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A set of new nonlinear solutions of nonlocal Josephson electrodynamics, which describe vortex 
states with a characteristic spatial scale smaller than the London penetration depth, has 
been obtained. Two types of solutions, which correspond to both states with a nonzero mean 
magnetic field and states without a mean field, have been considered. A description of stationary, 
spatially periodic vortex states has been given. The relaxation laws in the strong-dissipation 
limit have been obtained. Finally, a description of periodic traveling structures has been given in 
the nondissipative limit. 

1. It is usually assumed1 in the electrodynamics of Jo- 
sephson junctions that the characteristic scale of the struc- 
tures considered is large compared with the London penetra- 
tion depth A of a magnetic field into a superconductor. 
Nonlocal Josephson electrodynamics do not have such a 
r e s t r i~ t ion .~ ,~  The applicability of nonlocal electrodynamics 
is revealed, for example, when a Josephson junction in a 
strong magnetic field whose field strength vector lies in the 
plane of the junction is described. Here a mixed state is 
realized with a periodic structure having a period 

where q50=.rrTic/lel =2.05.loP7 Oe .cm2 is the magnetic 
flux quantum, 2d  is the thickness of the tunnel junction, A +  
and A- are the London penetration depths of a magnetic field 
into the superconductors on opposite sides of the junction, 
and H is the magnetic field averaged over the junction. Ac- 
cording to Ref. 4, the scale (1.1) is smaller then the London 
penetration depth when the magnetic field strength is close to 
the value of the lower critical field. 

On the other hand, in ordinary Josephson electrodynam- 
ics it is assumed that the London depths (A, ,A_) are small 
compared with the Josephson length Xi, which is defined by 
the formula 

where j, is the critical current density through the Josephson 
junction. It can be assumed that tunnel junctions with a very 
large critical current density can be realized, and that the 
unusual situation in which the London depths are larger than 
the Josephson length is then possible. Let us discuss this 
situation in the simple case of a tunnel junction between two 
identical superconductors. Then the unusual condition 

A > A ,  (1.3) 

is realized according to Eq. (1.2) when 

Here it is also assumed that the thickness of the junction is 
small compared with the London depth. At zero temperature 

where A(0) is the width of the superconducting gap, R is the 
resistivity, v F  and pF are the velocity and momentum on the 
Fermi surface, m is the mass of the electron, and 6 is the 
correlation length. Then condition (1.4) can be written in the 
form 

where K is the parameter of the Ginzburg-Landau theory. If 
the resistivity is represented in the form 

where (T is the conductivity and rfp is the effective free-path 
time, which determines the value of j,(O), Eq. (1.6) takes the 
form 

Of course, this condition is more easily satisfied, the smaller 
the thickness of the tunnel junction. However, the critical 
tunneling current need not exceed the pair-breaking current5 

It is not difficult to see that the condition jd2'jo reduces to 

Thus, the London depth may be smaller than the Josephson 
length in superconductors with a large Ginzburg-Landau pa- 
rameter K, in accordance with Eq. (1.9), and in sufficiently 
thin tunnel junctions, in accordance with Eq. (1.8). 
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The equation used in nonlocal Josephson electrodynam- 
ics for the phase difference cp between Cooper pairs on op- 
posite sides of an infinitely long junction is3 

P dcp 1 d2cp 
sin cp+ - -+ --Z 7 

wf dt w,  dt 

+a dcp(zl,t) 
=A: a \ dzlQ(z-z ' )  - 9  

dz -, dz' 

where J = ~ ; ( A  + + A - + 2d), w, is the Josephson frequency, 
p characterizes the dissipation properties of the tunnel junc- 
tion, and 

The magnetic field strength within the junction ( - d C z C  
+ d )  is given by 

and the field in the superconductors is given by 

I+- acp(zl,t) 
Hy(x,z,t)= - - dz lQz(z -z r , ?x-d)  - 

21el -, dz' ' 

where 

(1.16) 

The plus and minus signs in Eq. (1.15) correspond, respec- 
tively, to the regions in space occupied by the superconduct- 
ors x > d  and x <  -d.  

