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A number of models of a Josephson medium and granulated superconductors are studied. It is 
shown that an important parameter is the quantity V- j , ~ ~ / @ ~ ,  where j, is the Josephson- 
current density, a is the granule size, and is the quantum of flux. In the limit VB1 the 
continuum approximation is inapplicable. In this case the Josephson medium is 
transformed into a system in which pinning is realized on elementary loops that incorporate 
Josephson junctions. Here, nonlinear properties of these junctions obtain. The equations obtained 
for the currents of the Josephson lattice are identical to the standard formulation in the 
problem of self-organized criticality,' while in granulated superconductors a problem of self- 
organized criticality with a different symmetry arises-a problem not of sites, but of loops. From 
the point of view of the critical state in granulated superconductors the concept of self- 
organized criticality radically changes the entire customary picture. The usual equations of the 
critical state describe only the average values of the magnetic field in the hydrodynamic 
approximation. However, it follows from the concept of self-organized criticality that the critical 
state has an extremely complicated structure, much more complicated than that which 
follows from the equation of the critical state. In particular, the fluctuations of various quantities 
in the critical state are much stronger than the ordinary statistical fluctuations, since there 
are large-scale fluctuations of the currents and fields, with a power-law (scaling) behavior that 
extends up to scales of the order of the size of the system, as in a turbulent medium. If 
there is current flow (e.g., in the presence of a weak electric field), this flow will be turbulent 
with large-scale fluctuations of the currents and fields in space and time. To all 
appearances, the problem of self-organized criticality is just as universal as the problem of 
fractality. On the other hand, the basic equations in it reflect all the features of pinning- 
hysteresis and threshold behavior. Therefore, the self-organization of the critical state of a 
superconductor is a natural realization of this extremely general problem. 

1. INTRODUCTION 

Recently, great interest has arisen in the problem of self- 
organized criticality (see, e.g., Refs. 1-5). This concept is 
applied to a very large class of dissipative dynamical sys- 
tems. In the course of their evolution these systems arrive at 
a critical state which, in the subsequent evolution, is self- 
sustaining and does not require exact tuning of any external 
parameters for its existence. Therefore, it is called a self- 
organizing critical state, in contrast to the usual critical state 
that arises in, e.g., phase transitions. The concept of self- 
organized criticality is extremely general, and has been ap- 
plied to such diverse spheres of science as geophysics, eco- 
nomics, astrophysics, and the physics of condensed matter. 

However, not unexpectedly in view of such universality, 
almost all the information on self-organized criticality has 
been obtained by computer modeling. Experimental data, at 
least in condensed-matter physics, are available only in mea- 
surements on a ~ a n d ~ i l e . ~  Naturally, we should like to have 
more-interesting physical systems with self-organized criti- 
cality. It would appear that a natural candidate here is charge- 
density waves, in the study of which the concept of self- 
organized criticality first arose.' However, recent very 
detailed papers devoted to the study of charge-density waves 

(see, e.g., Refs. 8 and 9) have shown that they do not exhibit 
self-organized criticality, but an ordinary phase transition of 
the pinning-depinning type, associated with a precise tuning 
of the parameters. 

On the other hand, the phenomenon of the critical state 
of a hard superconductor of the second kind has been known 
for a long time (see, e.g., Refs. 10 and 11). The critical state 
itself arises as a result of the dynamics of the fields or cur- 
rents, and is subsequently also self-sustaining. In this sense it 
is very similar to systems with self-organized criticality, but 
in the standard theory the critical state does not possess the 
spectrum of fluctuations that are inherent to self-organized 
criticality. This is due to the continuum character of the 
equations describing the critical state. Recently it has been 
shown that if one takes into account the discreteness of the 
pinning centers the standard critical state possesses the prop- 
erties of self-organized criticality.12 Thus, it is clear that the 
critical state in superconductors in the presence of internal 
discrete structures of some kind is an entirely natural candi- 
date for self-organized criticality. In such systems the actual 
critical state and spectrum of fluctuations inherent to self- 
organized criticality should be realized. 

