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In the present paper we present a method using the inverse renormalization group transformation 
of a connected percolation cluster in the bond problem and we investigate the effect of the 
specific form of the boundary conditions on the properties of the cluster near the percolation 
threshold. 

1. PERCOLATION CLUSTER METHOD 

In application to percolation theory, the hypothesis of 
scale invariance of the properties of a system at a critical 
point means that an infinite cluster whose unbroken-bond 
concentration exactly equals the percolation threshold is a 
geometrically self-similar object or, in the language of the 
last ten years, a fractal. Different analogs of the renormaliza- 
tion group transformation method have been applied to per- 
colation problems,'~2 just as in the theory of thermal phase 
transitions, where this method was first developed on the 
basis of the idea of scale invariance. 

The most successful geometric representation of an infi- 
nite cluster-the model of sites, drops (blobs), and 
loops3+an be constructed by applying a scale transforma- 
tion to an element of a square lattice-the inverse of the 
procedure of constructing large blocks4 In this approach 
some elements of the geometric structure of an infinite clus- 
ter, such as, for example, intersecting bonds3 in the backbone 
of the threshold infinite cluster on any scales, as well as its 
self-similarity, are postulated in the construction of the 
model. 

The geometric properties of clusters on a finite lattice 
with the concentration of unbroken bonds p ZO or 1 are de- 
termined by a finite number of realizable configurations. An 
unphysical choice of an averaging method in the calculation 
of all possible lattice constants can be avoided by using the 
procedure of increasing the scale. The point of this procedure 
is to calculate the effective values of the parameters of a 
percolation lattice from the values calculated directly only 
for the initial sample: the effective parameters of the lattice 
properties are transferred from stage to stage and in the pro- 
cess the characteristics of each bond are replaced by the val- 
ues calculated at the preceding stage. The iterative increase 
of the scale by a factor of x per iteration (Fig. la) leads to 
stationary points for the cluster functions. In this manner the 
size of the lattice is increased to some scale Ln = In (where 1 
is the edge length of the initial lattice) that exceeds the cor- 
relation length 5. 

Finite rectangular models {x,y,z) were investigated in a 
space of dimension d = 2  and 3, where x, y ,  and z are the 
edge lengths as multiples of the bond lengths (lattice con- 
stant); z=0  for a two-dimensional lattice. Percolation in the 
model was flagged by the existence of a cluster of unbroken 
bonds that connects two opposite faces in the direction of the 
x-edge, and the density of an infinite cluster P,(p)  was de- 

fined to be the probability that an unbroken bond belongs to 
a connecting cluster. 

In the case x,y,z+w, the density of an infinite cluster 
satisfies 

and the scaling law 

where p, is the percolation threshold. 
The fractal dimension djas of the main set of bonds 

(backbone) (Fig. la), which is obtained by the inverse renor- 
malization group transformation with p = l ,  can be deter- 
mined from the dependence of the mass of the backbone (the 
number of constituent bonds) M P )  at the nth stage on the 
linear size L, of the lattice (number of bonds along an edge): 

For example, for a two-dimensional model with x =y = 1, 
z=o  

Since L, = ln, we obtain 

The dimension of the geometric set on which the renormal- 
ization procedure is defined is therefore greater than the to- 
pological dimension d = 2  of the space of the initial model: 

In the case of an arbitrary dimension d and arbitrary 
shape of the initial element, the mass of the object obtained 
by the inverse renormalization group transformation can 
likewise be determined by factoring out the geometric factor 
F 
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FIG. 1. Renormalizable models: a-illustration of a stage of 
the transformation for the case x = y = 1 = 2,  z = 0@ = 1 ) ;  

b b--relatively dual model, x = y  = 1 = 3 ,  z=0 and x=4, y =2, 
z=o. 

~ b " , : =  (F~~)"=F"L;. 

Then Eq. (6) assumes the form 

(7) where a = d  - df . Since Y,<O, we find that the density of the 
percolation cluster with p =pc approaches zero as the num- 
ber n of the stage of the renormalization-group transforma- 
tion increases, i.e., with increasing L, : 

(8) 

It follows from Eq. (8) that the dimension of the main set of lim ppc(L,) = 0. 
L,+m 

bonds equals the Euclidean dimension only in the limit of an 
infinite renormalized block: 

lim d?as= d, 
1-m 

(9) For p>pc on scales greater than ((L,>n, the percolation 
cluster becomes uniform with constant density, and Eq. (15) 

which is obviously valid for any model. assumes the form 

The correlation length of the percolation lattice delimits 
the region of so-called intermediate asymptotic behavior in 
the lattice. Expressed in units of the lattice constants, this lim ppc(L,) = po>O. 