The energy density of a tunnel junction is given by1) 

In this report we present results pertaining to the solution 
of Eq. (1.11) in the asymptotic limit, in which cp varies 
sharply over a length smaller than A +  and A- and Eq. (1.11) 
has the form 

where 1 =A&: + A?)-'. Several exact solutions of this equa- 
tion are presently known. However, they can still be counted 
on the fingers of one hand: the stationary 2.rr kink in Ref. 6, 
the traveling 4, kink in Refs. 3, and 7, and the vortices 
relaxing with strong dissipation in Ref. 8. The results in 
Refs. 2 and 4 can be attributed to approximate consequences 
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of nonlocal Josephson electrodynamics. Below we examine 
some new exact solutions of Eq. (1.18), which describe the 
vortex state both in the presence of a mean magnetic field 
and in the absence of such a field. We present the results for 
stationary states, for the strongly dissipative relaxation of 
such vortex states, and for traveling nonlinear vortex struc- 
tures. The stability of the nonlinear structures studied will be 
addressed in the Appendix. 

It should be stated that the ensuing results are based 
mathematically on the following Hilbert transform pair 
(a>O, A >O): 

sinh a - sin A y 
- 

x-y cosh a-cos  Ax cos Ay - cosh a ' 
(1.19) 

sinh a cos AX - cash a sin A y 
- 

cosh2a-cos2Ax c o s 2 A y - c o s h 2 a 7  

where the integral is taken in the sense of the Cauchy prin- 
cipal value. These formulas were established in Ref. 9 in the 
theory of Peierls-Nabarro dislocations during the solution of 
the Peierls equation,10 which coincides with stationary limit 
(1.18) when the sign of its right-hand side is reversed. 

2. We first present the stationary solution of Eq. (1.18) 
corresponding to a vortex state in the presence of a constant 
mean magnetic field. Such a state is described by a phase 
difference: 

This expression is distinguished from the known solution of 
Peierls equation9 by the presence of the term T. The Hilbert 
transform (1.19) is essential for obtaining such a solution, as 
well as other solutions with a nonzero mean magnetic field. 

The magnetic field corresponding to solution (2.1) in the 
superconductors can be represented in the following form: 

1 + arcsinh - 
L 

+ L s i n h ( 7 )  - cos i])]] . (2.2) 

The magnetic field within the junction has the form 

H,(z)= -H+ SH,,(z), (2.3) 

where for the averaged field we have 

and the periodic part is described by (see Ref. 11) 
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1 
SH,(z) = - 277(A: 40 + A!) [arcsinh L 

Solution (2.1) corresponds to the following energy density in 
the tunnel junction: 

The energy density averaged over the period of the spatial 
oscillations is 

In the asymptotic limit L 4 1  we have 

40 n z 
6Hy (z) = - 5 [ &) cos t . (2.8) 

. r r ( ~ 2 , + ~ 2 )  

Z 
q(z)=77+ -. 

L (2.9) 

In the opposite limit L + 1 it follows from (2.1) that 

q (z )  = r+ 2 arctan - tan - . 
[2; :L] 

Hence the formal transition (L +m) can be made to a 277 
kink6j9: 

z 
q(z )  = T+ 2 arctan -. 