In the present paper we shall consider a number of sys- 
tems of this kind-namely, ordered Josephson lattices and 
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ordered granulated superconductors. These two classes of 
systems are described mathematically by very similar equa- 
tions, and therefore we shall consider them together. The 
very important parameter V appears in all these equations. 
For V<1 we can go over to the continuum limit, and the 
problem reduces to well known equations. We shall consider 
the opposite case V a l .  In this case it is found that in the 
system there are a large number of metastable states, the 
existence of which leads to the appearance of a critical state 
in the system, while transitions between these states create a 
spectrum of fluctuations that are characteristic for self- 
organized criticality. 

2. TWO-DIMENSIONAL LAlTICE OF JOSEPHSON 
JUNCTIONS 

We shall consider first a rather simple model-a two- 
dimensional lattice of Josephson junctions, introduce all the 
equations for this model and analyze them in detail, and then 
show how to generalize the results obtained to various mod- 
els of granulated superconductors. 

Suppose that we have a large two-dimensional Joseph- 
son junction of size L x L,  lying in the xy plane. A Josephson 
current flows along the z axis. Let the phase in the first 
superconductor be cp ,  and let the phase in the second be cp,. 
Then for the gauge-invariant phase difference cp= cp,  - cp2 we 
have in the resistive model the following equation:13'14 

@ 0  acp- @ 0  
j0 sin c p +  --- 

2 I T ~ ,  dt 16 I T ~ ~ ~  
Acp+j , ,  

where A is the two-dimensional Laplacian, j0 is the 
Josephson-current density, jl is the injection-current density, 
@, is the flux quantum, AL is the London penetration depth, 
and p0 is the surface resistance of the junction. Now let jO(x)  
be nonzero and equal to jM for 

with l< a .  Thus, we obtain a multi-junction squid, with junc- 
tions of size 1' at the sites of a square lattice with lattice 
constant a .  We shall call this system a two-dimensional Jo- 
sephson lattice. For l e a  it is easy to derive from (1) the 
following equations for c p , , ,  = cp(an,am): 

@o dqn,m - j ,  
jM sin cp,, ,+ -- - - 

2 r p 0  d t  271 An,,(cp) + J I , ~ , ~ ,  7 

A n , m ( ( ~ ) = ( ~ n + l , m + ( ~ n - l , m +  ( ~ n , r n + l +  (~n,m-1-4(~nm - 
( 3 )  

Equation (3)  is the discrete analog of ( I ) ,  and it is necessary 
only to convince oneself of the correctness of the coefficient 
of A,,, . This is easily done as follows. We pass to the con- 
tinuum limit in (3);  then, obviously, 

The factor a2/12 in (4 )  appears because in the continuum 
limit in (3) j0 and p0 in ( 1 )  must be replaced by 

It is convenient to represent (3 )  in the form 

dcpn,, 
V sin cp,,,+r -- 

d t  - An,m(cp) + 2.rrFn.m 7 

In (6)  we have introduced the very important dimensionless 
quantity V ,  and we shall assume that V a l .  It is this param- 
eter that determines the presence of a large number of meta- 
stable states at the sites. In fact, if we separate the term with 
qn,, on the right-hand side of (6) ,  we obtain 

d ~ n , m  
V sin c p , , ,  + T - 

d t  +4cpn,m=cp0, 

We shall assume that p,, is some constant. Then (7 )  is the 
equation of a one-junction squid, and has been studied by 
many authors. It has been ~ h o w n ' ~ " ~  that for V a l  the energy 
of the squid has many (of order V )  metastable states, and it is 
this fact which leads to the existence of such important phe- 
nomena as flux quantization and hysteresis. It is easy to see 
that in the complete equation (6 )  these properties are also 
preserved, and indeed determine all the interesting phenom- 
ena in our system. 

We shall consider first the static properties of Eq. (6)  for 
F,,,=O. For simplicity we shall consider quasi-one- 
dimensional solutions, i.e., we shall assume that a,, does 
not depend on m.  Then from (6 )  we obtain 

This equation was considered in, e.g., Ref. 15. It is easy to 
see that for V a l  the following solution holds 
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It is easy to show that f,+l12 is the total number of flux 
quanta through a loop bounded by two junctions and two 
superconductors. It can be seen from (9) that the magnetic 
field h(x,) = h ( a n )  - f,+ 112 between junctions increases lin- 
early with distance. This implies that we have a critical state 
with a critical current jc-V. It is easy to show that this is a 
strongly excited, metastable state. 

