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The dynamic method of proof, developed by the present author in previous work, is extended to 
the case of chemical reactions of the form A+BSC+D occurring in gases of moderate 
density. The reacting molecules can contain any number of atoms. The internal states of the 
molecules are regarded as quantum-mechanical, while the states of the centers of mass are 
semiclassical. It is assumed that the same conditions ( v ' / ~ A P s ~ ,  r : , ( ? ~ ' / ~ ~ ~ + f i ,  where 
v  = VIN) hold as in R. L. Stratonovich, Zh. Eksp. Teor. Fiz. 101, 838 (1992) [Sov. Phys. JETP 
74, 447 (1992)l. 

I. INTRODUCTION 

In previous an H-theorem was proved in the 
Boltzmann approximation for association and spontaneous 
dissociation reactions of the form A+BSC,  A+B+CSD. It 
is natural to generalize the analytical technique developed 
there to reactions of another type, the simplest of which are 
bimolecular reactions of the form A+BSC+D. It goes with- 
out saying that the same method may be used to treat more 
complicated reactions as well. 

The H-theorem for bimolecular reactions was previously 
proved in a number of papers,3-6 but in our opinion the theo- 
ries presented there cannot be regarded as an exhaustive 

the case of internal quantum variables. In the classical case, 
however, each term on the right-hand side of the equations 
can be broken up into two parts: one corresponding to en- 
counters without reactions and one corresponding to reac- 
tions. 

Strictly speaking, the right-hand sides of these equations 
should also contain collision integrals for A with A, A with 
C, A with D, B with B, B with D, etc. However, we have not 
done this in order not to complicate the formulas and to 
concentrate attention on the terms corresponding to the reac- 
tions. 

treatment of the problem. Thus, Polak and ~ h a c h o ~ a n '  used 2m FOR THE AND EmERNAL 
a semiphenomenological method, in which they employed OF THE MOLECULES 
phenomenological concepts such as the reaction cross sec- 
tion. It would be desirable to have a purely dynamical theory, 
like the Boltzmann theory, wholly free of phenomenological 
elements. ~olesnichenko~ treated a more complicated theory 
than that of Refs. 3-5, but implicitly assumed that the op- 
erator distribution functions describing the molecules before 
they enter into the reaction and the functions describing the 
molecules after the reaction can be diagonalized simulta- 
neously. It is only by virtue of this assumption that a gener- 
alized Boltzmann equation can be written down, not for the 
operator distribution functions but for c-functions of the mo- 
lecular momentum and internal quantum numbers. In con- 
trast with Ref. 6, we will deal with operators rather than with 
c-function distributions. 

The distribution of the molecules A, B, C, and D will be 
described by the operators fj(Pj), j = 1 ,. . . ,4, which depend 
on the numerical (not operator) momentum Pj of the mo- 
lecular center of mass. This is possible because the states of 
the center of mass are assumed to be semiclassical. Bv virtue 
of the condition V ' ~ ~ A P % ~ ~  for v =  VIN we can neglect 
quantum degeneracy of the gas made up of these molecules. 
We also assume that the interaction radius ri,, of the mol- 
ecules is much shorter than the mean free path, i.e., that the 
gas is of moderate density. 

We note also that in the kinetic equations (5.3)-(5.6) 
used below, the simple collision processes A+BSA=B, 
C+DSC+D are indistinguishable from chemical transfor- 
mation processes. Indeed, this distinction cannot be made in 

Assume that the A molecule consists of k1 atoms. Some 
of them, say, the first k; atoms out of the k, , are transformed 
into C in the reaction A+B+C+D. Then the other 
ky = k, - ki atoms are transformed into D. Similarly, k; at- 
oms of the B molecule are transformed into C, and 
k i=  k2- k; atoms into D. We have the sets 

of atomic radius vectors for A and B respectively. Here the 
radius vectors of the atoms transformed into C are written 
first. It is easy to see that the radius vectors making up C and 
D can be written in the form 