1 
(2.11) 

3. We turn now to the next solution, which corresponds 
to strong dissipation (compare Ref. 8), in which the nonsta- 
tionary evolution of a vortex state is determined by the term 
containing the first derivative with respect to time, and the 
second derivative on the left-hand side of Eq. (1.18) can be 
neglected: 

P atp 1 dz '  dq(zl , t )  
~ i n q + ~  -=-  

wj  dt .rr 
(3.1) 

Our proposed solution of this equation has the form 

tan(zl2L ) 
q(z , t )  = .rr+ 2 arctan 

Here 

P dff 1 
- -+sinh a= -. 
w; d t  L 

The relaxation solution of Eq. (3.3) has the form 

a ( t )  L 2 

2 
- - + & + l  tanh - - - 

1 

t [ tanh 9 + :] cosh + &$ sinh - T 
X 

L t t 
[tanh 7 + ;]sinh ; + dl+ 7 1 cosh - r ' 

where T = ~ ~ I ~ W , ; ~ ( L ~ +  12)-1'2]. According to (3.4), as the 
time increases, the solution (3.2) departs from the initial 
value aO= a(t=O) and relaxes to stationary state (2.1). 

Solution (3.1) corresponds to the following dependence 
of the magnetic field strength in the superconductors on the 
coordinates and time: 

( [ + @ ( t ) j  -COs ;l)]}% -In 2 cosh - 

As in Eq. (2.3), the magnetic field without the junction is the 
sum of the constant averaged field H defined by Eq. (24) and 
the oscillating field" 

cosh a ( t )  - cos - 
L 

(3.6) 

The nonstationary energy density of the tunnel junction cor- 
responding to solution (3.2) has the form 

sinh2 a ( t )  

cosh a ( t )  - cos(z1L) 

sinh a ( t )  A: +A' 

cosh a ( t )  - cos(z/L) L(A+ + A -  + 2d)  
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The energy density averaged over a spatial period is 

4. The third solution of (1.18) corresponds to a nonsta- 
tionary state in the nondissipative limit (P=O), where Eq. 
(1.18) reduces to the following: 

The solution of this equation in the form of a traveling wave 
has the form 

The velocity of the traveling wave is related to L by 

This velocity is clearly restricted: 

Equation (4.3) can be represented in the form 

This formula makes it possible, in particular, to trace how the 
velocity of a standing wave approaches the limiting value 
lw ,  as L increases. The limiting value corresponds to the 
velocity of a 47r into which solution (4.2) transforms 
as L +m. 

Equation (4.2) corresponds to the following expression 
for the magnetic field in the superconductors: 

(4.6) 

Within the tunnel junction 

Here the constant magnetic field is twice the magnetic field 
(2.4), and for the oscillating part we have:'' 

40 l o j +  Jv 
SHy(z,t) = - 

T(A: + A!) 
l w j -  v cos - 

L 

Traveling wave (4.2) corresponds to the following expres- 
sion for the energy density: 

For the energy density averaged over an oscillation period 
we have 

This presently exhausts the solutions of Eq. (1.18) with non- 
zero magnetic field averaged over the oscillations that we 
have obtained. 

5. Let us now turn to the periodic solutions of Eq. (1.18), 
which correspond to states with zero mean mag-netic field. 
The corresponding stationary solution has the form 

q(z)  = 7r+ 2 arctan ( JF sin ;I. 
Transformation (1.20) is essential for obtaining this and the 
ensuing solutions. Unlike (2.1), solution (5.1) is possible 
only at L > I .  Accordingly, for the magnetic field in the su- 
perconductors we have 

+x-d +-x-d z 
L cash[ + 1 + cos L 

Within the tunnel junction the magnetic field is 

40 L + d m  COS(Z/L) 
Hy (z) = - In 

2 T(A: + A 5 )  L - d m  COS(Z/L) ' (5.3) 
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The energy density of the tunnel junction for solution (5.1) 
has the form 

Finally the energy density averaged over a period is 

We note that in the limit L - + m  solution (5.1), like solution 
(2.1), becomes a 277 kink [Eq. (2.11)]. 

6. Here we present a solution of Eq. (3.1) corresponding 
to the strong-dissipation limit, which describes the relaxation 
process for vortex states without a mean magnetic field. This 
solution is 

sin(z1L ) 
cp(z,t) = 77+2 arctan 

sinh a ( t )  ' 

where 

The solution of Eq. (6.2) corresponding to the initial problem 
has the form 

where ao=a(t=O). Hence it follows, in particular, that 4 t )  
increases without bound as the time increases at L <I. This 
corresponds to disappearance of the vortex structure. In the 
opposite case of L > 1, we have a(t +m) =arctan(llL). This 
corresponds to the relaxation of solution (6.1) to stationary 
solution (5.1). 