We now return to (6). We introduce the following nota- 
tion: 

The solution (9) corresponds to 

In this notation Eq. (6) has the form 

It can be seen from (12) that in the static case we always 
have 

We now consider the dynamics. We assume that F,,, are 
integers (this is convenient for what follows). It is possible to 
start the analysis of the dynamics from the initial conditions 
q,,,=O, F,,,=O, and then increase F,,, . However, we shall 
proceed differently. We specify the initial conditions as fol- 
lows: 

where K and * are defined in (9). It is not difficult to see that 
(14), like (9), is a solution of our equation, but has an en- 
tirely different structure. In (9) we have F,,,=O, while in 
(14) we have A,,,(cp)=O. Below, it will be seen that in the 
general case any situation is possible; in particular, we can 
have F,,,%zC and IAn,,(cp)I%zc, An,m<O, but then, natu- 
rally, the condition (13) is necessarily fulfilled, and then F,,, 
and A,,, almost cancel each other. Since the term A,,,(cp) 
involves the surface current of the junction, in the case 
F,,,+z, a strong injection current cannot pass through the 
junction and flows over the surface of the junction. Here, 
naturally, the boundary conditions on the edges of the junc- 
tion are very important. The situation described in (9) corre- 
sponds to the case when everything is determined by the 
external magnetic fields and there is no injection current. 

We now return to the dynamics. We start from (14), and, 
at one site no ,mo, add one unit to F,o,mo (the injection cur- 
rent can be freely varied in accordance with the wish of the 
experimenters). Then, at this site, we obtain zno,mn 
- 
- F,o,mo = K + 1 > zc , since A,,,(cp)=O. It can be seen 
from (6) or (10) and (12) that now dcp,o,mnldt # 0.  We 
must solve the system of equations (6) with Fnomo = K 
+ 1,  F n m = K  for nm #norno and with initial conditions 
a,,=*. It is clear that in the general case the solution of 

this system is rather complicated. For VP1, however, we can 
find an approximate solution. First of all, we note that when 
cp,,, changes by an amount of order IT the term V sin a,, 
changes by V, while the term A,,,(cp) changes by an amount 
of order ITGV. Furthermore, it is known14 that for V P 1  the 
equation (12) for a single Josephson junction with a constant 
z,,,>z, with the condition z,,,-zcGz, has a solution that 
varies slowly over a large time interval T P r O ,  and then cp,,, 
changes by 27r over an interval 70. This enables us to solve 
our equations as follows. We shall assume that A,,,(cp) and 
(consequently) z,,,(cp) are piecewise-continuous functions 
that change at the point at which cp,,, changes by  IT. Then 
we shall approximate cp,,, in A,,,(cp) and in z,,,(cp) by the 
quantity 7r/2+27rpn,, , with integer p,,, ; i.e., we set 

Since A,,,(p) is an integer and we assumed that F,,, is also 
an integer, z,,, is an integer as well. Solving (12) for 

q n o  ,mo with znn ,mo = K + 1 and the condition cp,o,mn(0) 
= ?, we obtain 

where 70 is defined in (6). Since, as we have already said, the 
solution (16) varies slowly at first and then changes rapidly 
by 2rr, it is convenient to take as the matching point the time 
t l  at which cp,o,mn(t) changed by IT and became equal to 
35-12. We then obtain 

tan -- 1 
fir(, 4 

t ,=  - to+  m (17) 

It can be shown that in (17) it is necessary to choose the 
following branches of the arctangent (Arctan x is the princi- 
pal branch of the arctangent): 

Arctan x ,  l < x c m ,  
arctan x = A r c t a n x + r ,  - w < x < l ,  (18) 

upon which we obtain 

336 JETP 79 (2), August 1994 S. L. Ginzburg 336 



At time t, the phase changed by r ,  but this change occurred 
not on the scale of t , -T(a,) ,  but on the scale of 70. In 
exactly the same way, the further change of phase by 7~ also 
occurs over a time of order 7,6T(a1). Therefore, on a time 
scale of order T we can assume that the phase changed by 271 
at t = t l  . This implies that at t = t ,  phase slippage occurred, 
and 

First of all, we note that the rules for change of z,,, in (20) 
coincide completely with the corresponding rules in papers 
on self-organized This implies that our model is 
indeed a system with self-organized criticality. We shall re- 
turn to this question below. 