1 ( 3 )  = (2) i.e., qr)-qg), o=1, ..., k,; qk;+p - qp , P = l ,  ..., k;, etc. With 

this notation it is obvious that ki + k; = k, , k; + k; = k, . 
Thus, the total number k, + k2= k3 + k4 of atoms taking part 
in A+BSC+D reactions can be divided up into four sets 
("submolecules"), such that these reactions can be regarded 
as exchanges of the submolecules (see Fig. 1). It is conve- 
nient to introduce the radius vectors of the submolecule cen- 
ters of mass: 
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FIG. 1. Schematic representation of the molecules in terms 
of "submolecules." a) The four submolecules and their 
centers of mass; b) the A and B molecules and the vectors 
r ,  , r , ;  c) the C and D molecules and the vectors f j ,  j4. 

5 J 

1 
the variables conjugate to the external coordinates (2.2) will 

(1) (1) ry=r f - -  (1) (1) C ma qff 9 
be the momenta Pi=P,! +e (where Pi=P;, P;=P;, Pi=P;', 

ma 'la 9 P'i=P'i) of the centers of mass of the molecules, while the 

(2.1) 
momenta 

1 k;. 1 k2 r;~r:=,C mf)q(012), r;=ri=- C ma (2) qa (2) P.=p!P:(-p;P;, z I i = l ,  ..., 4, 
M2,,1 M; &;+I will be conjugate to the vectors (2.3); here we have written 

p,! =MIIMi, p /=M/ IMi .  In what follows we will also 
Here we have written M; = ~:=,m", My= 82=,: +, m:). write P1+P2=P3+P4=P5, Ml+M2=M3+M4=M5.  In 

These radius vectors can be used in an obvious way to ex- Ref. 1 it was noted that these coordinate transformations 

press the radius vectors of the centers of mass of the mol- (along with the momentum transformations) have a Hamil- 

ecules, i.e., the external coordinates of the molecules: tonian equal to unity. The new variables are thus equivalent 
to the old ones. For brevity we also write q i=  (qi , q;), and 

r ( M r  + M r ) M 1 ,  r2= (M;r;+M;r'!)IM2, likewise for pi , i = 1,. . . ,4. 

where 

Moreover, we introduce the differences 

The internal coordinates of the submolecules are the compo- 
nents of the set of vectors 

for i=1, ..., 4. We will write 

Then (el, q; , q;) is the complete set of internal coordinates 
of anA molecule and (E2, q i ,  q;) is the analogous set for the 
B molecule. Likewise, (E3, q; , 9;)) and (f4, q i  , 41;) are the 
internal coordinates of C and D molecules respectively. 
Combining the external coordinates (2.2) with these sets we 
find the complete set of all the coordinates of a particular 
molecule. 

The relations (2.1)-(2.4) specify transformations from 
the initial variables to the new variables (ri ,  Ei, q,! , q;), 
i = l ,  ..., 4. These transformations induce transformations of 
the momenta. Let Pi, P'i, Pi, Pi be the momenta of the 
submolecule conjugate to the coordinates (2.1) and p i ,  py , 
p i ,  p; those conjugate to (2.5). It is not difficult to show that 

In the classical version of the theory, the condition of 
spatial homogeneity implies that we can look for distribution 
functions f,(P,, Ej, Pi, qi, jj)=fj(Pi, ti), j=  1 ,..., 4 for 
the A, B, C, and D molecules respectively. Here 6, is the set 
of internal dynamical variables of a molecule. For internal 
quantum states, instead of these functions we must treat op- 
erators j ,(pj ) which are functions of P i .  In the coordinate 
representationJhey have matrix elements f,(P, , ij, qj  , Ej, 

I - -  - 
Gj)-(rj, qjI f,(Pj)IeiGj). 