The magnetic field in the superconductors corresponding 
to solution (6.1) has the form 

For the energy density we have 

f i  jc sinh a ( t )  
5(z,t)= - 2 sinh a ( t )  

le( cosh 2a(t)-cos(2zlL) 

I z cosh a ( t )  + cos(z1L) + - cos - In 
L L cosh a ( t )  - COS(ZIL) ' (6.5) 

1 
tanh a ( t )  - L - ln[tanh a( t ) ]  

7. The last solution that we present here corresponds to 
the nondissipative limit [see (4.1)]. In this case a traveling 
vortex structure without a magnetic field can be described by 

sin{(z- Vt)/L) 
cp(z,t) = 4 arctan -my I 

where 

It is clear from the last equation that the velocity V of the 
traveling structure should be greater than w,l: 

Conversely, inequality (4.4) holds for traveling structure 
(4.2) with a mean magnetic field. In the limit V+lw,, at 
which L-im according to (7.2), Eq. (7.1) becomes a 477 
kink.397 Thus, Eqs. (7.1) and (4.2), which yield a 477-kink 
structure when V= lo , ,  point out a natural procedure, which 
can be effectively utilized to numerically construct more 
complicated kink structures as the limits of periodic solu- 
tions. 

We note here that according to (7.2), as the velocity V of 
a traveling vortex structure increases, the scale L at first de- 
creases, reaching the minimum value ~ , ~ , = 3 ~ ' ~ 2 - ' 1  when 
V= (312) oil, and then increases again. 

The magnetic field in the superconductors corresponding 
to traveling wave (7.1) has the form 

where 

Within the tunnel junction we have 

The energy density of the tunnel junction corresponding to 
solution (7.1) has the form 

z - v t  fi+ Jq COS([Z - V~]IL ) 
X cos - In 

L fi- Jw,l cos([z- VtIlL) 

The energy density averaged over a period is given by (7.7) 
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Finally, the mean value of the energy density over one period 
equals 

8. In this communication we have presented a set of 
solutions of asymptotic equation (1.18), which describes the 
phase difference between Cooper pairs on opposite sides of 
an infinitely long Josephson junction for vortex states whose 
spatial scale is small compared with the London depths. In 
publicizing such new nonlinear solutions, we understand that 
their appearance immediately raises numerous new problems 
for nonlocal Josephson electrodynamics. One such problem 
is the stability of the solutions that we obtained. Here it can 
already be noted that the previously published work in Ref. 4 
corresponds to a certain degree to the positive relative stabil- 
ity of states with a mean field. The instability of vortex struc- 
tures is treated in the appendices. At the same time, it should 
be noted that the unstable solutions are also of definite inter- 
est in the study of nonlinear evolution processes, which 
should be considered in the future. Without predicting any 
possible experimental observations of the nonlinear states 
described above, we can still focus attention on the specific 
dependence of the velocity of a traveling wave with mean 
vortex magnetic field (4.2) on the period of such vortex 
chains, which might be manifested to a significant degree 
when they are excited. In the opposite limit of strong dissi- 
pation, experiments devised to study the temporal relaxation 
of prepared vortex chains might make it possible to experi- 
mentally reveal specific details of the small-scale structures 
under discussion, for example, on the basis of the depen- 
dence of the relaxation process on the period of the chains. 

In conclusion, we thank A. Borisov, who directed our 
attention to the work reported in Ref. 9. This research was 
supported by the Scientific Council for High-Tc Supercon- 
ductors and was performed as part of Project No. 93015 of 
the High-T, Superconductivity Project, and also by a grant 
of the Russian Fund for Fundamental Research (No. 94-01- 
01504, a) and by the International Science Fund (No. R500). 