Next, after the jump of p,,,,,, occurred, z,,, changed at 
five sites: no,mo;  n o + l , m o ;  no,mo?l.  At the sites 
no+ l ,mo and no ,mo+l ,  z,,, became equal to K+1,  and the 
problem reduced to the previous one. At the site no ,mo, the 
quantity znO,,,, became equal to K-3, and it was necessary 
for us to solve Eq. (12) with this z and the initial condition 
cp(tl)=3~/2. For t > t l  we obtain 

X coth 
J 2 0 ( t - t , +  70) 

2 70 

The expression (16) is true for O<t<t l ,  while (21) is true 
for tl<t<m. Collecting everything together, and using the 
expression for T(a) in (19), we obtain 

Thus, Eq. (22) describes the transition from the equilibrium 
state cp(O), by addition of unity to Fno,,,,, to a new equilib- 
rium position cp(m). Here, cp changes by almost 2rr, while p 
changes by unity. 

However, it can be seen from (20) that in this case the 
values of z (and, consequently, cp) for the nearest neighbors 
of the site no, m, also change. In our example, z,,, for the 
nearest neighbors became equal to K+1, and the problem 
reduced to the previous one. However, this does not always 
happen. In fact, below, either we shall add unity by means of 
F,,,,,,, or it will be taken from neighbors and added to the 
site no,mo, when z ,,(,, m,, goes over from K-3  to K-2, and 
then to K- 1 and K. After this the cycle will be closed. Thus, 
we have four equilibrium states za234 '0)  and one nonequi- 
librium state zilA: 

The following equilibrium phases correspond to the equilib- 
rium states: 

It is obvious that a1 corresponds to the nonequilibrium situ- 
ation. 

We shall consider, e.g., the transition from the state with 
d2) to the state with z ( ~ ) .  We need to solve Eq. (12) with 
zn,m = z ( ~ )  and the initial value cpi:?, that corresponds to i = 2  
in (24). This situation is obtained when z at the site n, m is 
increased by unity either as a result of addition to F,, ,  or as 
a result of a change of phase at a neighboring site by 237. The 
solution has the form 
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q,,,(t) = 2 arctan coth --- Ti; ::;)I , 

with corresponding ex ressions in the transition from z ( ~ )  to Y z ( ~ )  and from z ( ~ )  to z('. These transitions differ sharply from 
the case of addition of unity to z(O), since the state with z(') 
that arises in the latter case is unstable and goes over to that 
with z ( ~ ) .  We have already considered this case. In transitions 
of the form (25), cp,,, changes from cp(2) in (24) to cp(3), and 
so on, without change of p ,  and in these transitions cp,,, 
changes by an amount of order JG 4 1, in contrast to the 
transition from z(O) to z(') and then to z ( ~ ) ,  when cp,,, changes 
by 277. 

Thus, we have described a scheme of transitions through 
the states 24344+0+1+2, which leads finally to a com- 
plete change of phase by 27r at one site. 

We shall show now how to describe this motion over the 
whole lattice. We shall apply the idea of piecewise continuity 
of z,,, for the whole system. As already stated, cp,,, changes 
phase by an amount of order 2~ over a time interval 
rO<T(ai), i.e., on our time scale, instantaneously. In order to 
reflect this fact in the mathematics, we define p,, ,  as fol- 
lows: 

where nint x is the integer nearest to x .  Then, taking into 
account all that has been said, together with (15), we can 
rewrite Eqs. (10) and (12) as follows: 

The system of equations (26) and (27) is, of course, much 
simpler than the initial system of equations (6) or (lo),  (12). 
The principal simplification in (26), (27) is that the "center 
of gravity" of the theory has been carried over from the 
phases cp,,, to the p,,, and z,,, , which are related to each 
other. The phases here change only at their own sites and do 
not interact with each other. 

However, these equations are still rather complicated for 
analysis. This is because in the theory we have five large 
times T ( a i ) ,  and, therefore, on each site the phases move on 
their own time scales, and, in fact, their motion does not 
reduce to the solutions (22) and (25), since in the injection 
time the z,,, can change discontinuously. 