3. THE SHORT-LIVED INTERACTION STATE: THE STATE IN 
WHICH ALL k, + k, ATOM INTERACT 

When 

where rint is the interaction radius and f j =  \?,I, all the atoms 
that make up A, B and C, D interact simultaneously. Then 
none of the four molecules retains its individuality. We 
specify some value ro satisfying ri,t9ro+v1'3 (Where v = VI 
N ) ,  e.g.9 

112 116 ro=  rint u . (3.2) 

With some loss of generality we assume that only under 
the condition r l  + r2  -i- r3 + T 4 2  2ro does the pair of A and B 
molecules or the pair of C and D molecules exist. Then the 
interaction region is determined by the inequality 

Using the extended region (3.3) instead of the actual interac- 
tion region (3.1) makes no essential difference, since 

The transition state can be regarded as the short-lived 
state of a "fifth molecule" whose center of mass is located at 
r5=(M1r1 + M2r2)lM5. We introduce the 9-component vec- 
tor 
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Its components, together with those of the vector r,, are 
equivalent to the components of the set of vectors (2.1). The 
momentum P5 of the center of mass of the A+B combina- 
tion is conjugate to r,, and 

(where p1 =M11M5, p2= 1 -p l )  is the set of momenta 
conjugate to (3.4). Below (in Sec. 4) we will pass from the 
variables (3.5) to the equivalent variables ( i l ,  rZ1=r2-rl, 
i2) and to the variables (r4, , j, i4). 

Condition (3.3) determines the region V5 in the space of 
the coordinates 5. Let L  be the surface of this region. On L  
and outside it a molecular pair exists. It is natural to assume 
that this is the pair consisting of A and B if r1 + i2< r , + r4 
holds, and the pair consisting of C and D if r1 + r2> i: , + ?, . 
Thus L  is broken up into two parts, which we denote L ,  and 
L C D .  Of course, A and D exist on the portion LL where 
r3-'int, r4-rint. 

Next we consider the equation 

for the hypersurface L. Eliminating r;' and then ri from the 
first equations of the system consisting of (2.2) and (2.3), we 
find 

Similarly we find 

Substituting (3.7) and (3.8) into the right-hand sides of Eqs. 
(2.3) we can easily find 

After substituting (3.9) into Eq. (3.6) we have 

Consequently, the portion LL where Fl - rint+ro, 
r2-rint+ro and where at the same time rZl-ro [as can be 
seen from (3.10)] approximately coincides with the portion 
KO,, of the sphere KZ1 defined by the equation rZl=ro  (the 
other variables are arbitrary). Similarly it can be shown that 
the portion L:c in which the B and C molecules actually 
exist essentially coincide (by virtue of the inequality rint9ro) 
with the corresponding portion e3 of the sphere K4, defined 
by the equation r4, = rO ,  where the other variables are arbi- 
trary. 

In the nonquantum version, the ensemble of "fifth mol- 
ecules" is described in V5 and on L by the distribution func- 
tion 

This object can be regarded as closely approaching A and B 
molecules, and we can consider the joint distribution func- 
tion f21(P5,621), where 621=(rZlP21,61,62), ~ Z ~ = ~ Z - P I ,  
PZ1 = (M lP2-M2Pl)IMS. It can also be regarded as closely 

approaching C and D molecules, and we can treat 
f43(P5,543) where 543=(r43P43,53 , a ,  r43=r4-r3 7 

P43=(M,P4-M4P3)lM5. 
The function (3.11) satisfies the Liouville equation 

where V5 represents the gradient with respect to t5. The 
functions fZ1 and f43 satisfy analogous equations. In view of 
the inequality rO9v1l3, the average time for the particles to 
pass through the region VS is much less than the time re- 
quired to traverse the average distance v1I3 between mol- 
ecules. A fortiori, it is much less than the average time be- 
tween two successive encounters by a single particle 
( h % ~ " ~ ) .  The average time to traverse the region V is there- 
fore much less than the time constants which characterize the 
rate at which the functions f j  ,. j = 1, ..., 5 change. In other 
words, they cannot change in thls short time. Consequently, 
the derivative f5  in (3.12) is very small, and in place of 
(3.12) we can use the equation 

It is equivalent to the approximation in which the region V5 
is traversed instantaneously. The integral of v5(&f5) over the 
region where (E V5, with the other arguments of f5  arbitrary, 
can be transformed into an integral over the surface of this 
region. 