APPENDIX A 

Here we shall briefly describe the simplest results of the 
theory of the stability of the solutions of Eq. (1.18). We shall 
deal only with the linear approach, which not only estab- 
lishes the existence of instability, but also points out the be- 
ginning of the way to find new solutions. 

We assume that cp(z,t) = cpo(z) + S p ( z ) e - ' ~ '  differs 
only slightly from the exact nonlinear solution cpo. According 
to the linear theory of stability, we are dealing with the equa- 
tion 

1 f m  dz '  d S p ( z r )  
0 - ; f m  d;;- 

In the case of perturbed states corresponding to eigenvalues 
w with Im w>O, the perturbations grow with time, attesting 
to the instability of cp,(z). 

Discussing the solutions of Eq. (AI.l), we first of all 
note that when &%-I, cos c p ~  can be neglected in this equation 
in an approximation. Then using the relation 

we obtain the following asymptotic solution 

On the other hand, since cos cpo3-1, we can use (AI.2) to 
easily prove that 

Here the region of instability Im w>O corresponds to nega- 
tive eigenvalues E. Therefore, for example, in a numerical 
study of the stability problem it is sufficient to restrict our- 
selves to the region 

Below we show how such a problem can be solved analyti- 
cally. In accordance with Eq. (AI.1) we have 

When E is negative, the plus sign in this equation corre- 
sponds to a perturbation growing with time. 

Let %(z) correspond to the stationary solution of (5.1). 
Then Equation (AI.l) takes the form 

It is not difficult to see that one solution of this equation is 

This solution corresponds to a negative eigenvalue 

which, according to (AIS), corresponds to the following ex- 
pression for the instability growth rate: 

Thus, periodic solution (5.1) with zero mean magnetic field 
strength during a period is unstable. A similar solution of the 
sine-Gordon equation of local Josephson electrodynamics is 
also unstable. In our case it is extremely simple to demon- 
strate the instability of (AI.6)-(AI.9). 

We note that in the limit P%-(Z/L)wj, the instability 
2 -1 growth rate is y=(lw,lL) P . Therefore, instability can be 

manifested only over sufficiently long time intervals 

374 JETP 79 (2), August 1994 G. L. Alfimov and V. P. Silin 374 



The development of instability can be compared with relax- 
ation process (6.3). For example, if 1-L, the relaxation time 
is 

In other words, in this case the time for the development of 
the instability of a stationary periodic structure with L > I 
coincides with the decay time of a nonstationary vortex 
structure with IZL.  

A different situation is observed when IGL, in which 
case 

This inequality means that the development of instability 
with perturbation (AI.7) can be neglected during the charac- 
teristic time for the establishment of a stationary vortex 
structure with a period much greater than 1 according to 
(6.3). 

Since it must be assumed for perturbation (AI.7) that 
I<L, as in ground state (5.1), the eigenvalue of (AI.8) tends 
to the left-hand edge of the range of eigenvalues E corre- 
sponding to instability only in the limit L +I. At the same 
time, solutions (AI.7) for different values of (l/L) corre- 
spond to the entire range of instability on the axis, - 1 < ~ < 0 .  

Perturbation (AI.7) does not have a zero in the period 

The next solution that vanishes once in this period is a solu- 
tion of Eq. (AI.6): 

The corresponding eigenvalue is 

which, according to (AIS), corresponds to both a temporally 
decaying perturbation with a damping rate P and a time- 
independent marginal perturbation representing a displace- 
ment mode. 

The following solution of (AI.6) has two zeros in period 
(A1.10): 

(AI. 13) 

The eigenvalue corresponding to it is &=I ,  which corre- 
sponds to perturbations that decay with time. 