Ln+m 
range of scales L is determined by the two-sided inequality 

14L<( .  (10) 
The exponent /3 is related, via the dimension df of the per- 

Over this range, the structure of the percolation cluster is colation cluster, to the critical exponent v by a hyperscaling 
geometrically similar to the structure of an infinite cluster relation: 
with p =p, , where (-00: 

~ - I P - P C ~ - ~ .  (11) df=d-plv ,  (17) 

One characteristic of self-similarity of an infinite cluster 
with p =p, is its fractal dimension df . The mass M$'J of the 
fractal, which the percolation cluster is in the scale interval as a result of which, and using Eq. (1% we obtain ff=plv. 
(lo), depends on L, as The percolation probability R of the initial model for 

fixed concentration of unbroken bonds depends only on the 
MPJ-L?. (12) geometry, the size of the lattice, and the method used to 

determine percolation (for example, only in one direction or 
The density of the percolation cluster is in both directions simultaneously). This quantity was calcu- 

MPJ - d b . ~  lated as the ratio of the number of percolating configurations 
P $ $ = ~ -  Lnf f .  (13) to the number of all scattering events. The value of R, being 

Mbas a polynomial of degree N-the number of all bonds in the 
We introduce the notation sample (N = 21' in a two-dimensional space with x = y = 1)- 

can be determined as accurately as desired for arbitrary p. 
In F 

y = d  - d b a ~ = - ~ - -  This is also true for the density P,(p;x,y,z) of a cluster 
~ f f  In 1 ' (I4) connecting two opposite faces of the lattice. 
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FIG. 2. Plots of the functions R @ , ; x , y , r )  and P,@,;x ,y , z )  with the 
initial concentration of unbroken bonds p,:  I-R(po;5,4,0); 
2-R(po;5,5,0); 3-P,(po;5,4,0). 

We now introduce the model-dependent percolation 
probability R(po;x,y,z) (first stage) on a lattice, where po is 
the initial density of unbroken bonds. At the second stage of 
the transformation the percolation probability 
p2=R(pl;x,y,z) corresponds to a lattice with an effective 
length of x2 bonds along an edge and with renormalized 
probability of a bond being unbroken on it p1 = R(po;x,y ,z); 
for the third and n-th stages we have 

We determine the unstable stationary point 
p*  (x,y ,z) = R(p, ;x,y ,z)-the limit of the iteration se- 
quence (18)-from a plot of the function R(po;x,y,z) 
(curves 1 and 2 in Fig. 2). We term this point the percolation 
threshold of the model {x,y ,z). The trajectory of the inverse 
renormalization-group transformation terminates at the n-th 
stage at the stationary point 0 or 1: 

The results for the percolation thresholds of the models are 
presented in Table I, where the indicated error limits are of a 

TABLE I. Effective percolation thresholds of the 
models. 

FIG. 3. Density of a percolation cluster as a function of its scale L, for three 
values of p o ( A p = p o - p * ) :  I-Ap=5.  2-1.5.10-~; 3-2.5.10-'. 

statistical origin. 
Simultaneously with the percolation probability 

R(po;x,y ,z) we investigated on the initial block the quantity 
Pm(po;x,y ,z)-the relative number of bonds belonging to a 
connecting cluster (curve 3 in Fig. 2). By analogy with Eq. 
(18), after n iterations of the inverse renormalization group 
transformation the density of the percolation cluster on the 
grid with an effective scale 1" can be determined from the 
formula 

where ~ ~ ) ( p ~ , l ) = ~ ~ ( p ~ , 1 )  is the density of the connecting 
cluster at the zeroth stage and po is the initial concentration 
of unbroken bonds. The equality (20) is a formal expression 
of the fact that an unbroken bond belongs to an infinite clus- 
ter only if it participates in connecting the two faces at all 
stages of the transformation. 

It follows from Fig. 2 that for any I 

lim P ? ) ( ~ ~  ,l)  = 
n + m  P o ~ P *  . (21) 

For p o Z p ,  the limit of the product (20) for a finite 
number of steps is Eq. (21), since sooner or later the next 
factor becomes 0 (po<p,) or 1 (po>p*). An infinite prod- 
uct of quantities different from zero or 1 is possible only if 
p=p, , and in this case a fractal with zero density P, and 
nonzero mass is obtained. 

The correlation length .$ can be estimated by changing 
the power-law decay of the density of the connected cluster 
on scales determined for each p>p, : in Fig. 3 the logarithm 
of .$ corresponds to the ordinate of the point of intersection of 
the horizontal and sloping sections of the plot. Calculating 5 
gives values which are many times greater than the dimen- 
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TABLE 11. Results of the inverse renormalization group transformation on different models. 

sions of the initial block {x,y,z), and this is a good prereq- 
uisite for modeling the properties of an infinite cluster over 
the corresponding range of lengths. 

Average (over all iterations) critical exponents of the 
percolation theory (Table 111) were determined by calculating 
the characteristics of a percolation cluster which were ob- 
tained by the inverse renormalization group transformation 
(Table 11): the average value (v), was calculated from Eq. 
(17) and ( v ) ~  was calculated from the definition of the expo- 
nent (11). 

Comparing the published values of the computed critical 
exponents, in which we also include the fractal dimension df 
of an infinite cluster, shows that small initial lattices 
(x ,y ,z~lO)  are suitable for studying both qualitatively and 
quantitatively threshold phenomena in spaces of dimension 
d =2 and 3. 

