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The problem of detecting a classical force acting on a quantum probe system is considered. It is 
shown that correlation of the noise in the position-measuring device of the quantum probe 
system is equivalent to a modification of its dynamic properties (in the case of frequency- 
independent noise this modification consists of the introduction of stiffness). Detection 
methods which make it possible to transcend the Standard Quantum Limit within the framework 
of displacement measurements are proposed. 

1. INTRODUCTION 

More than twenty-five years ago, ~ ra~ insk i i '  pointed out 
the existence of the so-called standard quantum limit (SQL) 
of sensitivity in the detection of the action of a classical force 
F(t)  on a quantum test system. SQL is a direct consequence 
of the Heisenberg uncertainty relation: the measuring device 
tracking the position of the test system perturbs its momen- 
tum, which masks the action of the force that one is trying to 
detect. The higher the tracking accuracy, the greater the per- 
turbation; obviously, there exists some optimal accuracy at 
which the sensitivity of the system is maximum and corre- 
sponds to the SQL. For example, for a free mass m the SQL 
has the form 

and for a harmonic oscillator 

where m and om are the mass and natural frequency of the 
oscillator, TF is the time during which the force acts, and 5 is 
a coefficient of the order of unity which depends on the type 
of force. 

Since the publication of Ref. 1, some methods for get- 
ting around the SQL have been proposed (see, for example, 
Ref. 2, a review), which can be divided into two groups. The 
first assumes the use of measuring devices which react not to 
the position of the test system, but to some integral of its 
motion (to the energy3 or the quadrature component4 of the 
oscillator, or to the momentum of the free mass5). The per- 
turbation of the canonically conjugate observable (e.g., the 
position when tracking the momentum) has no effect on the 
output signal of the measuring device and for this reason 
does not affect the sensitivity. The application of such meth- 
ods is hindered, however, by the complexity of the practical 
realization of the corresponding measuring schemes. 

At the same time, there is no fundamental prohibition 
against obtaining a sensitivity greater than the SQL, even 
within the framework of ordinary position measurements. 
The measuring device in this case should track not the in- 
stantaneous position of the test system, but some linear func- 
tional of the coordinate, the values of which commute at 
different moments of time. As an example, one can cite the 

stroboscopic measurement scheme proposed in Ref. 6, con- 
sisting of short, periodic measurements of the position of a 
test oscillator with intervening interval equal to half the pe- 
riod of its natural oscillations. 

In Ref. 7 it was shown that for an arbitrary linear test 
system there exists a sequence of position measurements for 
which the sensitivity to the external force is bounded only by 
dissipation in the test system, and can substantially exceed 
the SQL. The problem consists only in finding an explicit 
form of such a procedure. In principle this problem can be 
assumed to be solved for the case of detection of a force with 
nonzero mean value. As was shown in Ref. 8, when tracking 
the position of a free test mass or harmonic oscillator with 
low accuracy, but over a long period of time rm9 TF, the 
sensitivity to such a force is not bounded by the values of the 
SQL given by formulas (1) and (2). 

In the present paper we consider methods for detecting a 
force with zero mean value acting on a free test mass. It is 
specifically this formulation of the problem that is of interest 
in connection with the development and construction at the 
present time of large laser gravitational  antenna^.^,^ 

In Sec. 2 we present general relationships which de- 
scribe the proposed detection system-the test mass and the 
device tracking its position-and we establish a correspon- 
dence between this scheme and a specific implementation: an 
optical interferometric position sensor. 

In Sec. 3 we show that the noise correlation in the 
position-measuring device is equivalent to a small modifica- 
tion of the dynamic properties of the probe system (in the 
case of frequency-independent noise, to the introduction of 
additional stiffness). 

In Secs. 4 and 5 we propose two new detection methods 
which make it possible to transcend the SQL in position 
measurements. A special feature of the first of these is the use 
of pumping having the form of periodic short pulses, and of 
the second, pumping with shot noise suppressed at low fre- 
quencies. Both methods require that correlation be intro- 
duced into the noise of the measuring device. 

2. MODEL OF THE DETECTION SYSTEM 

The proposed model is shown in Fig. 1. The external 
force F(t) that one wants to detect acts on the test system, as 
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does a fluctuating force Ffl(t) that comes from the measuring 
device. The equation of motion for the position of the test 
system x(t) in this case has the form 

W t ) = F ( t )  +Ffl(t), (3) 

FIG. 1. Block diaeram of a weak-force detector. 

where L is a differential operator which describes the dy- 
namics of the test system. For example, for a free test mass 
m we have 

Test 
system 

L 

and for an oscillator with natural frequency om 

Fitter 
'V(1) 

The output signal of the measuring device is the sum of the 
position x(t) = L - ' ~ ( t )  and the fluctuating component intro- 
duced by the measuring device: 

Although x(t) and if l ( t )  are individually operator functions 
of time," the output signal can be considered a classical 
observable in agreement with the ordinary rules of the clas- 
sical theory of optimal detection." The quantum character of 
the measuring device is manifested in the fact that the noises 
in xfl(t) and Ffl(t) are uneliminable in principle, and their 
correlation functions are coupled by a relation which follows 
from the Heisenberg uncertainty relation." In the general 
case the latter is quite complicated. We write out two special 
cases of this relation which we will have need of later on. 