The next solution of Eq. (AI.6) has the form 

This solution has three zeros in period (AI.lO): z =  (~rL/2) ,  
z = arcsin(l/[L + I]), and z = T- arcsin(l/[L + I]). The eigen- 
value E =  1 +(I/L) corresponds to solution (AI.14), and the 
eigenvalue E= 1 +(21/L) corresponds to the solution 

which has four zeros in period (AI.10). The construction of 
the subsequent solutions of Eq. (AI.6) is obvious. 

Now let cp,(z) correspond to stationary solution (2.1). 
Then Eq. (AI.1) takes the form 

- E Sp. (AI.16) 

The following is the analog of solution (AI.7) for this case: 

This solution corresponds to E=O; therefore, it corresponds 
to a perturbation that does not grow with time. At the same 
time, since solution (AI.17) does not have zeros, it can be 
assumed to correspond to the smallest eigenvalue. Therefore, 
it can be concluded that stationary solution (2.1) has mar- 
ginal stability. Unlike Eq. (AI.6), Eq. (AI.16) presently under 
consideration has periodicity in a period 

O ~ z S 2 r r L .  (AI.18) 

Therefore, the spatially periodic solution of (A16) having 
one zero in period (AI.18) has the form 

The corresponding eigenvalue is 

which also corresponds to temporal decay of the perturbation 
with spatial structure (AI.19). 

Thus, several solutions of the linearized equations of 
nonlocal Josephson electrodynamics have been presented 
here in the context of the linear theory of small perturbations, 
and the stability of stationary, spatially periodic nonlinear 
vortex states has thereby been studied. 

APPENDIX B 

In the limit L -+m, stationary spatially periodic structures 
(2.1) and (5.1) transform into a 2.rr kink (2.11). Such a lim- 
iting transition permits the use of the results in Appendix A 
to analyze the stability of a 2.rr kink. In fact, making the 
transition to this limit in solutions (AI.7), (AI.11), (AI.17), 
and (AI.19), we obtain the same solution of Eq. (AI.1) 

(BII. 1) 

This limiting solution does not have any zeros. The limiting 
eigenvalues of solutions (AI.7), (AI.17), and (AI.19) coin- 
cide and are equal to E=O. Thus, it can be concluded that 2.rr 
kink (2.11) has marginal stability. The solutions in Appendix 
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I also make it possible to write the solution of Eq. (AI.1) in 
the case of a 2.rr kink for the eigenvalue E= 1. 
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unit of length in the direction of the z axis. 

'A. Barone and G .  Paterno, The Physics andApplications of the Josephson 
Effect, Wiley, New York (1982). 

'YU. M. Aliev, V. P. Silin, and S. A. Uryupin, Sverkhprovodimost: Fiz., 
Khim., Tekh. 5, 228 (1992) [Superconductivity 15, 230 (1992)l. 

3 ~ ~ .  M. Aliev and V. P. Silin, Zh. Eksp. Teor. Fiz. 104, 2526 (1993) [JETP 
77, 142 (1993)l. 

4 ~ .  P. Silin, JETP Lett. 58, 701 (1993). 

376 JETP 79 (2), August 1994 

5A. A. Abrikosov, Fundamentals of the Theory of Metals, Elsevier, New 
York (1988). 

6 ~ .  Gurevich, Phys. Rev. B 46, 3187 (1992). 
'YU. M. Aliev and V. P. Silin, Phys. Lett. A 177, No. 3, 259 (1993). 
'YU. M. Aliev, V. P. Silin, and S. A. Uryupin, JETP Lett. 57, 193 (1993). 
9 ~ .  Seeger, "Theorie der Gitterfehlstellen," in Handbuch der Physik, Vol. 

7, Part I ,  Kristallphysik, Springer-Verlag, Berlin-Gottingen-Heidelberg 
(1955), p. 383. 

'OR. Peierls, Proc. Phys. Soc. London 52, 34 (1940). 
"A. P. Prudnikov et al., Integrals and Series. Elementary Functions [in 

Russian], Nauka, Moscow (1981). 

Translated by P. Shelnitz 

G. L. Alfimov and V. P. Silin 376 


