~ ' ( t ) -  dt i  & ' ( t i )  ( : ([i: /il 

(9) 

The final result is 

where we have used a correlation function of the Gauss- 
Markov process of the form (2). The quasistatic limit 
AT% 1 means ignoring ~ ' ( t )  in the course of the 
quantum-transition time. We find that 
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1 
- -  e e x -  $1 ~ T ~ T ~ ~ ~ ~ ~ T ~ ~ ~ ~  Wlp+3k-  A& 

The probability of an electron with an energy e resonantly 
tunneling, per unit time, through a barrier (penetration prob- 
ability, or transmission coefficient), which we define as 

in the quasistatic limit has the form 

This formula implies that for AT% 1 the penetration prob- 
ability D(E - e2) considered as a function of e is a set of 
infinitely close Lorentzian profiles of type (1) (each of width 
$) with a Gaussian envelope of width - A .  

Further calculations in analytical form become more 
complicated, and we restrict our discussion to the limiting 
case of rapid fluctuations, when the correlation function (2) 
becomes 

The integrals in Eqs. (6) and (9) can be evaluated directly. As 
a result we have 

This differs from the Breit-Wigner formula by the pres- 
ence of a second term, which describes an additional 
inelastic-tunneling channel. This channel results from loss of 
coherence between the lp + 2 and 2 + 3 k processes caused 
by a breakdown in the phase of the electron brought on by 
fluctuations. 

Calculation of the penetration probability yields 

As this formula implies, for A 74  1 and A 2  7% $r the Breit- 

Wigner resonance is extremely broad, with the penetration- 
probability width determined by the correlation time r and 
diminishing as r decreases. This phenomenon, similar to the 
effect of dynamic narrowing of electromagnetic-radiation ab- 
sorption lines and first noted by ~ i c k e ' ~  and Anderson, 
l7 could be called the dynamic effect of penetration prob- 
ability narrowing. But if A2r<s ir holds (the limiting case of 

rapid fluctuations), the tunneling particle is unable to follow 
the fluctuations and the Breit-Wigner resonance retains its 
shape with a halfwidth $. 

We also note that, as Eqs. (12) and (15) imply, the fluc- 
tuations E (t), while narrowing the Breit-Wigner resonance 
(I), do not change the total transmission coefficient Dto,: 

This consequence, similar to the sum rule formulated in 
Refs. 11 and 14, was first noted in Ref. 8. 

Within the formal structure developed here it is difficult 
to define a criterion for the applicability of the approximation 
(13) for the correlation function and describe by analytical 
means the case of intermediate values of the parameter Ar. 
The problems are resolved if to describe the source of fluc- 
tuations we use a discontinuous Markov process without his- 
tory (a generalized telegraph process).19 As studies of the 
spectroscopy of absorption lines in stochastic fields show, 
20 the use of discontinuous Markov processes gives a fairly 
exact picture of the main features of the phenomenon. There- 
fore, in the section below we examine resonant tunneling in 
a barrier system through a localized state with an energy 
whose fluctuations in time are described by a purely discon- 
tinuous Markov process without history. We also examine 
the case of a simple telegraph process, corresponding to only 
two possible positions of the resonance level. As noted in the 
Introduction, such a situation can be realized owing to a 
change in the charge of the localized state in the barrier 
brought on by electrons hopping onto the closest (nonreso- 
nance) states and back. 

3. CALCULATING THE TUNNELING TRANSMISSION 
COEFFICIENT D(E-E~) FOR A DISCONTINUOUS MARKOV 
PROCESS WITHOUT HISTORY 

A discontinuous Markov process without history19 pre- 
supposes the random quantity e r  changing by jumps, 
abruptly. These jumps occur independently of each other at 
arbitrary moments in time t l , t2  ,..., t, ,..., with the resulting 
known distribution over the time intervals between the 
jumps: 

where T is the average duration of an interval. Between the 
jumps the value of the random quantity e r  remains constant 
and is specified by some distribution p(el) .  The absence of 
history means that the probability of the random quantity 
assuming a certain value after the nth jump is in no way 
affected by the previous value of the quantity. The correla- 
tion function for such a process has the form (2), where r 
should be interpreted as the average duration of an interval 
between jumps. 

In what follows we will find it convenient to use the 
density matrix pij(t) instead of electron amplitudes. To sim- 
plify notation, we denote the state of an electron with energy 
elp to the left of the junction by 1, that of an electron on 
level e 2  by 2, and that of an electron with energy &3k to the 
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right of the junction by 3. Thus, the subscripts i and j may 
take on the values 1, 2, and 3. According to the theory of 
discontinuous Markov processes,19~21 we introduce the idea 
of a partial density matrix pij(t, a ) ,  which describes the sub- 
ensemble of systems whose random function ~ ' ( t )  assumes 
a specified value a after the jump closest to moment t, with 
pij(t, a )  already averaged over all the realizations of the dis- 
continuous Markov process ~ ' ( t )  in all time intervals up to 
the last jump. Averaging over all such subensembles with the 
weight function 

yields the density matrix (pij(t)) completely averaged over 
all realizations of the random process ~ ' ( t ) .  The partial den- 
sity matrix of our problem satisfies the system of 
equations2' 

