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We find the relativistic corrections to the positronium decay probability. Our calculations are 
based on noncovariant perturbation theory. The relative corrections to the total probability are 
found to amount to 40(alr) '  for the singlet state and 46(a/r) '  for the triplet. 

1. INTRODUCTION Earlier this problem was considered in Refs. 10 and 11. Our 
approach differs from that used in Refs. 10 and 11. What is 

The large difference between the more important, however, is that the results and conclusions 
the orthopositronium decay probability' differ too. The origin of this discrepancy is explained below. 

1'&,,=7.04822 16 ps-' (1) We started our calculations with the relativistic correc- 
. - 

tion to the parapositronium decay probability, considering 
and the of this quantity them only as a warming-up exercise before solving the more 
relative-order corrections a and a210g(l/a) (see Refs. 2-5) difficult problem of o~hopositronium~ We found, however, 

2 ( r 2 - 9 )  a that the corrections obtained for the singlet state are large 
Fieor= m a6 [ 1 - 10.28 ; - a2log- 

9 r  a '1 and very close in accuracy to the data obtained in recent 
experiments.12 

= 7.038 30 ps-' (2) 

poses a serious problem for modern quantum electrodynam- 
ics (QED). To resolve this contradiction within QED, correc- 
tions of the order of ( a ~ r ) ~ ,  which have yet to be calcu- 
lated, must be included in the theoretical result (2) with a 
numerical factor of 2502 40. Such a value of the factor may 
seem unreasonably large. 

There are, however, arguments that this might occur.6 
The large factor - 10.28 in the term representing the correc- 
tion of order a /  r to the orthopositronium decay probability 
[see Eq. (2)] means that the typical value of the factor in the 
correction of order a / r  to the decay amplitude is roughly 
equal to five. Accordingly, the square of this correction con- 
tributes a term of order 25(alr) '  to the decay probability. A 
direct numerical calculation of this contribution7 gives 
28.8k0.2 for the value of the coefficient of ( a l ~ ) ~ .  It is 
natural to expect, then, that the interference of the second- 
order correction in a to the amplitude of the process and the 
zeroth-order amplitude gives a correction twice as large as 
the square of the first-order amplitude. In other words, the 
natural scale for the total second-order correction to the or- 
thopositronium decay probability is8 

Samuel and ~i~ recently arrived at a similar conclusion 
by basing the reasoning on the Padd approximation. 

Relativistic corrections can provide an even larger con- 
tribution to the positronium decay probability. A simple ar- 
gument in their favor is that the corresponding expansion 
parameter (vlc)'- a2 is r2- 10 times larger than the simi- 
lar parameter (air)' of ordinary second-order radiative cor- 
rections. 

In this paper we obtain the relativistic corrections to the 
orthopositronium and parapositronium decay probabilities. 

2. CORRECTIONS TO THE PARAPOSITRONIUM DECAY 
PROBABILITY 

Relativistic corrections to positronium decay originate in 
both the annihilation kernel and the wave function of the 
bound state. We begin with the corrections caused by the 
expansion of the annihilation kernel. The corrections caused 
by the wave function of the bound state will be considered 
later. 

The central point of our work consists in the following. 
When calculating the decay amplitude in the positronium 
rest frame, we must integrate the product of the annihilation 
kernel and the positronium wave function over the three- 
dimensional momentum p of the electron and positron. To 
lowest order in vlc the annihilation kernels of parapositro- 
nium and orthopositronium are momentum-independent. 
Therefore, what remains is an integral with respect to p of 
the nonrelativistic wave function in the momentum represen- 
tation, which is equivalent to $(r = 0) in the coordinate rep- 
resentation. The main difficulty here is that allowing for a 
correction of the order (plm)' in the annihilation kernel 
leads to the following integral over momenta: 

which diverges linearly as p+ a (here a = 2/m a is the Bohr 
radius of positronium). These difficulties are resolved in the 
following way. The exact expression for the annihilation ker- 
nel does not grow as p-+m, in contrast to its expansion in 
powers of plm. Hence, the integral of the product of the 
kernel and $(p) does indeed converge. The integral with 
respect to lpl can be transformed into an integral from -a 

to + w  and the integration contour can be shifted into the 
upper half-plane. Here we must allow for the pole of the 
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= f' + L+... FIG. for the 1. The parapositronium diagrams of noncovariant annihilation kernel. perturbation The dashed theory 
-P -P 

k. k, lines stand for intermediate states. The diagrams differing 
I I in photon permutation are not shown. 
1 I 

wave function at p =  $ ima  and the branching originating at Here ,y and 9 are nonrelativistic spinors, E = 2m - :ma4 is 

point p  = im and related to the annihilation amplitude. Obvi- the total positronium energy, ell and kl,2 are the photon 
O U S ~ Y  it is this pole that corresponds to the desired annihila- Dolarization vectors and momenta, w ,  = @, = W =  +E is the 

A - 
tion corrections. The contribution of the pole can easily be 
calculated. This gives us the following procedure for calcu- photon energy, we have written ~ ( p )  = d m ,  and 

- - 

lating the relativistic corrections. After expanding the ampli- A 2 ( p ) =  % l * q + p m l ~ ( ~ ) ]  
tude in powers of plm and averaging over the angles we are the projection operators, respectively, on the positive and 
must perform the substitution negative frequency states of an electron with momentum p. 