Therefore, we shall make one further simplification, 
which, without changing the physical picture, makes it pos- 
sible to eliminate the phase from the analysis completely. Let 

In this case, as can be seen from (22) and (25), the process 
involving the transition of z from z(') to d2) takes a very long 
time, viz., t ,  = T ,  while the other processes are fast and we 
shall assume that they occur instantaneously on the scale of 
the time T .  We can now synchronize the times at all sites by 
setting 

After this we can forget about the motion of the phases on 
the sites and describe the motions in the language of p,,, 
and z,,, . 

Suppose that at time k on the site n,  m a transition of 
z,,, from z(O) to z(') has occurred; then at time k+ 1, p,,, 
increases by unity. If we recall that we have z( ')>z,,  while 
z ( ~ ) < z ,  holds for i=0,2,3,4, we have the following very 
simple closed system of equations: 

In (29) it is easy to eliminate p,,, , and we then obtain a 
nonlinear, discrete diffusion equation with an external 
source: 

It is easily verified that Eqs. (29) and (30) correspond com- 
pletely to the rules (20), and therefore correspond to a system 
with self-organized criticality. 

The entire behavior of our system is determined by two 
factors-the equations themselves and the boundary condi- 
tions. The standard situation considered in problems with 
self-organized criticality reduces to the fact that [,,,(k) at 
random sites and at random times is equal to unity, while for 
the rest of the time (,,,(k)=O. Here, on the edges of the 
system, we impose the conditions z,,,=O if n and m are 
outside the system. The relationship of the various conditions 
to the physics of a discrete Josephson junction will be con- 
sidered in Sec. 6. 

It is important to note here that we have made two 
strongly simplifying assumptions, that F,,, and t,,, are in- 
tegers and that T(a,)  is large compared with other times. 
Physically, it is entirely clear that these assumptions are of 
absolutely no importance. Nevertheless, it would be very in- 
teresting to perform computer modelling without making 
these assumptions and convince oneself that in this case the 
system belongs to the same universality class as the system 
described by Eqs. (29) and (30). 
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3. RELATIONSHIP BETWEEN THE NONLINEAR DIFFUSION 
EQUATION AND THE ELECTRODYNAMICS OF A 
JOSEPHSON LAlTICE 

In this section we shall examine our equations from an- 
other point of view. This will enable us subsequently to write 
all the necessary equations without derivation. 

First of all, we write down the relationship of the phase 
to the voltage U,, ,  across the junction: 

If in a time T there is a phase advance equal to 27r, the 
average voltage across the junction during this time is equal 
to 

We have already stated that if at time Tk we have z , , ,< z , ,  
then at time T ( k +  1 )  the phase will change by 27r, whereas 
if z,,,<z, the phase changes little and we can neglect this 
change. We denote 

where T r  G T ,  and T r  has been introduced so that we can be 
sure that a phase jump of 277 has occurred. Then, obviously, 

Thus, if at t =  Tk we have z , , ,>z , ,  then over the time in- 
terval [ T k +  T r ; T ( k +  1)+ T ' ]  there will have been a voltage 
pulse with an average value given by (32). From (31)-(34) it 
is obvious that we also have 

Comparing (34) and (35) with (29), we see that the first 
equation (29) and Eq. (34) have a very simple physical 
meaning. They are simply the I-V characteristics of one 
junction, since z,, ,  is the current across the junction in units 
of j , .  Next, if we substitute the expression for U,, ,  in terms 
of p,, in (35) into the second equation (29), we obtain 

It is not difficult to see that Eqs. (36) are Maxwell equations, 
written on a discrete lattice and for a discrete time. We shall 
show this. First of all, we introduce two quantities 
fii + l 12 (k )  and fiy2 l12 ,m(k) ,  which have the meaning of the 
numbers of flux quanta across the gap between two junctions 
and two superconductors in the x or y directions. The mean- 
ing of this notation can be seen from Fig. 1. Then (36) can be 
represented in the form 

We now express the number f of flux quanta in terms of the 
magnetic field h ,  express the voltage U in terms of the elec- 
tric field E ,  and express z in terms of the current j :  

Then (34) and (37) will take the form 

The equation for En,,  in (39) differs from (34) in that in (39) 
a further term with a threshold at - jM has been added. Up to 
now, this term has not appeared in the theory only because 
we have considered all phenomena close to one threshold, 
whereas, in fact, in an accurate analysis a second threshold 
will necessarily arise. It can be seen from (39) that our equa- 
tions are indeed discrete Maxwell equations with the I-V 
characteristic E,,,(j, , ,) of one junction. If the change in the 
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FIG. 2. 