4. PRELIMINARY FORMULAS IN THE QUANTUM CASE 

The quantum generalization of Eq. (3.13) is [k , ,  
151 =0 ,  where H, is the joint Hamiltonian of all four sub- 
molecules, For generality it is convenient to consider the 
operator G =g( f5), where g is some numerical function. It 
satisfies the analogous equation 

Below we will consider two special cases of the operator G: 
G =I5 and & = kj5 ln(const . f5). Using the coordinates and 
momenta introduced in Sec. 2 we can write the combined 
Hamiltonian in a natural way as 

Here 

is the kinetic energy of the centers of mass of lthe submol- 
ecules, H;,. . . ,H; are the energies of the four subm~lecules 
expressed in terms of their internal variables, and Q, is the 
interaction potential energy of the submolecules. Calcula- 
tions reveal that the kinetic energy (4.3) can be expressed in 
terms of k5 and the componemts (3.5) as follows: 

or more concisely 2?6=~$.ir,$. Here summation is im- 
plied over repeated indices. 
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Writing Trin for the trace with respect to the internal 
variables of the submolecules, we have from (4.1) 

The operator on the left-hand side here is taken in the 
representation [the variables (3.4) are related to the external 
variables of the submolecules]. Then we set C=[, i.e., we 
take the diagonal elements of the matrix. Substituting (4.2) 
and (4.4) in the resulting equation 

we can easily show that the terms with H: ,..., H$ drop out 
when Tr, is evaluated and the term with the potential energy 
@, which depends only on the coordinates, drops out ky 
virtue of the relation [ I = [ .  Then the commutator with T i  
vanishes by virtue of the spatial homogeneity. Consequently, 
from (4.5) we have 

Integrating the expression on the left-hand side over the re- 
gion V5 of the 9-dimensional space defined by the inequality 
(3.3) and using Eq. (A1.3) of Appendix 1, we can represent 
this integral in the form of an integral over the hypersurface 
L of region V5 : 

iii 

5' = 4' 

or, since L =Lm+LCD,  

where 

Here e is a unit vector in the direction of the external normal 
to L. 

We start by setting 6 = fs  . It is easy to see that in L,, 
i.e., when the A and B molecules are present, the submol- 
ecules that enter into A and into B are generally close to one 
another. This means that the function X([)=TriJ5 1 1 = is sig- 
nificantly different from zero only for lrY-r;/-rint and 
Irz- r;l -rint (i.e., for il , i2- rint), while outside the portion 
LL itnis essentially egual to zero. The same applies to the 
case G=kfS ln(const f5). Hence the integral (4.7) can be 
replaced by 

But, as shown in Sec. 3, the segment LL essentially coin- 
cides with the portion el of the sphere KZ1 (by virtue of the 
inequality roSrin,). This sphere is defined by r,,= ro with 
arbitrary f , ,  iz. The variables f l  , r,,, f 2  are equivalent to - - 
the variables i , ,  r3, r2 [see the first inequality of (3.9)]. By 
virtue of this identity we have 

Here n2, is the unit vector in the direction of the exterior 
normal to K2,. 

In a similar manner we can show that the integral (4.8) 
can be replaced by 

The relation 5' =[ here is equivalent to i4=i3, i i= i4 ,  
i$3=543. But the relations $4 =i3 ,  ii=& imply that diagonal 
elements are specified, while the last integration with respect 
to i3 and i4 represent traces taken with respect to these vari- 
ables. Consequently 

where Tr3(Tr4) is the trace with respect to the internal vari- 
ables of the C(D) molecule. It is likewise convenient to in- 
troduce the traces Tr, and Tr2 with respect to the internal 
variables of the A and B molecules. By virtue of (4.9) and 
(4.10) we can use this notation to convert (4.6) to 

(4.11) 

The Wigner transformation with respect to some of the 
variables can be used to introduce the remaining operators 
that depend on numerical (not operator) arguments rZl, P2, 
or r43, P43 : 

where 

c i j ( rb  ,(j)=(r,;l~l(j). 