1) Stationary noise of the measuring device: 

where Sx(w) and SF(o) are the noise spectral densities of 
xfl(t) and Ffl(t), and the cross-spectral density SF,(@). 

2) Scorrelated noise: 

B,(t,tf)=B,(t)S(t-tf ), 

where Bx(t,tf ), BF(t,tf ), and BFx(t,t I) are the correlation 
functions of the noises; in this case 

It is not hard to establish a correspondence between the 
considered noise parameters of an abstract coordinate- 
measuring device and the parameters of the optical interfero- 
metric sensor used in laser gravitational antennas. The force 

Ffl(t) is the fluctuating component of the pressure force of 
the probe light wave on the mirror whose position is being 
measured. The noise xfl(t) corresponds to fluctuations of the 
in-phase (with the reference wave) quadrature amplitude of 
the probe wave. As was shown in Ref. 12, by varying the 
phase shift 0 between the probe wave and the reference 
wave, it is possible to arbitrarily vary the correlation coeffi- 
cient between the noises xfl(t) and Ffl(t). In the simplest 
case, when the probe wave is in a coherent state and its 
power W is constant in time, the noise is stationary, and its 
spectral density does not depend on frequency: 

where % is the frequency of the light. In Ref. 8 it was shown 
that the sensitivity of a measuring device with stationary 
frequency-independent noise, for a force with zero mean 
value, corresponds to the SQL (1). 

3. NOISE CORRELATION IN THE MEASURING DEVICE 

In Ref. 13 it was noted that a small correlation between 
the noises xfl(t) and Ffl(t) when tracking the position of a 
test oscillator has the same effect on the sensitivity as does a 
small shift in the natural frequency of the latter. This effect is 
a manifestation of the general rule that correlation is equiva- 
lent to some modification of the dynamic properties of the 
probe system. 

Indeed, in the presence of correlation the fluctuating 
force can be represented as 

where FLO)(~) is the component that is not correlated with 
xfl(t), and k is a linear operator that describes the correlation. 
Its kernel K(t,t l)  is the solution of the equation 

Here the problem reduces to detection of the force F(t)  
against the noise background 

Consequently, the sensitivity of a measuring device with cor- 
related noise coincides with the sensitivity of a measuring 
device with uncorrelated noise that is connected to a probe 
system described by the linear operator L+k. 

The simplest form that the operator k can take is multi- 
plication by some constant k. It has just precisely this form 
when the noise of the measuring device is stationary white 
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noise (for which k=SFx/S,), and it is to this form that the 
method of introducing correlation in the noise of an optical 
interferometric sensor (7), proposed in Ref. 12, leads. Such a 
form of the operator k is equivalent to introducing additional 
stiffness into the probe system, where this stiffness, depend- 
ing on the sign of the correlation, can be negative as well as 
positive. 

Note that for k= -mu:, the oscillator is, as it were 
transformed into a free mass whose sensitivity when measur- 
ing a force with nonzero mean value is not bounded by the 
SQL.~ In this way the sensitivity of the oscillator to a force 
with nonzero mean value, for such a value of the anticorre- 
lation, is also not bounded by the SQL. 

4. STROBOSCOPIC MEASUREMENTS OF THE POSITION 
OF A FREE MASS 

Positive correlation of the noises xfl(t) and Ffl(t), 
equivalent to introducing stiffness into the probe system, al- 
lows one to use a stroboscopic measurement procedure not 
only for an oscillator, but also for a free test mass. In the case 
of an optical interferometric sensor, such a procedure can be 
realized by pulsed modulation of a probe wave. 

In the analysis of a sequence of "almost instantaneous" 
measurements, it is convenient to go from the continuous 
time variable t to the discrete time variable j ,  t= j r ,  where r 
is the interval between measurements. In this case the ex- 
pression for the signal-to-noise ratio1' takes the form 

where v j  is a weighting function defined by the relation 

where 

is the value of the response of the test mass to the force to be 
detected at the instant of the jth measurement, 

is the correlation matrix of the noise at the input of the mea- 
suring device. The parameters b,, b, , and bxF must satisfy 
the uncertainty relation 

In the case of an optical interferometric sensor with 
pulsed modulation, they are equal to (compare with formulas 
(7)) 

where E is the energy of each pulse. 

Calculating the signal-to-noise ratio (9) is simplest in the 
spectral representation. Setting 

and substituting these values into formulas (9) and (lo), we 
obtain 

Expression (13) depends on the type of force that is to be 
detected. Let us consider the case that is typical of a 
gravitational-wave experiment, that is, a "memoryless" 
force,2 which obtains when there are no aftereffects in the 
response of the test system, either, in the position or in the 
momentum. The sensitivity is maximum when the duration 
of the force 7~ is close to r. In this case we can set 

The signal-to-noise ratio in this case is equal to 

where 

is the signal-to-noise ratio corresponding to the SQL (I), 

is the correlation coefficient of the noise of the measuring 
device, and the parameter P is equal to 

In the case of an optical interferometric sensor, referring to 
formulas (12) we see that 

i.e., /? is proportional to the energy of the optical pulses E. 
The signal-to-noise ratio (14) grows without bound for 

p= 1 as p+l (see Fig. 2). For these values of the parameters, 
formula (14) simplifies: 
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FIG. 2. Dependence of the sensitivity of the weak-force detector 
(14) on the parameters p and P. 

n '=is) = ( )  . (16) 
SQL SQL 

Thus, the proposed method can provide sensitivity ex- 
ceeding the SQL. A necessary condition of this is strong 
correlation in the noise of the measuring device and suffi- 
ciently high-energy sounding light pulses. 