FIG. 1. 

number of flux quanta is large in our processes, i.e., we rap- 
idly change the injection currents, in (39) we can go over to 
the continuum limit; in doing this, we must take into account 
in E, the dependence of T on j in (19), and replace 
d m  by dm in the expression obtained from 
(19) in order that the formula apply near both thresholds. 
Then, replacing h,,, by h(x,y), En,, by E(x,y ), and jn,, by 
( d ~ l ~ ) j ( x , ~ ) ,  we obtain 

dh 
- = -curl E, curl h =  47r(j- j( ' )) ,  
at (404 

Equation (40c) corresponds to (36), if we take into account 
the dependences T(j)  and E(j ) .  

To conclude this section, we note the following. If we 
are working near threshold, i.e., with the condition 

I J ~ , ~ - ~ M ~ - J ,  (41) 

in (39) we must use for T its value in (28). But the con- 
tinuum limit corresponds to the condition 

j,eljn,m-j~lej~ (42) 

and then the dependence T(a) reduces to (40). 
Instead of the condition (41), the following condition 

arises quite often: 

I J ~ , ~ * J M I - ~ ,  9 (43) 

i.e., it is necessary to take both thresholds into account, and 
the continuum condition is not fulfilled. In this case it is 
necessary simply to use Eq. (36) but, instead of (34), to write 

We note one further, extremely important fact. In the discrete 
equations (30), (34), (36), (37), (39), and (44), and the con- 
tinuum equations (40), the phase has vanished from the 
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theory, and only gauge-invariant quantities (the currents and 
fields) remain. Therefore, it is very easy to generalize these 
equations to more-complicated systems. 

4. TWO-DIMENSIONAL MODEL OF A GRANULATED 
SUPERCONDUCTOR 

We shall consider the following very simple model of a 
granulated superconductor. Suppose that we have a hollow 
superconducting system that is infinite along the z axis and, 
in the xy plane, is a square lattice with lattice constant a .  The 
edges of this lattice have thickness 1. At the middle of each 
edge is a junction with critical-current density j M .  

It is clear that in such a system the magnetic field h is 
along the z axis, and we shall denote the number of flux 
quanta across one cell by fn+112,m+ ,12. The current and volt- 
age are vectors along the lattice edges. We denote them by 

where the notation is clear from Fig. 2. In the middle of the 
square in Fig. 2 the current fn+112,m+ is depicted. We note 
that j, defined in (45) differs from j, in (3). 

It is easy to show that if V, defined in (6) in terms of the 
j, in (49 ,  is large, then, repeating almost verbatim all the 
calculations of Sec. 2, we obtain the following equations, 
which again are discrete Maxwell equations, as one can con- 
vince oneself by looking at Fig. 2: 

while ~ r ] ~ / ~ , ~  and u $ , , + ~ / ~  are expressed in terms of 
$4 l12,m and z$$+ by the complete formula (44) or the 
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FIG. 3. FIG. 4. 

abridged formula (34). To go over to the fields h and E it is 
necessary to use in place of (38) the expressions 

The physical meaning of these changes is obvious. The flux 
now extends over an area a 2  instead of the area 2ALa in (38), 
while the potential drops over a length a ,  and not 2AL. Sub- 
stituting (47) into (46) and passing to the continuum limit, 
we obtain equations analogous to (40). The equations (40a) 
and (40c) are reproduced completely, but instead of (40b) we 
obtain 

We now write out the diffusion equation for z in the 
region in which the condition (41) is fulfilled. Then from 
(34) and (46) we obtain, in place of (30), 

positive axis) or decreases by unity (-1, with the arrow 
along the negative axis). Thus, two units of current from the 
link n+ 1/2,m are dumped into two loops. Figure 4 depicts 
the same picture for a vertical link. 

We see that, whereas in the preceding problem four units 
of current were dumped on to the four nearest neighbors, in 
the present case two units of current are dumped into the two 
nearest loops. 