The Coulomb interaction in an intermediate state is unimpor- 
(5 )  tant because the momentum of one of the particles in it is 

, , 

close to m.  
The surprise is the "minus" in this expression. One must We represent the amplitude M  as M  = M ,  + SM, where 
bear in mind, however, that the cut also contributes to the M~ is the amplitude in the lowest order. Expanding M in 
integral. This contribution is determined by the relativistic powers of plm, averaging over the directions of (recall that 

1~1-m and corresponds the radiative we are examining the S-state), and employing (9, we get 
corrections, which have a relative order of roughly a/rr and 
are much larger than the effect we are interested in ( -a2) .  

The next idea important to our discussion is the use of (7) 

noncovariant perturbation theory (see, e.g., Ref. 13), which 
simplifies calculations considerably and allows the binding The respective relative correction to the parapositronium de- 

energy of positronium to be considered easily. The annihila- cay probability caused by the expansion of the annihilation 

tion amplitude is described by the diagrams shown in Fig. 1  kernel is 

and has the form 

~ = 4 r r a v t ( ~ - t v \  A + ( ~ - k l ) - A - ( p - k , )  (P-tviTl 

+ ( I - 2 )  3. CORRECTIONS TO THE ORTHOPOSITRONIUM DECAY 
(6) PROBABILITY 

We now consider the relativistic correction to the ortho- 
positronium decay probability caused by the expansion of 
the annihilation kernel. This problem is much more involved 
than in the case of parapositronium. The diagrams of the 
noncovariant perturbation theory contributing to the three- 

FIG. 2. The diagrams of noncovariant perturba- 
tion theory for the orthopositronium annihilation 
kernel. 
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photon annihilation kernel are shown in Fig. 2. It has proved 
convenient to transform the amplitude in the following man- 
ner so that further calculations become considerably simpler. 
We write the energy E of the initial state, which enters into 
the perturbation-theory denominators, as 

and expand the amplitude in powers of the difference 

[here we use the substitution (5) for p2/m2]. The zeroth term 
in the series expansion in powers of this difference trans- 
forms into the ordinary covariant Feynman amplitude of 
three-photon annihilation of an electron and a positron with 
4-momenta ( E @ ) ,  2 p). Expanding this "covariant" part of 
the annihilation amplitude in powers of plm up to second- 
order terms, averaging the terms quadratic in plm over the 
directions of p, and employing the substitution rule (5), we 

get 

Here 

is the zeroth-order amplitude in vlc, ni= ki /wi ,  and 
h.=n.e. 

I 1 I '  

The interference of M ,  and M o  after summation over the 
photon polarizations and integration over the final states 
yields the following relative correction to the orthopositro- 
nium decay probability: 

Next we must allow for the correction caused by the 
change in the phase volume due to the binding energy 
E - 2m = - $m a2. We can easily show that this correction is 

Thus, the total "covariant" correction to the orthop- 
ositronium decay probability is 

If in (10) we replace a2 with - +v2 in accordance with rule 

(5) and replace E -2m with mu2 when allowing for the 
change in the phase volume, the result coincides with the 
v2-correction to the probability of three-photon annihilation 
of a free electron and positron in the 3 ~ 1  state obtained by 
Kuraev et al." (see also Ref. 11). 

Now let us turn to the "noncovariant" part of the cor- 
rection to the annihilation amplitude [i.e., terms proportional 

to E - 2 ~ ( p )  = im a']: 

Here ei= Jw. The correction to the decay probability 
related to the amplitude M,, was found numerically and 
amounted to 

Note that the exceptional term with 4 in the correction to 
the singlet-state decay probability [see Eqs. (7) and (S)] has 
the same "noncovariant" origin. 