(16) 

with the initial conditions pijlt=o= ail Sjl . The Hamiltonian 
matrix in (16) has the form 

E l p  T12 0 

fi(Ct)= (:l 

T32 &3k 

and depends only on a. The matrix describes the tunnel 
width of the localized state: 

nj= $ai,[Si2+ Sj2], 

where r is specified, as before, in Eqs. (7). We wish to 
calculate the probability Wlp-,3k of the tunneling transition 
lp-+3k per unit time: 

To solve the system of equations (16) we apply the 
Laplace transformation. This results in the following system 
of equations for the Laplace transforms Qij(s) of the com- 
ponents of the density matrix elements pij(t): 

In the system of equations (18)-(23) we have retained only 
the lowest-order terms in T12 and Tp and introduced the 
notation E ~ ~ = E ~ ~ - E ~ ,  &23=&2-&3k, and &13=&lp-&3k .  

We have found that 

T12T23 

s(s+is13+ l / r ) ( l  -R12/r) s+ie13 
- I""' 

where 

Formulas (24)-(29) provide a simple algorithm for calculat- 
ing the tunneling transition rate w ~ ~ + ~ ~  for a distribution 
function q ( a )  of arbitrary form and for all values of param- 
eter AT. They also yield a criterion for the applicability of 
the rapid-fluctuation limit. For instance, for a Gaussian dis- 
tribution function q ( a )  we use the representation of Ri,(s) 
in the form of a continued fraction:22 

We break off the continued fraction when the small param- 
eter satisfies A re 1 and get 
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Employing (31), we see that formulas (24)-(29) give an ex- 
pression for the transition rate W l p + 3 k  that coincides with Eq 
(14). For AT* 1 Eqs. (24)-(29) yield Eq. (11) for the qua- 
sistatic case. 

Integration with respect to E~~ yields the following ex- 
pression for the tunneling transmission coefficient 
D ( & - E 2 ) :  

In conclusion we write an analytical expression for the 

transmission coefficient valid for arbitrary values of param- 
eter AT for the simple case of the distribution function 

when the random quantity a can take on only two discrete 
values, - Sd- and SJ-j, - with probabilities x 
and 1 -x, respectively, with G= 0 and a2 = h2. The formula 
(32) for D(E - c2)  then yields 

where 

Fig. 1 depicts the energy dependence of D ( E  - E ~ )  for dif- 
ferent values of parameter A r at x = 3. In the range of large 

values of AT the dependence is represented by two Lorentz- 
ian profiles of width $ with peaks at E = E ~ _ +  A (the quasi- 
static case). As AT decreases to 3, the peaks move closer 

together and finally merge. In the region AT<$ the curve 

representing the dependence of D(E - e 2 )  is bell-shaped, ap- 
proaching in form a Lorentzian profile with width of order 
$+A2r.  AS the correlation time r becomes shorter, the 
peak becomes sharper and grows in height (the effect of 
dynamic narrowing of D(E - E ~ ) ) .  

4. DISCUSSION OF RESULTS 

We have examined resonant tunneling through a local- 
ized state in a system with a potential barrier. The surround- 
ing medium produces fluctuations in the position of the en- 
ergy level, and these are described by a Gauss-Markov 
process and a discontinuous Markov process with history. 
We show that in the presence of fluctuations the barrier trans- 
mission coefficient D(E -e2 )  depends significantly on the 
relation between the dispersion of the random process, A,  
and the reciprocal correlation time T - l .  In the quasistatic 
limit h 7% 1 the energy dependence of D(E - E ~ )  follows the 
shape of the distribution function of the resonance-level po- 
sition fluctuations. In the opposite limiting case of rapid fluc- 
tuations, A T+ 1, the dependence of D(E - E ~ )  on the energy 
of the tunneling particle has the shape of a Lorentzian profile 
with a halfwidth $+  A27. For the most interesting case 
$4 $T + A2&A, the width of the curve representing the 

energy dependence of D(E - E ~ )  is determined by h27 and 
sharply decreases as the correlation time T shortens (the ef- 
fect of dynamic narrowing of D(E - E ~ ) ) .  

These specific features of the tunneling transmission co- 
efficient should manifest themselves in the current-voltage 
characteristics of the tunneling system under investigation. 
As is well known, the resonant tunnel current is defined as 

Here the localized state is assumed to be in the middle of the 
barrier, f ( E  - ,u - i e ~ )  and f ( E  - ,u + $e V) are the (Fermi) 

distribution functions of an electron on the left and right 
electrodes, respectively, V the voltage applied to the tunnel- 
ing junction, and ,u the Fermi level in the system before the 
voltage is applied. The possible manifestation of fluctuations 
of the resonance level is most conveniently studied in the 
incremental conductance g ( V )  = d J / d V .  In the low- 
temperature region, where the distribution function can be 
replaced by a step function, 

FIG. 1. The tunneling transmission coefficient D ( E -  s2) as a function of the 
energy E of a tunneling electron for different values of parameter A r in the 
case of a simple telegraph process corresponding to the distribution function 
(33) (x= 112 and I'=O.OSA). 
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Thus, when the Fermi level on one electrode is close to the 
localized-state energy, the incremental conductance as a 
function of V reproduces the shape of the energy dependence 
of the tunneling transmission coefficient. 
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