By means of these operators we can write Eq. (4.11) as 
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where 

When r : i~v"6~~%-f i ,  we have roAP%-fi for the case (3.2). 
By virtue of the latter inequality the state of the A+B (or 
C+D) complex in the region ro/2<la<3ro/2 is quasiclassi- 
cal with respect to r 2 ~  (or r43). Consequently, as shown in 
Ref. 2, the following approximate expressions hold: 

Using them, and also dividing the sphere KZ1 into the hemi- 
sphere K& where ( V ~ ~ ) ~ > O  and the hemisphere KG where 
(v2,),<0, and analogously the sphere K43 into ~ 4 + ~  and KG, 
depending on the sign of (v4,), , we find from (4.13) 

Here we have written 

In (4.14) we carry out additionally integration with respect to 
P5. Furthermore, we replace the integration with respect to 
P5 and PP1 by integration with respect to P1 and P2, and we 
transform from the integration variables P5 and P43 to P3 and 
P4. On the incoming (for the A and B molecules) hemisphere 
KG these molecules still do not interact with one another. 
Consequently, their states are independent: 

@21(p1+p2~~21?~1p2-P2p1)=31(p1)~2~p2) 

for r2, E K i  . (4.15) 

Similarly, on the incoming hemisphere Ki3 of the C and D 
molecules, we have 

Since jl(P1), f2(p2) are independent of r2, we have 

Similarly, by virtue of (4.16) the integral over KG can be 
converted into an integral over K&, taken with the opposite 
sign. Using this, we find from (4.14) after substituting (4.15) 
and (4.16) 

5. KINETIC EQUATIONS FOR BIMOLECULAR REACTIONS 
AND THE H-THEOREM 

We first set g( f ) = f in Eq. (4.17). Clearly, the first 
term 

on the left-hand side of the relation thus obtained is equal to 
the number of pairs of A and B molecules per unit volume 
which appear as a result of the reaction C+D+A+B and 
disappear because they enter into the reaction A+B+C+D. 
Likewise, the second term 

is equal to the number of pairs of C and D molecules which 
appear due to the second of these reactions minus the num- 
ber of pairs that disappear due to the first reaction. The sum 
of these two terms vanishes, since the total number of mol- 
ecules does not change as a result of the reactions. In order to 
find the derivative ll(P1) it is enough to take the trace Trl 
and integrate with respect to P1 in (5.1): 

Similarly, from (5.1) and (5.2) we find 
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We determine the entropy density of the different types of 
molecules using the same formula 

as in Ref. 2. Here we have written yj= (2 ~ f i ) ~  S~/G, . Dif- 
ferentiating this expression with respect to time, summing 
over j, and taking into account (5.3)-(5.6), we find 

To the expression on the right-hand side we add the expres- 
sion on the left-hand side of Eq. (4.17) for the case 
g( f )=kf[ln(yly2f )-I]. Since we have y3y4= y1y2, after 
some simplification we are left with 

In Ref. 2 it was shown that 

for arbitrary nonnegative definite operators M and i?. In Ap- 
pendix 2 it is shown that the operator fiZ1 is nonnegative 
definite (or rather, is essentially identical with such an opera- 
tor). Also taking into account the fact that ( v ~ ~ ) ~ L O  on K:,, 
we can convince ourselves that expression (5.8) is nonnega- 
tive. By the same means we can show the nonnegativity of 
the second term on the right-hand side of (5.7). Thus the 
inequality s Z-0 is proven. 