5. THREE-DIMENSIONAL MODEL OF A GRANULATED 
SUPERCONDUCTOR 

Suppose that we have a three-dimensional superconduct- 
ing network, forming a simple cubic lattice with lattice con- 
stant a .  A section of each edge of this lattice is an 1x1 
square, and in the middle of each edge there is a Josephson 
junction with critical-current density j M  . 

All the results of the preceding section can be general- 
ized without difficulty. First of all, we write out the expres- 
sion for the I- V characteristic in the continuum approxima- 
tion: 

- e{z$?,-1/2(k) -zc), (49) poa 
P =  7, j c = j M  . 

and an analogous expression for dy) ,  which is obtained from ( l l 2  
(50) 

(49) by replacing zfi1,2,m by z$:'+~/~ and vice versa. Equa- 
tion (49) differs strongly from (30). It is easy to see that the Equations (50), together with the Maxwell equations (40a), 

right-hand side of (49) is the discrete analog not of the La- form a complete system of equations. 

placian but of the operator curlcurl E. It is easy to see that in Near the threshold (41) we have, analogously to (45), 

(30) grad div E=O holds because of the symmetry of the 
problem. 

Whereas the expression (30) corresponded to the change 
algorithm (20), the expression (49) corresponds to the algo- 
rithm depicted in Fig. 3. In the latter we have drawn two 
current loops adjacent to the link along which the current 
~ f ] ~ / ~ , ~  flows, and in all other links of these loops the cur- 

L--- 
rent changes in such a way that the total current is conserved. 
In the link n + 1/2,m itself the current changes by two units 
(the arrow along the negative x direction), while in the other B 
links it increases by unity (+I ,  with the arrow along the FIG. 5. 
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Then for z::),, we have a diffusion equation analogous to 
(49): 

The change of the currents that corresponds to (52) is de- 
picted in Fig. 5, in which an increase of current is shown by 
an arrow parallel to the corresponding axis while a decrease 
of current is shown by an arrow antiparallel to the corre- 
sponding axis. Here, only on the central link is there a de- 
crease by four units of current (this is indicated), while on 
the other links the change is equal to +- 1, and, in order not to 
encumber the figure, has not been indicated. 

Thus, we see that in a three-dimensional system four 
units of current are dumped into four loops adjacent to our 
link. The same will be true for the currents and 
~ t k , ~ + ~ / ~  in the y and z links. 

6. BOUNDARY CONDITIONS 

It is well known1-' that in the problem of self-organized 
criticality a very important role is played by the boundary 
conditions. We shall consider various boundary conditions 
and their physical meaning for the simple example of the 
Josephson two-dimensional lattice considered in Sec. 2. 
There, m and n ran over values in the range l S m , n S N .  We 
now add junctions with m,n=O,N+l, and assume that at 
these junctions the critical-current density is equal to infinity, 
i.e., instead of a Josephson junction we include at the points 
with m,n=O,N+l a normal superconductor whose critical 
current is several orders of magnitude greater than the criti- 
cal current of a junction. Then, from (6) and ( lo ) ,  it can be 
seen that 

Then it can be seen from (30) that z,,, for n ,  m =0, N+ 1 can 
only increase and can never decrease. Furthermore, for sites 
on the edge we have, e.g., for n = 1, m #la and for n,m = 1, 

In (54) the current is not conserved, since current is 
dumped on to the site O,m, and current does not return from 
this site. It is easy to see that exactly the same situation will 
be obtained if instead of the condition (53) we use the con- 
dition 

In this case, from (30) we again obtain Eq. (54). However, 
the condition (53) is more physical, since the current fails to 
be conserved only on the sublattice lGm,n S N ,  but if we 
consider the complete lattice OGm,n S N  + 1 the total current 
is conserved. The condition (53) corresponds simply to 
shunting of our sublattice by a normal superconductor. 

These boundary conditions (53) or (55) will be called 
open, since current can emerge from the sublattice with 
l C m , n S N .  

Those boundary conditions under which current cannot 
emerge from the system will be called closed or reflecting 
conditions. Then, instead of (54), we obtain for n = l ,  
m$:l ,N and for n,m=1 

and analogously for z,,,, z,,,, and ZN,,. Unlike Eqs. (54), 
Eqs. (56) conserve current. 