Returning to the decay of the triplet state, we note that 
our results for the a2-correction differ from those obtained in 
Refs. 10 and 11. It is not so much a matter of the "nonco- 
variant" correction (14) omitted in Refs. 10 and 11: this cor- 
rection is moderate numerically. The main difference lies in 
the correspondence between v2 and a2. Kuraev et al. 
l o  assumed that v2-+ a2 ,  which leads to an erroneous sign of 
the a2-correction (but it still yields a reasonable absolute 

value). On the other hand, the assumption that v2-+ - +a2 

used by Labelle et al." yields a correct sign but strongly 
understates the value of the correction. Labelle et a1.l1 ex- 
plicitly state, however, that they have obtained only a frac- 
tion of the relativistic corrections. Therefore, there is no real 
contradiction between our results and those obtained in Ref. 
11. 

4. CORRECTIONS TO THE DECAY PROBABILITY CAUSED 
BY THE CHANGE IN THE POSlTRONlUM WAVE 
FUNCTION 

We now examine effects related to the relativistic correc- 
tions to the positronium wave function @(r). To this end we 
use the Breit equation as is done in Ref. 6. Here parapositro- 
nium and orthopositronium can be considered along parallel 
lines. 
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The part of the Breit Hamiltonian (BH) corresponding to 
the relativistic corrections to the dispersion law and the Cou- 
lomb interaction, 

p4 n-a 
8Vc= - 4m3 + ;;;T 6(r),  

can easily be transformed into 

Here and in what follows we drop the constant terms in the 
perturbation (obviously, they do not give rise to a change in 
the wave function) and substitute - +ma for d,, which acts 

on the ground state of positronium. 
The next spin-independent term in BH, 

describes the magnetic interaction of the electron and posi- 
tron due to orbital motion. For the ground state this operator 
transforms into 

The last term in BH yielding corrections we are inter- 
ested in is the contact spin-spin interaction 

n-a 
V,=?As(r), A = ; S ( S + ~ ) - ~ .  (20) 

A convenient way to write it is 

The terms a3/8r and a3/4r in Eqs. (16) and (18) taken 
together lead, obviously, to a shift in the coupling constant: 
a+ a(1-  :a2). This in turn yields the following relative 

correction to I i+b(0)I2 and, respectively, to the decay prob- 
ability 

which is the same for orthopositronium and parapositronium. 
It is equally easy to calculate the correction related to the 

commutator in (20): 

Finally, we examine the singular term of the transformed 
Breit Hamiltonian: 

The normalized solution to the radial wave equation 

has the form 

R = 2  - [1- h ( 3 - ~ ) ] ( m a r ) '  i "z" 1 " 
where C-0.577 is Euler's constant. The fact that the eigen- 
value E differs from - :ma2 is unimportant for our pur- 

poses. From (25) we can easily find the corresponding rela- 
tive correction to 1 $(0)12 and the positronium decay 
probability: 

where ro- l/m is the distance over which annihilation takes 
place. The logarithmically strengthened part of this correc- 
tion, 

was obtained earlier for the triplet case [see Eq. (2)] and the 
singlet case in Refs. 4 and 6, respectively. So we omitted it in 
(26). Thus, we arrive at the following expression for the total 
relativistic correction caused by the modification of the 
#-function: 

We assume that + 1 serves as a reasonable estimate of 
the interval of possible values of log(mro); this spread ap- 
pears because of the uncertainty in the cutoff of ro at small 
distances. On the other hand, in our treatment the cutoff of 
the logarithmic contribution at atomic distances has been 
done exactly. 

Our result for the relativistic correction caused by the 
orthopositronium wave function, [- 19/24+ ( 1 / 3 ) ~ ] 2  
=-0 .62  differs from that obtained by Labelle et al." At 
present we have no explanation for this discrepancy, since 
the work of Labelle et al. gave only the numerical result for 
this correction: 1.16a2. 

5. CONCLUSION 

Summing all the contributions, we arrive at the expres- 
sions for the relativistic correction to the decay probability 
for parapositronium and orthopositronium, respectively: 

(apparently, it is also useful to give these results in ordinary 
"radiation" units of aln-). The omission of the terms with 
log(mro) leads to an error that we estimate at 
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For orthopositronium decay our correction (30) with the 
correction found by ~urichenko' substantially lowers the 
difference between the result predicted by theory and that 
given by experiment from (2502 40)(a/.rr)~ to (175240) 
x ( c u I . ~ ~ ) ~ .  

For parapositronium the value of the calculated correc- 
tion is close to the attained experimental accuracy.12 Here 
there is ground to believe that ordinary radiative correction 
will prove to be large. Hence, the measuring of the effect 
appears fairly realistic. 
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Translated by Eugene Yankovsky 
This article was translated in Russia. It is reproduced here the way it was 
submitted by the translator, except for stylistic changes by the Translation 
Editor. 

383 JETP 79 (3), September 1994 A. I. Mil'shtein and I .  9. Khriplovich 383 