Exactly the same method of proof is also applicable to 
more complicated reactions, e.g., A+B+CZD+E. In this 
case there are six submolecules, which can combine in vari- 
ous ways with one another. 

APPENDIX 1. DERIVATION OF AN AUXILIARY FORMULA 

Assume that the kinetic energy has the form 

pi= $ ~ i j i ? ~ i ? ~ .  (Al.l) 

Consider the commutator [?A ,GI. Since Mi; = holds, 
we have 

Hence by virtue of (Al.l) 

where R , = Z ~ M Z ; . ~ ~ ~ .  By virtue of the relation 
[G, , [,I = - ih  Sya we have 

Since La commutes with all terms on the right-hand side of 
the relation (4.2) (where To= TI,+ T:) except T;I, we have 

i.e., ~ , = d t , l d t .  Using the 2 representation, in which 
i?,= -ifidla[,, we can easily show that for any operator M 
the expression 

x[fi2, in( yl~2fi21)-fi21+j1j2-fi21 [ i ? , , ~ ] l ~ t = ~ = - i f i  

is equivalent to - ifidMIC/d<. Hence from (A1.2) we find 

Using the notation y1 Y2k21 = M, y1 yJ1j2 = N we can write Integrating this relation over some region V and using 
the first term on the right-hand side of (5.7) as Gauss's theorem we have 

419 JETP 79 (3), September 1994 R. L. Stratonovich 419 



Here L is a surface enclosing the region V and 1 is the unit 
vector in the direction of the exterior normal to L. 

APPENDIX 2. NONNEGATIVE DEFINITENESS OF THE 
OPERATOR k2, 

We introduce the auxiliary density matrix io(r,P), which 
corresponds to the Wigner distribution 

This function defines io(r,P) for u r u p ~ h / 2 .  We assume 

Then the state po is pure, i.e., 

Using (A2.3) we introduce the operator function 

where Tro is a partial trace, which does not involve the in- 
ternal variables of the A and B molecules. It is evident that 
the operator (A2.4) is nonnegative definite, i.e., cp'~cpS0 
for any function 9. In fact, setting X=lr,P)@cp we have 
X+f21X= r p + ~ c p l ( 2 ~ h ) 3 a 0  by virtue of the nonnegative 
definiteness of the operator f21. 

Let us compare the operator function (A2.4) with 
F2,(r2, ,P21)=W21 [ f2,]. These operator functions are of 
the same type, i.e., they act in the same Hilbert space and 
depend on the same arguments if we set r2,=r, P2,=P. We 
will show that the difference between (A2.4) and F2,(r,P) is 
small. 

Taking into account the explicit form (4.12) of the 
Wigner transformation we can show without difficulty that 
for arbitrary operators and M we have 

Hence by virtue of (A2.1) we find from the relation 
(2,.n13~ =~~,,;a3;, 

Using the freedom to choose the quantities o r ,  up  within the 
constraint (A2.2), we can set 

Then, on the one hand, (A2.2) will hold, while on the other 
hand, by virtue of r o A P 4 h  we have 

The integral on the right-hand side of (A2.5) is nothing but a 
smoothing integral. In view of (A2.6) this smoothing de- 
forms the function k2,(r2, , P21) very slightly in the region 
which is semiclassical with respect to r2, and P2, . In fact, 
(A2.5) can be written 

~ k 2 1 ( r -  6 3 -  771d6d77. 

Expanding k2, in a Taylor series with respect to 6 and 77 and 
performing the integration, we find 

1 
~(r,~)=k~,(r,~)+-(uf~:+u~~~)k~,(r,~)+ 2 ... . 

Since we ca; estimate ro/2G r2, S 3ro/2 in the semiclassical 
region IIvP2lII- IIQzlII/r;. 1 1 ~ 2 2 1 1 1 -  I I ~ ~ ~ I I ~ ( A P ) ~ ,  the 
difference between D(r,P) and F2,(r,P) is small in view of 
(A2.6). Here ( 1  ...(I denotes the norm of the operator. 
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