The boundary conditions can be different on different 
boundaries. It is not difficult to show that, if the conditions 
are closed or reflecting on all boundaries, i.e., of the form 
(56), then self-organized criticality cannot exist, and there is 
an ordinary phase transition in which the parameter is the 
total current. For self-organized criticality to exist it should 
be possible for current to escape from the system, i.e., the 
condition (53) or (55) should be fulfilled somewhere. This 
implies that a Josephson junction should be shunted at some 
point by a normal superconductor. 

The conditions (55) and (56) have already been consid- 
ered previously in other papers devoted to self-organized 
criticality. We now consider another condition that has not 
arisen previously, inasmuch as this condition does not appear 
in the analysis of a sandpile. We consider the situation when 
the current in the junction is excited not by an injection 
current but by an external magnetic field. 

Suppose that the left, upper, and lower boundaries have 
open boundary conditions ( 5 9 ,  while the right boundary has 
closed boundary conditions. We apply an external magnetic 
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field h g )  to the system. Since open boundary conditions cor- 
respond to shunting by an ordinary superconductor, which 
excludes a magnetic field, the field penetrates only to the 
right boundary. 

From the first equation (37),  taking into account that the 
tangential component of the magnetic field is continuous, we 
obtain 

Equation (57) differs from (37) in that we have set F,,,=O 
and replaced f $ ' ~ l 1 2 , , ( k )  by the external field f g ) ( k ) .  Sub- 
stituting Eq. (57) now into the second equation (37),  we 
obtain [taking (34) into account] Eqs. (56),  but on the right 
rather than the left boundary, i.e., for n = N ,  m +1, N and for 
n,m = N and n = N, m = 1. The difference from (56) is that 
[,, ,(k) must be replaced by the analogous quantity 

~ N , ~ ( k ) = f $ ' ( ~ +  l ) - f ! $ ) ( k ) ,  (58) 

which does not depend on m.  In all other cases, (,, ,=0. 
Thus, we have obtained on this boundary the usual closed 
boundary conditions, and the external magnetic field has 
been reduced to a surface injection current. 

We now consider another, very interesting case. We have 
already said that with current injection, in the case of reflect- 
ing boundaries, self-organized criticality does not exist. 
However, when a magnetic field is applied to a system with 
reflecting boundaries self-organized criticality is realized. 
Suppose that we apply a magnetic field hL:)(k) to a system 
with reflecting boundaries. Then on the upper and lower 
boundary conditions of the type (56) hold, on the right 
boundary we have the conditions (57),  and on the left bound- 
ary we have the equation 

Comparing (57) and (58), we see one very important differ- 
ence between them. Whereas in (57) e ) ( k )  plays the role of 
a positive injection current, in (59) it plays the role of a 
negative one. 

Thus, on the right the magnetic field injects a positive 
current, while on the left it injects exactly the same negative 
current. As a result, the total current is conserved and is 
equal to zero. We note that for U k + 1 1 2  it is absolutely nec- 
essary to use Eq. (44) in order to take both thresholds into 
account. 

This formulation of the problem is completely equiva- 
lent to the usual equation of the critical state in 

superconductors.'O~" As a result, in one half of the supercon- 
ductor we have j = j,, while in the other we have j =  - j ,  . In 
our case, on this is imposed a fluctuation spectrum that leads 
to self-organization. A detailed study of this case will be 
carried out in a separate publication. We note only that since 
the avalanches that accompany self-organized criticality can- 
not slide anywhere, because an avalanche current is reflected 
from the boundaries, they will be annihilated, and this anni- 
hilation will lead to very strong noise. 

The boundary conditions for granulated superconductors 
can also be constructed in an analogous way, but we shall not 
do this here. 

7. CONCLUSION 

In the present paper we have shown that the equations 
describing Josephson lattices coincide with the standard 
equations of self-organized criticality. Furthermore, we have 
derived the equations describing granulated superconductors, 
and these equations, to all appearances, also possess self- 
organization properties, which we subsequently investigate. 
In addition, we have written down equations describing sys- 
tems with reflecting boundaries in a magnetic field, which 
define an entirely new class of systems with self-organized 
criticality in which instead of current discharge current anni- 
hilation occurs. 
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