5. MEASURING DEVICE WITH COLORED NOISE14 

The progress that has been achieved in recent years in 
the preparation of nonclassical states of electromagnetic ra- 
diation affords the possibility of using another method of 
raising the sensitivity, based on the optimum choice of the 
shape of the spectral density of the noise of the measuring 
device. 

Let us consider some expressions for the signal-to-noise 
ratio for the case of stationary noise of the measuring device: 

Let the spectral densities of the noise of the measuring 
device have the form 

i.e., the spectral density of Ffl(t) is reduced at lower frequen- 
cies, and the spectral density of xfl(t) is consequently en- 
hanced. The signal-to-noise ratio in this case is 

SQL 
1-p'  

In other words, in the presence of strong correlation of the 
noise in the amplifier (p+l), the signal-to-noise ratio can 
substantially exceed ( ~ l n ) ~ ~ ~ .  

Note that the shape of the spectral densities (18) can 
hardly be reproduced in experiment, since SF(w)+w as 
o+m, which corresponds to unbounded growth of the fluc- 
tuational feedback of the measuring device at high frequen- 
cies. However, it is obvious that a dependence of the form 
(19) is necessary only over the limited frequency range in 
which the spectrum of the forced to be detected, F(w), sub- 
stantially differs from zero. For example, the spectral densi- 
ties of the noises can have the form 

where is some critical frequency. Calculation shows that 
if w0rF31, then the signal-to-noise ratio, as before, is given 
by (19). 

Practical realization of the given method in the case of 
an optical sensor requires the use of a probe wave with sup- 
pression at low frequencies of photon shot noise. Reference 
15 demonstrates a method of preparing light in such a state, 
based on the use of a high-efficiency current-pumped injec- 
tion laser with suppressed shot-noise fluctuations. 

'v. B. Braginskii, Zh. Eksp. Teor. Fiz. 53, 1434 (1967) [Sov. Phys. JETP 
26, 831 (1968)l. 

'v. B. Braginskii, Usp. Fiz. Nauk 156, 93 (1988) [Sov. Phys. Usp. 31, 836 
(1988)l. 

'V. B. Braginskii, Yu. I. Vorontsov, and F. Ya. Khalili, Zh. Eksp. Teor. Fiz. 
73, 1340 (1977) [Sov. Phys. JETP 46, 705 (1977)l. 

4 ~ .  S. Thorne et aL, Phys. Rev. Lett. 40, 667 (1978). 
5 ~ .  B. Braginskii and E Ja. Khalili, Phys. Lett. A 147, 251 (1990). 
6 ~ .  B. Braginskii, Yu. I. Vorontsov, and F. Ya. Khalili, Pis'ma Zh. Eksp. 
Teor. Fiz. 27, 296 (1978) [JETP Lett. 27, 276 (1978)l. 

412 JETP 79 (3), September 1994 A. V. Syrtsev and F. Ya. Khalili 412 



'E Ya. Khalili, Dokl. Akad. Nauk SSSR 294,602 (1987) [Sov. Phys. Dokl. 
32, 409 (1987)l. 

'YU. I, Vorontsov, Theory and Methods of Macroscopic Measurements [in 
Russian], Nauka, Moscow (1989). 

9 ~ .  G. Blair (ed.), The Detection of Gravitational Waves, Cambridge Univ. 
Press, Cambridge (1992). 

'OV. B. Braginskil and F. Ya. Khalili, Quantum Measurement, Cambridge 
Univ. Press, Cambridge (1992). 

"B. R. Levin, Theoretical Principles of Statistical Radiophysics [in Rus- 
sian], Sovetskoe Radio, Moscow (1974). 

41 3 JETP 79 (3), September 1994 

I 2 s .  P. Vyatchanin and A. B. Madko, Zh. Eksp. Teor. Fiz. 104, 2668 (1993) 
[JETP 77, 218 (1993)l. 

1 3 ~ .  V. Gusev and A. V. Tsyganov, Vestnik Moskovskogo Universiteta, Ser. 
3, Fizika. Astronomiya 34, No. 4 (1993). 

1 4 ~ .  A. Pobedrya, Diploma Work, Lomonosov State Univ., MFFI Depart- 
ment, Moscow (1993). 

15Y. Yamamoto, S. Machida, and 0. Nisson, in Proceedings of the Confer- 
ence on Amplification and Quantum Effects of Semiconductor Lasers. 

Translated by Paul F. Schippnick 

A. V. Syrtsev and F. Ya. Khalili 413 