2. SMALL MODELS IN THE METHOD OF 

cording to the following criterion: a model belongs to class 
C(n) if the difference x - y for the model equals n ,  where 
n EZ. 

We choose a finite-dimensional representation for the 
density of an infinite cluster in the form 

where the function gp(l) is a correction to the scaling and 1 
characterizes the size of the square model {x,y,O) in the 
sense that the number of bonds in the class increase as a 
power-law function (7) with exponent d. 

A computer calculation performed on small lattices (x 
<lo) in two-dimensional space suggests that 
~ = l n [ ~ , ' ( ~ , ( l ) ) ] / l n l  is a linear function of l/ln 1 (Fig. 4): 

FINITE-DIMENSIONAL SCALING 
where f(n)-the difference of the coordinates of the point of - .  , 

It follows from the results obtained above that the regu- intersection of the experimental straight line for a given class 
larities in the statistical properties of a percolation cluster can C(n) and the G axis-and the ratio Plv are singled out on 
be studied even on length intervals of the order of the lattice the right-hand side for purposes of generalization. Then the 
constant. For this reason we shall analyze in greater detail assumption of linearity determines the form of the function 
the method of finite scales: which was implemented on the gp(l) in ~ q .  (22): 
smallest models. To this end, we separate the set of all pos- 
sible initial cells in two-dimensional space into classes ac- al+a2gp(l)=lf(n)  exp B. (24) 

TABLE 111. Critical indices of a percolation cluster. 
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FIG. 4. ~ = l n ( ~ ; ' ) f l n l  versus lflnl for the model classes I--C(2),  2--€(I), 
and 3 4 ( 0 ) .  

During self-similar growth of the model, the similarity 
dimension of the statistically homogeneous fraction arising 
in this case can be estimated right at the percolation thresh- 
old by the quantity 

which, generally speaking, takes on different values for dif- 
ferent models. Using Eqs. (22) and (25) we obtain 

The fractal dimension df of an infinite cluster (limiting 
value of D(1) in the limit 1 -m)  satisfies Eq. (16), which 
determines the asymptotic behavior of the function p,(l): 

lim 
ln[p*(l)l 

l-+m In 1 =f (n) .  

It is evident from Eq. (26) that the decrease, recorded 
during numerical modeling, of the nonzero quantity 
S(1) = Ip, (1) -p,l [power-law decrease with exponent - l lv  
as l+w (Ref. 6)] satisfies Eq. (27) only if f(n) =O [we note 
that in this case a2=0 in Eq. (24)l. Then the curves 1 and 3 
in Fig. 4 are convex and concave sections, respectively, with 
respect to the horizontal axis, since for the classes C(0) and 
C(2) the linearity assumption leads to f(2), f(O)#O. Thus the 
assumption (23) can be expressed in the most general case as 
follows: there exists a value of F such that the curves 
~[ln- '(I)] for classes C(n) and C(2 - n), where n E 2, are 
symmetric with respect to one another relative to the x axis. 

The x axis itself in this case will be the plot for the class 
C(1), which is distinguished among the other classes by the 
property 

To prove Eq. (28) we drop from the geometric centers of 
the interstitial squares of the model {x,y}, which we call the 
initial model, perpendiculars to all its bonds. We continue the 
perpendiculars to the outer edges of the model and connect 
them as in Fig. lb, forming in this manner a dual square 
model, whose bonds are in one-two-one correspondence with 
the bonds of the initial model (the intersection of bonds in 
Fig. l b  indicates this correspondence). The new model 
{ ~ , y ) ~ = { y  + 1 , ~ -  1) has the property that 

i.e., the percolation probabilities of mutually dual models are 
symmetric relative to the point (0.5, 0.5). 

A general argument in proof of the property (28) is as 
follows. We form with the dual model a configuration start- 
ing from a connected (unconnected) configuration on the ini- 
tial model according to the following principle: an unbroken 
bond in the initial model transforms into an broken bond 
corresponding to it and vice versa. Then, the resulting "sym- 
metric" configuration will be disconnected (connected). The 
formal proof is constructed for the corresponding models of 
sites which are subsets of the so-called covering l a t t i ~ e . ~  

Since self-dual models are of class C(l), the property 
(28) is proved (the exact equality p,=0.5 is proved simulta- 
neously for the problem of bonds on a square lattice). It is 
obvious that the inverse assertion will also be true: Any 
model for which p,=0.5 will belong to class C(1). 

The result that ~ ~ = c o n s t . l - ~ ' "  for class C(l)  is con- 
firmed by the fact that the result ~lv=0.1041t0.0013 [the 
average value over the data obtained using the four models 
with x=3, 4, 5, and 9 from C(l)] agrees with the exact value 
5/48.' Therefore small experimental models, together with 
models in which the number of sites is -lo6 or larger, are 
suitable for calculating the finite-dimensional scaling ratios 
of the critical exponents (it can be inferred that Plv is only 
one such ratio). 
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